1
|
Fang L, Feng X, Liu D, Han Z, Liu M, Hao X, Cao Y. 大肠杆菌合成中链脂肪酸研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Seo H, Nicely PN, Trinh CT. Endogenous carbohydrate esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose. Biotechnol Bioeng 2020; 117:2223-2236. [PMID: 32333614 DOI: 10.1002/bit.27360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Medium-chain esters are versatile chemicals with broad applications as flavors, fragrances, solvents, and potential drop-in biofuels. Currently, these esters are largely produced by the conventional chemical process that uses harsh operating conditions and requires high energy input. Alternatively, the microbial conversion route has recently emerged as a promising platform for sustainable and renewable ester production. The ester biosynthesis pathways can utilize either lipases or alcohol acyltransferase (AAT), but the AAT-dependent pathway is more thermodynamically favorable in an aqueous fermentation environment. Even though a cellulolytic thermophile Clostridium thermocellum harboring an AAT-dependent pathway has recently been engineered for direct conversion of lignocellulosic biomass into esters, the production is not efficient. One potential bottleneck is the ester degradation caused by the endogenous carbohydrate esterases (CEs) whose functional roles are poorly understood. The challenge is to identify and disrupt CEs that can alleviate ester degradation while not negatively affecting the efficient and robust capability of C. thermocellum for lignocellulosic biomass deconstruction. In this study, by using bioinformatics, comparative genomics, and enzymatic analysis to screen a library of CEs, we identified and disrupted the two most critical CEs, Clo1313_0613 and Clo1313_0693, that significantly contribute to isobutyl acetate degradation in C. thermocellum. We demonstrated that an engineered esterase-deficient C. thermocellum strain not only reduced ester hydrolysis but also improved isobutyl acetate production while maintaining effective cellulose assimilation.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee.,Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Preston N Nicely
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee.,Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
4
|
Deng X, Chen L, Hei M, Liu T, Feng Y, Yang GY. Structure-guided reshaping of the acyl binding pocket of 'TesA thioesterase enhances octanoic acid production in E. coli. Metab Eng 2020; 61:24-32. [PMID: 32339761 DOI: 10.1016/j.ymben.2020.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022]
Abstract
Medium-chain fatty acids (C6-C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme 'TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of 'TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the 'TesARD-2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked β-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuqing Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mohan Hei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Lim JW, Shin KS, Ryu YS, Lee Y, Lee SK, Kim T. High-Throughput Screening of Acyl-CoA Thioesterase I Mutants Using a Fluid Array Platform. ACS OMEGA 2019; 4:21848-21854. [PMID: 31891062 PMCID: PMC6933594 DOI: 10.1021/acsomega.9b02826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Screening target microorganisms from a mutated recombinant library plays a crucial role in advancing synthetic biology and metabolic engineering. However, conventional screening tools have several limitations regarding throughput, cost, and labor. Here, we used the fluid array platform to conduct high-throughput screening (HTS) that identified Escherichia coli 'TesA thioesterase mutants producing elevated yields of free fatty acids (FFAs) from a large (106) mutant library. A growth-based screening method using a TetA-RFP fusion sensing mechanism and a reporter-based screening method using high-level FFA producing mutants were employed to identify these mutants via HTS. The platform was able to cover >95% of the mutation library, and it screened target cells from many arrays of the fluid array platform so that a post-analysis could be conducted by gas chromatography. The 'TesA mutation of each isolated mutant showing improved FFA production in E. coli was characterized, and its enhanced FFA production capability was confirmed.
