1
|
Bhola M, Abe K, Orozco P, Rahnamoun H, Avila-Lopez P, Taylor E, Muhammad N, Liu B, Patel P, Marko JF, Starner AC, He C, Van Nostrand EL, Mondragón A, Lauberth SM. RNA interacts with topoisomerase I to adjust DNA topology. Mol Cell 2024; 84:3192-3208.e11. [PMID: 39173639 PMCID: PMC11380577 DOI: 10.1016/j.molcel.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/07/2023] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and in vitro RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA in vitro and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.
Collapse
Affiliation(s)
- Mannan Bhola
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paola Orozco
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Homa Rahnamoun
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elijah Taylor
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bei Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Prachi Patel
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Anne C Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3108, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Hu Y, Schwab S, Deiss S, Escudeiro P, van Heesch T, Joiner J, Vreede J, Hartmann M, Lupas A, Alvarez B, Alva V, Dame R. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Res 2024; 52:8193-8204. [PMID: 38864377 PMCID: PMC11317129 DOI: 10.1093/nar/gkae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.
Collapse
Affiliation(s)
- Yimin Hu
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Silvia Deiss
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Thor van Heesch
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Joe D Joiner
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jocelyne Vreede
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
4
|
Zhao X, Vogirala VK, Liu M, Zhou Y, Rhodes D, Sandin S, Yan J. Exploring TRF2-Dependent DNA Distortion Through Single-DNA Manipulation Studies. Commun Biol 2024; 7:148. [PMID: 38310140 PMCID: PMC10838314 DOI: 10.1038/s42003-024-05838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
TRF2 is a component of shelterin, a telomere-specific protein complex that protects the ends of mammalian chromosomes from DNA damage signaling and improper repair. TRF2 functions as a homodimer and its interaction with telomeric DNA has been studied, but its full-length DNA-binding properties are unknown. This study examines TRF2's interaction with single-DNA strands and focuses on the conformation of the TRF2-DNA complex and TRF2's preference for DNA chirality. The results show that TRF2-DNA can switch between extended and compact conformations, indicating multiple DNA-binding modes, and TRF2's binding does not have a strong preference for DNA supercoiling chirality when DNA is under low tension. Instead, TRF2 induces DNA bending under tension. Furthermore, both the N-terminal domain of TRF2 and the Myb domain enhance its affinity for the telomere sequence, highlighting the crucial role of multivalent DNA binding in enhancing its affinity and specificity for telomere sequence. These discoveries offer unique insights into TRF2's interaction with telomeric DNA.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore
| | - Vinod Kumar Vogirala
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Meihan Liu
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Yu Zhou
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore.
- Umeå university, KBC-huset (KB), Linnaeus väg 10, Umeå, 90187, Sweden.
| | - Jie Yan
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore.
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
5
|
Korolev N, Zinchenko A, Soman A, Chen Q, Wong SY, Berezhnoy NV, Basak R, van der Maarel JRC, van Noort J, Nordenskiöld L. Reconstituted TAD-size chromatin fibers feature heterogeneous nucleosome clusters. Sci Rep 2022; 12:15558. [PMID: 36114220 PMCID: PMC9481575 DOI: 10.1038/s41598-022-19471-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
Large topologically associated domains (TADs) contain irregularly spaced nucleosome clutches, and interactions between such clutches are thought to aid the compaction of these domains. Here, we reconstituted TAD-sized chromatin fibers containing hundreds of nucleosomes on native source human and lambda-phage DNA and compared their mechanical properties at the single-molecule level with shorter ‘601’ arrays with various nucleosome repeat lengths. Fluorescent imaging showed increased compaction upon saturation of the DNA with histones and increasing magnesium concentration. Nucleosome clusters and their structural fluctuations were visualized in confined nanochannels. Force spectroscopy revealed not only similar mechanical properties of the TAD-sized fibers as shorter fibers but also large rupture events, consistent with breaking the interactions between distant clutches of nucleosomes. Though the arrays of native human DNA, lambda-phage and ‘601’ DNA featured minor differences in reconstitution yield and nucleosome stability, the fibers’ global structural and mechanical properties were similar, including the interactions between nucleosome clutches. These single-molecule experiments quantify the mechanical forces that stabilize large TAD-sized chromatin domains consisting of disordered, dynamically interacting nucleosome clutches and their effect on the condensation of large chromatin domains.
Collapse
|
6
|
Facilitated Dissociation of Nucleoid Associated Proteins from DNA in the Bacterial Confinement. Biophys J 2022; 121:1119-1133. [PMID: 35257784 PMCID: PMC9034294 DOI: 10.1016/j.bpj.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription machinery depends on the temporal formation of protein-DNA complexes. Recent experiments demonstrated that not only the formation but also the lifetime of such complexes can affect the transcriptional machinery. In parallel, in vitro single-molecule studies showed that nucleoid-associated proteins (NAPs) leave the DNA rapidly as the bulk concentration of the protein increases via facilitated dissociation (FD). Nevertheless, whether such a concentration-dependent mechanism is functional in a bacterial cell, in which NAP levels and the 3d chromosomal structure are often coupled, is not clear a priori. Here, by using extensive coarse-grained molecular simulations, we model the unbinding of specific and nonspecific dimeric NAPs from a high-molecular-weight circular DNA molecule in a cylindrical structure mimicking the cellular confinement of a bacterial chromosome. Our simulations confirm that physiologically relevant peak protein levels (tens of micromolar) lead to highly compact chromosomal structures. This compaction results in rapid off rates (shorter DNA residence times) for specifically DNA-binding NAPs, such as the factor for inversion stimulation, which mostly dissociate via a segmental jump mechanism. Contrarily, for nonspecific NAPs, which are more prone to leave their binding sites via 1d sliding, the off rates decrease as the protein levels increase. The simulations with restrained chromosome models reveal that chromosome compaction is in favor of faster dissociation but only for specific proteins, and nonspecific proteins are not affected by the chromosome compaction. Overall, our results suggest that the cellular concentration level of a structural DNA-binding protein can be highly intermingled with its DNA residence time.
Collapse
|
7
|
Lin SN, Dame RT, Wuite GJL. Direct visualization of the effect of DNA structure and ionic conditions on HU-DNA interactions. Sci Rep 2021; 11:18492. [PMID: 34531428 PMCID: PMC8446073 DOI: 10.1038/s41598-021-97763-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Architectural DNA–binding proteins are involved in many important DNA transactions by virtue of their ability to change DNA conformation. Histone-like protein from E. coli strain U93, HU, is one of the most studied bacterial architectural DNA–binding proteins. Nevertheless, there is still a limited understanding of how the interactions between HU and DNA are affected by ionic conditions and the structure of DNA. Here, using optical tweezers in combination with fluorescent confocal imaging, we investigated how ionic conditions affect the interaction between HU and DNA. We directly visualized the binding and the diffusion of fluorescently labelled HU dimers on DNA. HU binds with high affinity and exhibits low mobility on the DNA in the absence of Mg2+; it moves 30-times faster and stays shorter on the DNA with 8 mM Mg2+ in solution. Additionally, we investigated the effect of DNA tension on HU–DNA complexes. On the one hand, our studies show that binding of HU enhances DNA helix stability. On the other hand, we note that the binding affinity of HU for DNA in the presence of Mg2+ increases at tensions above 50 pN, which we attribute to force-induced structural changes in the DNA. The observation that HU diffuses faster along DNA in presence of Mg2+ compared to without Mg2+ suggests that the free energy barrier for rotational diffusion along DNA is reduced, which can be interpreted in terms of reduced electrostatic interaction between HU and DNA, possibly coinciding with reduced DNA bending.
Collapse
Affiliation(s)
- Szu-Ning Lin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands. .,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Guo MS, Kawamura R, Littlehale ML, Marko JF, Laub MT. High-resolution, genome-wide mapping of positive supercoiling in chromosomes. eLife 2021; 10:e67236. [PMID: 34279217 PMCID: PMC8360656 DOI: 10.7554/elife.67236] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Supercoiling impacts DNA replication, transcription, protein binding to DNA, and the three-dimensional organization of chromosomes. However, there are currently no methods to directly interrogate or map positive supercoils, so their distribution in genomes remains unknown. Here, we describe a method, GapR-seq, based on the chromatin immunoprecipitation of GapR, a bacterial protein that preferentially recognizes overtwisted DNA, for generating high-resolution maps of positive supercoiling. Applying this method to Escherichia coli and Saccharomyces cerevisiae, we find that positive supercoiling is widespread, associated with transcription, and particularly enriched between convergently oriented genes, consistent with the 'twin-domain' model of supercoiling. In yeast, we also find positive supercoils associated with centromeres, cohesin-binding sites, autonomously replicating sites, and the borders of R-loops (DNA-RNA hybrids). Our results suggest that GapR-seq is a powerful approach, likely applicable in any organism, to investigate aspects of chromosome structure and organization not accessible by Hi-C or other existing methods.