Collapse
Affiliation(s)
- Ji Won Lim
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Kwang Soo Shin
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Young Shin Ryu
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Yongjoo Lee
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Sung Kuk Lee
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| | - Taesung Kim
- Department
of Biomedical Engineering, Department of Mechanical Engineering, and Department of
Chemical Engineering, Ulsan National Institute
of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic
of Korea
| |
Collapse
|
6
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
7
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
8
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Prokhorov NS, Riccio C, Zdorovenko EL, Shneider MM, Browning C, Knirel YA, Leiman PG, Letarov AV. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Mol Microbiol 2017; 105:385-398. [PMID: 28513100 DOI: 10.1111/mmi.13710] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2017] [Indexed: 12/29/2022]
Abstract
Bacteriophages recognize and bind to their hosts with the help of receptor-binding proteins (RBPs) that emanate from the phage particle in the form of fibers or tailspikes. RBPs show a great variability in their shapes, sizes, and location on the particle. Some RBPs are known to depolymerize surface polysaccharides of the host while others show no enzymatic activity. Here we report that both RBPs of podovirus G7C - tailspikes gp63.1 and gp66 - are essential for infection of its natural host bacterium E. coli 4s that populates the equine intestinal tract. We characterize the structure and function of gp63.1 and show that unlike any previously described RPB, gp63.1 deacetylates surface polysaccharides of E. coli 4s leaving the backbone of the polysaccharide intact. We demonstrate that gp63.1 and gp66 form a stable complex, in which the N-terminal part of gp66 serves as an attachment site for gp63.1 and anchors the gp63.1-gp66 complex to the G7C tail. The esterase domain of gp63.1 as well as domains mediating the gp63.1-gp66 interaction is widespread among all three families of tailed bacteriophages.
Collapse
Affiliation(s)
- Nikolai S Prokhorov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7b2 pr. 60-letiya Oktyabrya, Moscow, 117312, Russia
| | - Cristian Riccio
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Evelina L Zdorovenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky pr, Moscow, 119991, Russia
| | - Mikhail M Shneider
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland.,Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St, Moscow, 117997, Russia
| | - Christopher Browning
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Yuriy A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky pr, Moscow, 119991, Russia
| | - Petr G Leiman
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Andrey V Letarov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7b2 pr. 60-letiya Oktyabrya, Moscow, 117312, Russia.,Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
10
|
Grisewood MJ, Hernández-Lozada NJ, Thoden JB, Gifford NP, Mendez-Perez D, Schoenberger HA, Allan MF, Floy ME, Lai RY, Holden HM, Pfleger BF, Maranas CD. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids. ACS Catal 2017; 7:3837-3849. [PMID: 29375928 DOI: 10.1021/acscatal.7b00408] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources into a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e. binding selectivity). Here, we demonstrate this approach by identifying medium-chain (C6-C12) acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, products of thioesterase-catalyzed hydrolysis, are limited in natural abundance compared to long-chain fatty acids; the limited supply leads to high costs of C6-C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding to the highly-active 'TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12- or C8-specificity while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified three thioesterases with enhanced production of dodecanoic acid (C12) and twenty-seven thioesterases with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of 'TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of 'TesA variants suggest that hydrophobic forces govern 'TesA substrate specificity. We expect that the design rules we uncovered and the thioesterase variants identified will be useful to metabolic engineering projects aimed at sustainable production of medium-chain oleochemicals.
Collapse
Affiliation(s)
- Matthew J. Grisewood
- Department
of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| | - Néstor J. Hernández-Lozada
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - James B. Thoden
- Department
of Biochemistry, University of Wisconsin−Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Nathanael P. Gifford
- Department
of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| | - Daniel Mendez-Perez
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Haley A. Schoenberger
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Matthew F. Allan
- Department
of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| | - Martha E. Floy
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Rung-Yi Lai
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Hazel M. Holden
- Department
of Biochemistry, University of Wisconsin−Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Brian F. Pfleger
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Costas D. Maranas
- Department
of Chemical Engineering, Pennsylvania State University, 158 Fenske Laboratory, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Cheon S, Kim HM, Gustavsson M, Lee SY. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr Opin Chem Biol 2016; 35:10-21. [DOI: 10.1016/j.cbpa.2016.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
|
12
|
Shin KS, Kim S, Lee SK. Improvement of free fatty acid production using a mutant acyl-CoA thioesterase I with high specific activity in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:208. [PMID: 27761152 PMCID: PMC5053343 DOI: 10.1186/s13068-016-0622-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microbial production of oleochemicals has been actively studied in the last decade. Free fatty acids (FFAs) could be converted into a variety of molecules such as industrial products, consumer products, and fuels. FFAs have been produced in metabolically engineered Escherichia coli cells expressing a signal sequence-deficient acyl-CoA thioesterase I ('TesA). Nonetheless, increasing the expression level of 'TesA seems not to be an appropriate approach to scale up FFA production because a certain ratio of each component including fatty acid synthase and 'TesA is required for optimal production of FFAs. Thus, the catalytic activity of 'TesA should be rationally engineered instead of merely increasing the enzyme expression level to enhance the production of FFAs. RESULTS In this study, we constructed a sensing system with a fusion protein of tetracycline resistance protein and red fluorescent protein (RFP) under the control of a FadR-responsive promoter to select the desired mutants. Fatty acid-dependent growth and RFP expression allowed for selection of FFA-overproducing cells. A 'TesA mutant that produces a twofold greater amount of FFAs was isolated from an error-prone PCR mutant library of E. coli 'TesA. Its kinetic analysis revealed that substitution of Arg64 with Cys64 in the enzyme causes an approximately twofold increase in catalytic activity. CONCLUSIONS Because the expression of 'TesA in E. coli for the production of oleochemicals is almost an indispensable process, the proposed engineering approach has a potential to enhance the production of oleochemicals. The use of the catalytically active mutant 'TesAR64C should accelerate the manufacture of FFA-derived chemicals and fuels.