Collapse
Affiliation(s)
- Monica S Guo
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ryo Kawamura
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Department of Physics and Astronomy, Northwestern UniversityEvanstonUnited States
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
10
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
11
|
Walter JC, Lepage T, Dorignac J, Geniet F, Parmeggiani A, Palmeri J, Bouet JY, Junier I. Supercoiled DNA and non-equilibrium formation of protein complexes: A quantitative model of the nucleoprotein ParBS partition complex. PLoS Comput Biol 2021; 17:e1008869. [PMID: 33861734 PMCID: PMC8092679 DOI: 10.1371/journal.pcbi.1008869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/03/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
ParABS, the most widespread bacterial DNA segregation system, is composed of a centromeric sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding proteins. Hundreds of ParB proteins assemble dynamically to form nucleoprotein parS-anchored complexes that serve as substrates for ParA molecules to catalyze positioning and segregation events. The exact nature of this ParBS complex has remained elusive, what we address here by revisiting the Stochastic Binding model (SBM) introduced to explain the non-specific binding profile of ParB in the vicinity of parS. In the SBM, DNA loops stochastically bring loci inside a sharp cluster of ParB. However, previous SBM versions did not include the negative supercoiling of bacterial DNA, leading to use unphysically small DNA persistences to explain the ParB binding profiles. In addition, recent super-resolution microscopy experiments have revealed a ParB cluster that is significantly smaller than previous estimations and suggest that it results from a liquid-liquid like phase separation. Here, by simulating the folding of long (≥ 30 kb) supercoiled DNA molecules calibrated with realistic DNA parameters and by considering different possibilities for the physics of the ParB cluster assembly, we show that the SBM can quantitatively explain the ChIP-seq ParB binding profiles without any fitting parameter, aside from the supercoiling density of DNA, which, remarkably, is in accord with independent measurements. We also predict that ParB assembly results from a non-equilibrium, stationary balance between an influx of produced proteins and an outflux of excess proteins, i.e., ParB clusters behave like liquid-like protein condensates with unconventional “leaky” boundaries. In bacteria, faithful genome inheritance requires the two replicated DNA molecules to be segregated at the opposite halves of the cell. ParABS, the most widespread bacterial DNA segregation system, is composed of a centromere sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding protein. Hundreds of ParB assemble dynamically to form clusters around parS, which then serve as substrates for ParA molecules to catalyze the positioning and segregation events. The nature of these clusters and their interaction with DNA have remained elusive. Here, we propose a realistic minimal model that captures quantitatively the peculiar DNA binding profile of ParB in the vicinity of parS in Escherichia coli. From the viewpoint of DNA, the only fitting parameter is the in vivo supercoiling density resulting from the removal of DNA helices by toposiomerases, which is in accord with previous independent estimations. From the viewpoint of ParB clusters, we predict that they behave like liquid-like protein condensates with unconventional boundaries. Namely, we predict boundaries to be leaky (i.e. not sharp) as a result of the non-equilibrium protein production, diffusion and dilution. Altogether, our work provides novel insights into bacterial DNA organization and intracellular liquid-liquid phase separation.
Collapse
Affiliation(s)
- Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- * E-mail: (J-CW); (IJ)
| | | | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- LPHI, Univ. Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | | | - Ivan Junier
- CNRS, Univ. Grenoble Alpes, TIMC, Grenoble, France
- * E-mail: (J-CW); (IJ)
| |
Collapse
|
12
|
Single-molecule micromanipulation studies of methylated DNA. Biophys J 2021; 120:2148-2155. [PMID: 33838135 DOI: 10.1016/j.bpj.2021.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylated at the five-carbon position is the most widely studied reversible DNA modification. Prior findings indicate that methylation can alter mechanical properties. However, those findings were qualitative and sometimes contradictory, leaving many aspects unclear. By applying single-molecule magnetic force spectroscopy techniques allowing for direct manipulation and dynamic observation of DNA mechanics and mechanically driven strand separation, we investigated how CpG and non-CpG cytosine methylation affects DNA micromechanical properties. We quantitatively characterized DNA stiffness using persistence length measurements from force-extension curves in the nanoscale length regime and demonstrated that cytosine methylation results in longer contour length and increased DNA flexibility (i.e., decreased persistence length). In addition, we observed the preferential formation of plectonemes over unwound single-stranded "bubbles" of DNA under physiologically relevant stretching forces and supercoiling densities. The flexibility and high structural stability of methylated DNA is likely to have significant consequences on the recruitment of proteins recognizing cytosine methylation and DNA packaging.
Collapse
|
13
|
The Smc5/6 Core Complex Is a Structure-Specific DNA Binding and Compacting Machine. Mol Cell 2020; 80:1025-1038.e5. [PMID: 33301731 DOI: 10.1016/j.molcel.2020.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023]
Abstract
The structural organization of chromosomes is a crucial feature that defines the functional state of genes and genomes. The extent of structural changes experienced by genomes of eukaryotic cells can be dramatic and spans several orders of magnitude. At the core of these changes lies a unique group of ATPases-the SMC proteins-that act as major effectors of chromosome behavior in cells. The Smc5/6 proteins play essential roles in the maintenance of genome stability, yet their mode of action is not fully understood. Here we show that the human Smc5/6 complex recognizes unusual DNA configurations and uses the energy of ATP hydrolysis to promote their compaction. Structural analyses reveal subunit interfaces responsible for the functionality of the Smc5/6 complex and how mutations in these regions may lead to chromosome breakage syndromes in humans. Collectively, our results suggest that the Smc5/6 complex promotes genome stability as a DNA micro-compaction machine.