Collapse
Affiliation(s)
- Kwang Soo Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Sangwoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| |
Collapse
|
13
|
Xu Y, Guo J, Jin X, Kim JS, Ji Y, Fan S, Ha NC, Quan CS. Crystal structure and functional implications of the tandem-type universal stress protein UspE from Escherichia coli. BMC STRUCTURAL BIOLOGY 2016; 16:3. [PMID: 26865045 PMCID: PMC4750201 DOI: 10.1186/s12900-016-0053-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022]
Abstract
Background The universal stress proteins (USP) family member UspE is a tandem-type USP that consists of two Usp domains. The UspE expression levels of the Escherichia coli (E. coli) become elevated in response to oxidative stress and DNA damaging agents, including exposure to mitomycin C, cadmium, and hydrogen peroxide. It has been shown that UspA family members are survival factors during cellular growth arrest. The structures and functions of the UspA family members control the growth of E. coli in animal hosts. While several UspA family members have known structures, the structure of E. coli UspE remains to be elucidated. Results To understand the biochemical function of UspE, we have determined the crystal structure of E. coli UspE at 3.2 Å resolution. The asymmetric unit contains two protomers related by a non-crystallographic symmetry, and each protomer contains two tandem Usp domains. The crystal structure shows that UspE is folded into a fan-shaped structure similar to that of the tandem-type Usp protein PMI1202 from Proteus mirabilis, and it has a hydrophobic cavity that binds its ligand. Structural analysis revealed that E. coli UspE has two metal ion binding sites, and isothermal titration calorimetry suggested the presence of two Cd2+ binding sites with a Kd value of 38.3–242.7 μM. Structural analysis suggested that E. coli UspE has two Cd2+ binding sites (Site I: His117, His 119; Site II: His193, His244). Conclusion The results show that the UspE structure has a hydrophobic pocket. This pocket is strongly bound to an unidentified ligand. Combined with a previous study, the ligand is probably related to an intermediate in lipid A biosynthesis. Subsequently, sequence analysis found that UspE has an ATP binding motif (Gly269- X2-Gly272-X9-Gly282-Asn) in its C-terminal domain, which was confirmed by in vitro ATPase activity monitored using Kinase-Glo® Luminescent Kinase Assay. However, the residues constituting this motif were disordered in the crystal structure, reflecting their intrinsic flexibility. ITC experiments revealed that the UspE probably has two Cd2+ binding sites. The His117, His 119, His193, and His244 residues within the β-barrel domain are necessary for Cd2+ binding to UspE protein. As mentioned above, USPs are associated with several functions, such as cadmium binding, ATPase function, and involvement in lipid A biosynthesis by some unknown way.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China. .,Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Jianyun Guo
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Xiaoling Jin
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Jin-Sik Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Ying Ji
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Shengdi Fan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Chun-Shan Quan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| |
Collapse
|
14
|
Microbial production of short-chain alkanes. Nature 2013; 502:571-4. [DOI: 10.1038/nature12536] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022]
|
15
|
Schneider AM, Schmidt S, Jonas S, Vollmer B, Khazina E, Weichenrieder O. Structure and properties of the esterase from non-LTR retrotransposons suggest a role for lipids in retrotransposition. Nucleic Acids Res 2013; 41:10563-72. [PMID: 24003030 PMCID: PMC3905857 DOI: 10.1093/nar/gkt786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-LTR retrotransposons are mobile genetic elements and play a major role in eukaryotic genome evolution and disease. Similar to retroviruses they encode a reverse transcriptase, but their genomic integration mechanism is fundamentally different, and they lack homologs of the retroviral nucleocapsid-forming protein Gag. Instead, their first open reading frames encode distinct multi-domain proteins (ORF1ps) presumed to package the retrotransposon-encoded RNA into ribonucleoprotein particles (RNPs). The mechanistic roles of ORF1ps are poorly understood, particularly of ORF1ps that appear to harbor an enzymatic function in the form of an SGNH-type lipolytic acetylesterase. We determined the crystal structures of the coiled coil and esterase domains of the ORF1p from the Danio rerio ZfL2-1 element. We demonstrate a dimerization of the coiled coil and a hydrolytic activity of the esterase. Furthermore, the esterase binds negatively charged phospholipids and liposomes, but not oligo-(A) RNA. Unexpectedly, the esterase can split into two dynamic half-domains, suited to engulf long fatty acid substrates extending from the active site. These properties indicate a role for lipids and membranes in non-LTR retrotransposition. We speculate that Gag-like membrane targeting properties of ORF1ps could play a role in RNP assembly and in membrane-dependent transport or localization processes.