Collapse
|
14
|
Desai PR, Brahmachari S, Marko JF, Das S, Neuman KC. Coarse-grained modelling of DNA plectoneme pinning in the presence of base-pair mismatches. Nucleic Acids Res 2020; 48:10713-10725. [PMID: 33045724 DOI: 10.1093/nar/gkaa836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Damaged or mismatched DNA bases result in the formation of physical defects in double-stranded DNA. In vivo, defects in DNA must be rapidly and efficiently repaired to maintain cellular function and integrity. Defects can also alter the mechanical response of DNA to bending and twisting constraints, both of which are important in defining the mechanics of DNA supercoiling. Here, we use coarse-grained molecular dynamics (MD) simulation and supporting statistical-mechanical theory to study the effect of mismatched base pairs on DNA supercoiling. Our simulations show that plectoneme pinning at the mismatch site is deterministic under conditions of relatively high force (>2 pN) and high salt concentration (>0.5 M NaCl). Under physiologically relevant conditions of lower force (0.3 pN) and lower salt concentration (0.2 M NaCl), we find that plectoneme pinning becomes probabilistic and the pinning probability increases with the mismatch size. These findings are in line with experimental observations. The simulation framework, validated with experimental results and supported by the theoretical predictions, provides a way to study the effect of defects on DNA supercoiling and the dynamics of supercoiling in molecular detail.
Collapse
Affiliation(s)
- Parth Rakesh Desai
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.,Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Zhang Z, Zhan Z, Wang B, Chen Y, Chen X, Wan C, Fu Y, Huang L. Archaeal Chromatin Proteins Cren7 and Sul7d Compact DNA by Bending and Bridging. mBio 2020; 11:e00804-20. [PMID: 32518188 PMCID: PMC7373190 DOI: 10.1128/mbio.00804-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/06/2020] [Indexed: 11/20/2022] Open
Abstract
Archaeal chromatin proteins Cren7 and Sul7d from Sulfolobus are DNA benders. To better understand their architectural roles in chromosomal DNA organization, we analyzed DNA compaction by Cren7 and Sis7d, a Sul7d family member, from Sulfolobus islandicus at the single-molecule (SM) level by total single-molecule internal reflection fluorescence microscopy (SM-TIRFM) and atomic force microscopy (AFM). We show that both Cren7 and Sis7d were able to compact singly tethered λ DNA into a highly condensed structure in a three-step process and that Cren7 was over an order of magnitude more efficient than Sis7d in DNA compaction. The two proteins were similar in DNA bending kinetics but different in DNA condensation patterns. At saturating concentrations, Sis7d formed randomly distributed clusters whereas Cren7 generated a single and highly condensed core on plasmid DNA. This observation is consistent with the greater ability of Cren7 than of Sis7d to bridge DNA. Our results offer significant insights into the mechanism and kinetics of chromosomal DNA organization in Crenarchaea.IMPORTANCE A long-standing question is how chromosomal DNA is packaged in Crenarchaeota, a major group of archaea, which synthesize large amounts of unique small DNA-binding proteins but in general contain no archaeal histones. In the present work, we tested our hypothesis that the two well-studied crenarchaeal chromatin proteins Cren7 and Sul7d compact DNA by both DNA bending and bridging. We show that the two proteins are capable of compacting DNA, albeit with different efficiencies and in different manners, at the single molecule level. We demonstrate for the first time that the two proteins, which have long been regarded as DNA binders and benders, are able to mediate DNA bridging, and this previously unknown property of the proteins allows DNA to be packaged into highly condensed structures. Therefore, our results provide significant insights into the mechanism and kinetics of chromosomal DNA organization in Crenarchaeota.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhengyan Zhan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuanyuan Chen
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiuqiang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cuihong Wan
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Cai X, Arias DS, Velazquez LR, Vexler S, Bevier AL, Fygenson DK. DNA Nunchucks: Nanoinstrumentation for Single-Molecule Measurement of Stiffness and Bending. NANO LETTERS 2020; 20:1388-1395. [PMID: 31872766 DOI: 10.1021/acs.nanolett.9b04980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bending of double-stranded DNA (dsDNA) has important applications in biology and engineering, but measurement of DNA bend angles is notoriously difficult and rarely dynamic. Here we introduce a nanoscale instrument that makes dynamic measurement of the bend in short dsDNAs easy enough to be routine. The instrument works by embedding the ends of a dsDNA in stiff, fluorescently labeled DNA nanotubes, thereby mechanically magnifying their orientations. The DNA nanotubes are readily confined to a plane and imaged while freely diffusing. Single-molecule bend angles are rapidly and reliably extracted from the images by a neural network. We find that angular variance across a population increases with dsDNA length, as predicted by the worm-like chain model, although individual distributions can differ significantly from one another. For dsDNAs with phased A6-tracts, we measure an intrinsic bend of 17 ± 1° per A6-tract, consistent with other methods, and a length-dependent angular variance that indicates A6-tracts are (80 ± 30)% stiffer than generic dsDNA.