Collapse
Affiliation(s)
- Anna M Schneider
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany and Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Kovačić F, Granzin J, Wilhelm S, Kojić-Prodić B, Batra-Safferling R, Jaeger KE. Structural and functional characterisation of TesA - a novel lysophospholipase A from Pseudomonas aeruginosa. PLoS One 2013; 8:e69125. [PMID: 23874889 PMCID: PMC3715468 DOI: 10.1371/journal.pone.0069125] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
TesA from Pseudomonas aeruginosa belongs to the GDSL hydrolase family of serine esterases and lipases that possess a broad substrate- and regiospecificity. It shows high sequence homology to TAP, a multifunctional enzyme from Escherichia coli exhibiting thioesterase, lysophospholipase A, protease and arylesterase activities. Recently, we demonstrated high arylesterase activity for TesA, but only minor thioesterase and no protease activity. Here, we present a comparative analysis of TesA and TAP at the structural, biochemical and physiological levels. The crystal structure of TesA was determined at 1.9 Å and structural differences were identified, providing a possible explanation for the differences in substrate specificities. The comparison of TesA with other GDSL-hydrolase structures revealed that the flexibility of active-site loops significantly affects their substrate specificity. This assumption was tested using a rational approach: we have engineered the putative coenzyme A thioester binding site of E. coli TAP into TesA of P. aeruginosa by introducing mutations D17S and L162R. This TesA variant showed increased thioesterase activity comparable to that of TAP. TesA is the first lysophospholipase A described for the opportunistic human pathogen P. aeruginosa. The enzyme is localized in the periplasm and may exert important functions in the homeostasis of phospholipids or detoxification of lysophospholipids.
Collapse
Affiliation(s)
- Filip Kovačić
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Joachim Granzin
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Susanne Wilhelm
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | | | | | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
17
|
Multifunctional enzyme thioesterase I/protease I/lysophospholipase L1 of Escherichia coli shows exquisite structure for its substrate preferences. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Leščić Ašler I, Ivić N, Kovačić F, Schell S, Knorr J, Krauss U, Wilhelm S, Kojić-Prodić B, Jaeger KE. Probing Enzyme Promiscuity of SGNH Hydrolases. Chembiochem 2010; 11:2158-67. [DOI: 10.1002/cbic.201000398] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Cantu DC, Chen Y, Reilly PJ. Thioesterases: a new perspective based on their primary and tertiary structures. Protein Sci 2010; 19:1281-95. [PMID: 20506386 DOI: 10.1002/pro.417] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thioesterases (TEs) are classified into EC 3.1.2.1 through EC 3.1.2.27 based on their activities on different substrates, with many remaining unclassified (EC 3.1.2.-). Analysis of primary and tertiary structures of known TEs casts a new light on this enzyme group. We used strong primary sequence conservation based on experimentally proved proteins as the main criterion, followed by verification with tertiary structure superpositions, mechanisms, and catalytic residue positions, to accurately define TE families. At present, TEs fall into 23 families almost completely unrelated to each other by primary structure. It is assumed that all members of the same family have essentially the same tertiary structure; however, TEs in different families can have markedly different folds and mechanisms. Conversely, the latter sometimes have very similar tertiary structures and catalytic mechanisms despite being only slightly or not at all related by primary structure, indicating that they have common distant ancestors and can be grouped into clans. At present, four clans encompass 12 TE families. The new constantly updated ThYme (Thioester-active enzYmes) database contains TE primary and tertiary structures, classified into families and clans that are different from those currently found in the literature or in other databases. We review all types of TEs, including those cleaving CoA, ACP, glutathione, and other protein molecules, and we discuss their structures, functions, and mechanisms.
Collapse
Affiliation(s)
- David C Cantu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
20
|
Brzuszkiewicz A, Nowak E, Dauter Z, Dauter M, Cieśliński H, Długołecka A, Kur J. Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:862-5. [PMID: 19724118 DOI: 10.1107/s1744309109030826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/04/2009] [Indexed: 11/10/2022]
Abstract
The crystal structure of the esterase EstA from the cold-adapted bacterium Pseudoalteromonas sp. 643A was determined in a covalently inhibited form at a resolution of 1.35 A. The enzyme has a typical SGNH hydrolase structure consisting of a single domain containing a five-stranded beta-sheet, with three helices at the convex side and two helices at the concave side of the sheet, and is ornamented with a couple of very short helices at the domain edges. The active site is located in a groove and contains the classic catalytic triad of Ser, His and Asp. In the structure of the crystal soaked in diethyl p-nitrophenyl phosphate (DNP), the catalytic serine is covalently connected to a phosphonate moiety that clearly has only one ethyl group. This is the only example in the Protein Data Bank of a DNP-inhibited enzyme with covalently bound monoethylphosphate.
Collapse
Affiliation(s)
- Anna Brzuszkiewicz
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee LC, Chou YL, Chen HH, Lee YL, Shaw JF. Functional role of a non-active site residue Trp(23) on the enzyme activity of Escherichia coli thioesterase I/protease I/lysophospholipase L(1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1467-73. [PMID: 19540368 DOI: 10.1016/j.bbapap.2009.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Escherichia coli possesses a versatile protein with the enzyme activities of thioesterase I, protease I, and lysophospholipase L(1). The protein is dubbed as TAP according to the chronological order of gene discovery (TesA/ApeA/PldC). Our previous studies showed that TAP comprises the catalytic triad Ser(10), Asp(154), and His(157) as a charge relay system, as well as Gly(44) and Asn(73) residues devoted to oxyanion hole stabilization. Geometrically, about 10 A away from the enzyme catalytic cleft, Trp(23) showed a stronger resonance shift than the backbone amide resonance observed in the nuclear magnetic resonance (NMR) analyses. In the present work, we conducted site-directed mutagenesis to change Trp into alanine (Ala), phenylalanine (Phe), or tyrosine (Tyr) to unveil the role of the Trp(23) indole ring. Biochemical analyses of the mutant enzymes in combination with TAP's three-dimensional structures suggest that by interlinking the residues participating in this catalytic machinery, Trp(23) could effectively influence substrate binding and the following turnover number. Moreover, it may serve as a contributor to both H-bond and aromatic-aromatic interaction in maintaining the cross-link within the interweaving framework of protein.
Collapse
Affiliation(s)
- Li-Chiun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Biochemical characterization of Alr1529, a novel SGNH hydrolase variant from Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:324-34. [PMID: 19028609 DOI: 10.1016/j.bbapap.2008.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/15/2008] [Accepted: 10/27/2008] [Indexed: 11/22/2022]
Abstract
Alr1529, a serine hydrolase from the cyanobacteria Anabaena sp. strain PCC 7120 is a member of the SGNH hydrolase superfamily. Biochemical characterization of the purified enzyme revealed that the protein is a dimer in solution and is specific for aryl esters of short chain carboxylic acids. The enzyme was regio-selective for alpha-naphthyl esters with maximum activity at pH 7.5 and has a broad optimal temperature range (25-45 degrees C). A structure based comparison of Alr1529 with other superfamily members confirmed the presence of the catalytic triad (Ser17-Asp179-His182) and oxyanion hole (Ser17-Arg54-Asn87) residues. Alr1529 exhibits a previously undescribed variation in the active site wherein a conserved Gly, a proton donor making up the oxyanion hole in the SGNH hydrolases, is substituted by Arg54. Site-directed mutagenesis studies suggest that Arg54 is crucial for substrate binding and catalytic activity. Ser17 plays a very crucial role in catalysis as evident from the 50-fold lower activity of the S17A mutant.