Collapse
Affiliation(s)
- Xinyue Cai
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Sebastian Arias
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Lourdes R Velazquez
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Shelby Vexler
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Alexander L Bevier
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Kuchnir Fygenson
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| |
Collapse
|
17
|
Erbaş A, Marko JF. How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation. Curr Opin Chem Biol 2019; 53:118-124. [PMID: 31586479 PMCID: PMC6926143 DOI: 10.1016/j.cbpa.2019.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 10/25/2022]
Abstract
Dissociation of a protein from DNA is often assumed to be described by an off rate that is independent of other molecules in solution. Recent experiments and computational analyses have challenged this view by showing that unbinding rates (residence times) of DNA-bound proteins can depend on concentrations of nearby molecules that are competing for binding. This 'facilitated dissociation' (FD) process can occur at the single-binding site level via formation of a ternary complex, and can dominate over 'spontaneous dissociation' at low (submicromolar) concentrations. In the crowded intracellular environment FD introduces new regulatory possibilities at the level of individual biomolecule interactions.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
18
|
Dahlke K, Sing CE. Influence of Nucleoid-Associated Proteins on DNA Supercoiling. J Phys Chem B 2019; 123:10152-10162. [PMID: 31710235 DOI: 10.1021/acs.jpcb.9b07436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
DNA supercoiling, where the DNA strand forms a writhe to relieve torsional stress, plays a vital role in packaging the genetic material in cells. Experiment, simulation, and theory have all demonstrated how supercoiling emerges due to the over- or underwinding of the DNA strand. Nucleoid-associated proteins (NAPs) help structure DNA in prokaryotes, yet the role that they play in the supercoiling process has not been as thoroughly investigated. We develop a coarse-grained simulation to model DNA supercoiling in the presence of proteins, providing a rigorous physical understanding of how NAPs affect supercoiling behavior. Specifically, we demonstrate how the force and torque necessary to form supercoils are affected by the presence of NAPs. NAPs that bend DNA stabilize the supercoil, thus shifting the transition between extended and supercoiled DNAs. We develop a theory to explain how NAP binding affects DNA supercoiling. This provides insight into how NAPs modulate DNA compaction via a combination of supercoiling and local protein-dependent deformations.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
19
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
20
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Mechanical unfolding of spectrin reveals a super-exponential dependence of unfolding rate on force. Sci Rep 2019; 9:11101. [PMID: 31366931 PMCID: PMC6668576 DOI: 10.1038/s41598-019-46525-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/18/2019] [Indexed: 11/12/2022] Open
Abstract
We investigated the mechanical unfolding of single spectrin molecules over a broad range of loading rates and thus unfolding forces by combining magnetic tweezers with atomic force microscopy. We find that the mean unfolding force increases logarithmically with loading rate at low loading rates, but the increase slows at loading rates above 1pN/s. This behavior indicates an unfolding rate that increases exponentially with the applied force at low forces, as expected on the basis of one-dimensional models of protein unfolding. At higher forces, however, the increase of the unfolding rate with the force becomes faster than exponential, which may indicate anti-Hammond behavior where the structures of the folded and transition states become more different as their free energies become more similar. Such behavior is rarely observed and can be explained by either a change in the unfolding pathway or as a reflection of a multidimensional energy landscape of proteins under force.
Collapse
|
22
|
Marko JF, De Los Rios P, Barducci A, Gruber S. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes. Nucleic Acids Res 2019; 47:6956-6972. [PMID: 31175837 PMCID: PMC6649773 DOI: 10.1093/nar/gkz497] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Cells possess remarkable control of the folding and entanglement topology of long and flexible chromosomal DNA molecules. It is thought that structural maintenance of chromosome (SMC) protein complexes play a crucial role in this, by organizing long DNAs into series of loops. Experimental data suggest that SMC complexes are able to translocate on DNA, as well as pull out lengths of DNA via a 'loop extrusion' process. We describe a Brownian loop-capture-ratchet model for translocation and loop extrusion based on known structural, catalytic, and DNA-binding properties of the Bacillus subtilis SMC complex. Our model provides an example of a new class of molecular motor where large conformational fluctuations of the motor 'track'-in this case DNA-are involved in the basic translocation process. Quantitative analysis of our model leads to a series of predictions for the motor properties of SMC complexes, most strikingly a strong dependence of SMC translocation velocity and step size on tension in the DNA track that it is moving along, with 'stalling' occuring at subpiconewton tensions. We discuss how the same mechanism might be used by structurally related SMC complexes (Escherichia coli MukBEF and eukaryote condensin, cohesin and SMC5/6) to organize genomic DNA.
Collapse
Affiliation(s)
- John F Marko
- Department of Molecular Biosciences and Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne - EPFL, 1015 Lausanne, Switzerland
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Abstract
We review the current understanding of the mechanics of DNA and DNA-protein complexes, from scales of base pairs up to whole chromosomes. Mechanics of the double helix as revealed by single-molecule experiments will be described, with an emphasis on the role of polymer statistical mechanics. We will then discuss how topological constraints- entanglement and supercoiling-impact physical and mechanical responses. Models for protein-DNA interactions, including effects on polymer properties of DNA of DNA-bending proteins will be described, relevant to behavior of protein-DNA complexes in vivo. We also discuss control of DNA entanglement topology by DNA-lengthwise-compaction machinery acting in concert with topoisomerases. Finally, the chapter will conclude with a discussion of relevance of several aspects of physical properties of DNA and chromatin to oncology.