Collapse
|
23
|
Crystal Structure of a Cellulosomal Family 3 Carbohydrate Esterase from Clostridium thermocellum Provides Insights into the Mechanism of Substrate Recognition. J Mol Biol 2008; 379:64-72. [DOI: 10.1016/j.jmb.2008.03.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/03/2008] [Accepted: 03/12/2008] [Indexed: 11/23/2022]
|
24
|
Lee LC, Liaw YC, Lee YL, Shaw JF. Enhanced preference for pi-bond containing substrates is correlated to Pro110 in the substrate-binding tunnel of Escherichia coli thioesterase I/protease I/lysophospholipase L(1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:959-67. [PMID: 17604237 DOI: 10.1016/j.bbapap.2007.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 04/12/2007] [Accepted: 05/08/2007] [Indexed: 11/24/2022]
Abstract
Escherichia coli thioesterase I/protease I/lysophospholipase L(1) (TAP) possesses multifunctional enzyme with thioesterase, esterase, arylesterase, protease, and lysophospholipase activities. Leu109, located at the substrate-binding tunnel, when substituted with proline (Pro) in TAP, shifted the substrate-preference from medium-to-long acyl chains to shorter acyl chains of triglyceride and p-nitrophenyl ester, and increased the preference for aromatic-amino acid-derived esters. In the three-dimensional TAP structures, the only noticeable alteration of backbone and side chain conformation was located at the downstream Pro110-Ala123 region rather than at Pro109 itself. The residue Pro110, adjacent to Leu109 or Pro109, was found to contribute to the substrate preference of TAP enzymes for esters containing acyl groups with pi bond(s) or aromatic group(s). Some of the interactions between the enzyme protein and the substrate may be contributed by an attractive force between the Pro110 C-H donor and the substrate pi-acceptor.
Collapse
Affiliation(s)
- Li-Chiun Lee
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | | | |
Collapse
|
25
|
Lee LC, Lee YL, Leu RJ, Shaw JF. Functional role of catalytic triad and oxyanion hole-forming residues on enzyme activity of Escherichia coli thioesterase I/protease I/phospholipase L1. Biochem J 2006; 397:69-76. [PMID: 16515533 PMCID: PMC1479741 DOI: 10.1042/bj20051645] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Escherichia coli TAP (thioesterase I, EC 3.1.2.2) is a multifunctional enzyme with thioesterase, esterase, arylesterase, protease and lysophospholipase activities. Previous crystal structural analyses identified its essential amino acid residues as those that form a catalytic triad (Ser10-Asp154-His157) and those involved in forming an oxyanion hole (Ser10-Gly44-Asn73). To gain an insight into the biochemical roles of each residue, site-directed mutagenesis was employed to mutate these residues to alanine, and enzyme kinetic studies were conducted using esterase, thioesterase and amino-acid-derived substrates. Of the residues, His157 is the most important, as it plays a vital role in the catalytic triad, and may also play a role in stabilizing oxyanion conformation. Ser10 also plays a very important role, although the small residual activity of the S10A variant suggests that a water molecule may act as a poor substitute. The water molecule could possibly be endowed with the nucleophilic-attacking character by His157 hydrogen-bonding. Asp154 is not as essential compared with the other two residues in the triad. It is close to the entrance of the substrate tunnel, therefore it predominantly affects substrate accessibility. Gly44 plays a role in stabilizing the oxyanion intermediate and additionally in acyl-enzyme-intermediate transformation. N73A had the highest residual enzyme activity among all the mutants, which indicates that Asn73 is not as essential as the other mutated residues. The role of Asn73 is proposed to be involved in a loop75-80 switch-move motion, which is essential for the accommodation of substrates with longer acyl-chain lengths.
Collapse
Affiliation(s)
- Li-Chiun Lee
- *Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ya-Lin Lee
- †Department of Nutrition and Food Sciences, Fu-Jen Catholic University, Taipei County, 24205, Taiwan
- Correspondence may be addressed to either J.-F.S. (email ) or Y.-L.L. (email )
| | - Ruey-Jyh Leu
- ‡Institute of Botany, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Jei-Fu Shaw
- *Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- ‡Institute of Botany, Academia Sinica, Nankang, Taipei, 11529, Taiwan
- §Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Correspondence may be addressed to either J.-F.S. (email ) or Y.-L.L. (email )
| |
Collapse
|