Collapse
|
24
|
Velmurugu Y, Vivas P, Connolly M, Kuznetsov SV, Rice PA, Ansari A. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein. Nucleic Acids Res 2019; 46:1741-1755. [PMID: 29267885 PMCID: PMC5829579 DOI: 10.1093/nar/gkx1215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1–10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.
Collapse
Affiliation(s)
- Yogambigai Velmurugu
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paula Vivas
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mitchell Connolly
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Serguei V Kuznetsov
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Phoebe A Rice
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
25
|
Oliveira Paiva AM, Friggen AH, Qin L, Douwes R, Dame RT, Smits WK. The Bacterial Chromatin Protein HupA Can Remodel DNA and Associates with the Nucleoid in Clostridium difficile. J Mol Biol 2019; 431:653-672. [PMID: 30633871 DOI: 10.1016/j.jmb.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
The maintenance and organization of the chromosome plays an important role in the development and survival of bacteria. Bacterial chromatin proteins are architectural proteins that bind DNA and modulate its conformation, and by doing so affect a variety of cellular processes. No bacterial chromatin proteins of Clostridium difficile have been characterized to date. Here, we investigate aspects of the C. difficile HupA protein, a homologue of the histone-like HU proteins of Escherichia coli. HupA is a 10-kDa protein that is present as a homodimer in vitro and self-interacts in vivo. HupA co-localizes with the nucleoid of C. difficile. It binds to the DNA without a preference for the DNA G + C content. Upon DNA binding, HupA induces a conformational change in the substrate DNA in vitro and leads to compaction of the chromosome in vivo. The present study is the first to characterize a bacterial chromatin protein in C. difficile and opens the way to study the role of chromosomal organization in DNA metabolism and on other cellular processes in this organism.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Liang Qin
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Roxanne Douwes
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands
| | - Remus T Dame
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbial Cell Biology, Leiden, the Netherlands.
| |
Collapse
|
26
|
Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol 2019; 74:97-141. [PMID: 31126537 DOI: 10.1016/bs.ampbs.2019.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
Collapse
Affiliation(s)
- Eveline Ultee
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Remus T Dame
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands; Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CE Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
27
|
Brahmachari S, Dittmore A, Takagi Y, Neuman KC, Marko JF. Defect-facilitated buckling in supercoiled double-helix DNA. Phys Rev E 2018; 97:022416. [PMID: 29548184 DOI: 10.1103/physreve.97.022416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/25/2022]
Abstract
We present a statistical-mechanical model for stretched twisted double-helix DNA, where thermal fluctuations are treated explicitly from a Hamiltonian without using any scaling hypotheses. Our model applied to defect-free supercoiled DNA describes the coexistence of multiple plectoneme domains in long DNA molecules at physiological salt concentrations (≈0.1M Na^{+}) and stretching forces (≈1pN). We find a higher (lower) number of domains at lower (higher) ionic strengths and stretching forces, in accord with experimental observations. We use our model to study the effect of an immobile point defect on the DNA contour that allows a localized kink. The degree of the kink is controlled by the defect size, such that a larger defect further reduces the bending energy of the defect-facilitated kinked end loop. We find that a defect can spatially pin a plectoneme domain via nucleation of a kinked end loop, in accord with experiments and simulations. Our model explains previously reported magnetic tweezer experiments [A. Dittmore et al., Phys. Rev. Lett. 119, 147801 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.147801] showing two buckling signatures: buckling and "rebuckling" in supercoiled DNA with a base-unpaired region. Comparing with experiments, we find that under 1 pN force, a kinked end loop nucleated at a base-mismatched site reduces the bending energy by ≈0.7 k_{B}T per unpaired base. Our model predicts the coexistence of three states at the buckling and rebuckling transitions, which warrants new experiments.
Collapse
Affiliation(s)
- Sumitabha Brahmachari
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - Andrew Dittmore
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yasuharu Takagi
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
28
|
Efremov AK, Yan J. Transfer-matrix calculations of the effects of tension and torque constraints on DNA-protein interactions. Nucleic Acids Res 2018; 46:6504-6527. [PMID: 29878241 PMCID: PMC6061897 DOI: 10.1093/nar/gky478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Organization and maintenance of the chromosomal DNA in living cells strongly depends on the DNA interactions with a plethora of DNA-binding proteins. Single-molecule studies show that formation of nucleoprotein complexes on DNA by such proteins is frequently subject to force and torque constraints applied to the DNA. Although the existing experimental techniques allow to exert these type of mechanical constraints on individual DNA biopolymers, their exact effects in regulation of DNA-protein interactions are still not completely understood due to the lack of systematic theoretical methods able to efficiently interpret complex experimental observations. To fill this gap, we have developed a general theoretical framework based on the transfer-matrix calculations that can be used to accurately describe behaviour of DNA-protein interactions under force and torque constraints. Potential applications of the constructed theoretical approach are demonstrated by predicting how these constraints affect the DNA-binding properties of different types of architectural proteins. Obtained results provide important insights into potential physiological functions of mechanical forces in the chromosomal DNA organization by architectural proteins as well as into single-DNA manipulation studies of DNA-protein interactions.
Collapse
Affiliation(s)
- Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
- Department of Physics, National University of Singapore, 117551, Singapore
| |
Collapse
|
29
|
Dahlke K, Sing CE. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins. J Chem Phys 2018; 148:084902. [PMID: 29495783 DOI: 10.1063/1.5016177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Collapse
Affiliation(s)
- K Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - C E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
30
|
King GA, Hashemi Shabestari M, Taris KKH, Pandey AK, Venkatesh S, Thilagavathi J, Singh K, Krishna Koppisetti R, Temiakov D, Roos WH, Suzuki CK, Wuite GJL. Acetylation and phosphorylation of human TFAM regulate TFAM-DNA interactions via contrasting mechanisms. Nucleic Acids Res 2018; 46:3633-3642. [PMID: 29897602 PMCID: PMC5909435 DOI: 10.1093/nar/gky204] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression and transmission of mitochondrial DNA (mtDNA). However, mechanisms for the post-translational regulation of TFAM are poorly understood. Here, we show that TFAM is lysine acetylated within its high-mobility-group box 1, a domain that can also be serine phosphorylated. Using bulk and single-molecule methods, we demonstrate that site-specific phosphoserine and acetyl-lysine mimics of human TFAM regulate its interaction with non-specific DNA through distinct kinetic pathways. We show that higher protein concentrations of both TFAM mimics are required to compact DNA to a similar extent as the wild-type. Compaction is thought to be crucial for regulating mtDNA segregation and expression. Moreover, we reveal that the reduced DNA binding affinity of the acetyl-lysine mimic arises from a lower on-rate, whereas the phosphoserine mimic displays both a decreased on-rate and an increased off-rate. Strikingly, the increased off-rate of the phosphoserine mimic is coupled to a significantly faster diffusion of TFAM on DNA. These findings indicate that acetylation and phosphorylation of TFAM can fine-tune TFAM-DNA binding affinity, to permit the discrete regulation of mtDNA dynamics. Furthermore, our results suggest that phosphorylation could additionally regulate transcription by altering the ability of TFAM to locate promoter sites.
Collapse
Affiliation(s)
- Graeme A King
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Maryam Hashemi Shabestari
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Kees-Karel H Taris
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Kamalendra Singh
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 171 77 Solna, Sweden
| | - Rama Krishna Koppisetti
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Dmitry Temiakov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Wouter H Roos
- Department of Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
31
|
Fabian R, Tyson C, Tuma PL, Pegg I, Sarkar A. A Horizontal Magnetic Tweezers and Its Use for Studying Single DNA Molecules. MICROMACHINES 2018; 9:mi9040188. [PMID: 30424121 PMCID: PMC6187538 DOI: 10.3390/mi9040188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
We report the development of a magnetic tweezers that can be used to micromanipulate single DNA molecules by applying picoNewton (pN)-scale forces in the horizontal plane. The resulting force–extension data from our experiments show high-resolution detection of changes in the DNA tether’s extension: ~0.5 pN in the force and <10 nm change in extension. We calibrate our instrument using multiple orthogonal techniques including the well-characterized DNA overstretching transition. We also quantify the repeatability of force and extension measurements, and present data on the behavior of the overstretching transition under varying salt conditions. The design and experimental protocols are described in detail, which should enable straightforward reproduction of the tweezers.
Collapse
Affiliation(s)
- Roberto Fabian
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Christopher Tyson
- Biomedical Engineering Department and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Ian Pegg
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Abhijit Sarkar
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
32
|
Guttula D, Liu F, van Kan JA, Arluison V, van der Maarel JRC. Effect of HU protein on the conformation and compaction of DNA in a nanochannel. SOFT MATTER 2018; 14:2322-2328. [PMID: 29457176 DOI: 10.1039/c7sm02118f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of the heat unstable nucleoid structuring protein HU on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. Pre-incubated DNA molecules contract in the longitudinal direction of the channel with increasing concentration of HU. This contraction is mainly due to HU-mediated bridging of distal DNA segments and is controlled by channel diameter as well as ionic composition and strength of the buffer. For over-threshold concentrations of HU, the DNA molecules compact into an condensed form. Divalent magnesium ions facilitate, but are not required for bridging nor condensation. The conformational response following exposure to HU was investigated with a nanofluidic device that allows an in situ change in environmental solution conditions. The stretch of the nucleoprotein complex first increases, reaches an apex in ∼20 min, and subsequently decreases to an equilibrium value pertaining to pre-incubated DNA molecules after ∼2 h. This observation is rationalised in terms of a time-dependent bending rigidity by structural rearrangement of bound HU protein followed by compaction through bridging interaction. Results are discussed in regard to previous results obtained for nucleoid associated proteins H-NS and Hfq, with important implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Durgarao Guttula
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Fan Liu
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France and Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
33
|
Kamagata K, Mano E, Ouchi K, Kanbayashi S, Johnson RC. High Free-Energy Barrier of 1D Diffusion Along DNA by Architectural DNA-Binding Proteins. J Mol Biol 2018; 430:655-667. [PMID: 29307468 DOI: 10.1016/j.jmb.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 01/25/2023]
Abstract
Architectural DNA-binding proteins function to regulate diverse DNA reactions and have the defining property of significantly changing DNA conformation. Although the 1D movement along DNA by other types of DNA-binding proteins has been visualized, the mobility of architectural DNA-binding proteins on DNA remains unknown. Here, we applied single-molecule fluorescence imaging on arrays of extended DNA molecules to probe the binding dynamics of three structurally distinct architectural DNA-binding proteins: Nhp6A, HU, and Fis. Each of these proteins was observed to move along DNA, and the salt concentration independence of the 1D diffusion implies sliding with continuous contact to DNA. Nhp6A and HU exhibit a single sliding mode, whereas Fis exhibits two sliding modes. Based on comparison of the diffusion coefficients and sizes of many DNA binding proteins, the architectural proteins are categorized into a new group distinguished by an unusually high free-energy barrier for 1D diffusion. The higher free-energy barrier for 1D diffusion by architectural proteins can be attributed to the large DNA conformational changes that accompany binding and impede rotation-coupled movement along the DNA grooves.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan.
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA90095-1737, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Brahmachari S, Gunn KH, Giuntoli RD, Mondragón A, Marko JF. Nucleation of Multiple Buckled Structures in Intertwined DNA Double Helices. PHYSICAL REVIEW LETTERS 2017; 119:188103. [PMID: 29219598 PMCID: PMC5726782 DOI: 10.1103/physrevlett.119.188103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 06/07/2023]
Abstract
We study the statistical-mechanical properties of intertwined double-helical DNAs (DNA braids). In magnetic tweezers experiments, we find that torsionally stressed stretched braids supercoil via an abrupt buckling transition, which is associated with the nucleation of a braid end loop, and that the buckled braid is characterized by a proliferation of multiple domains. Differences between the mechanics of DNA braids and supercoiled single DNAs can be understood as an effect of the increased bulkiness in the structure of the former. The experimental results are in accord with the predictions of a statistical-mechanical model.
Collapse
|
35
|
Gunn KH, Marko JF, Mondragón A. An orthogonal single-molecule experiment reveals multiple-attempt dynamics of type IA topoisomerases. Nat Struct Mol Biol 2017; 24:484-490. [PMID: 28414321 PMCID: PMC5516274 DOI: 10.1038/nsmb.3401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022]
Abstract
Topoisomerases are enzymes involved in maintaining the topological state of cellular DNA. Despite many structural, biophysical, and biochemical studies, their dynamic characteristics remain poorly understood. Recent single molecule experiments revealed that an important feature of the type IA topoisomerase mechanism is the presence of pauses between relaxation events. However, these experiments cannot determine whether the protein remains DNA bound during the pauses or the relationship between domain movements in the protein and topological changes in the DNA. By combining two orthogonal single molecule techniques, we observed that topoisomerase IA is constantly changing conformation and attempting to modify the topology of DNA, but only succeeds in a fraction of the attempts. Thus, its mechanism can be described as a series of DNA strand passage attempts that culminate in a successful relaxation event.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
36
|
Facilitated dissociation of transcription factors from single DNA binding sites. Proc Natl Acad Sci U S A 2017; 114:E3251-E3257. [PMID: 28364020 DOI: 10.1073/pnas.1701884114] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate [Formula: see text], establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.
Collapse
|
37
|
Theoretical Methods for Studying DNA Structural Transitions under Applied Mechanical Constraints. Polymers (Basel) 2017; 9:polym9020074. [PMID: 30970752 PMCID: PMC6432069 DOI: 10.3390/polym9020074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022] Open
Abstract
Recent progress in single-molecule manipulation technologies has made it possible to exert force and torque on individual DNA biopolymers to probe their mechanical stability and interaction with various DNA-binding proteins. It was revealed in these experiments that the DNA structure and formation of nucleoprotein complexes by DNA-architectural proteins can be strongly modulated by an intricate interplay between the entropic elasticity of DNA and its global topology, which is closely related to the mechanical constraints applied to the DNA. Detailed understanding of the physical processes underlying the DNA behavior observed in single-molecule experiments requires the development of a general theoretical framework, which turned out to be a rather challenging task. Here, we review recent advances in theoretical methods that can be used to interpret single-molecule manipulation experiments on DNA.
Collapse
|
38
|
Facilitated Dissociation Kinetics of Dimeric Nucleoid-Associated Proteins Follow a Universal Curve. Biophys J 2016; 112:543-551. [PMID: 28012548 DOI: 10.1016/j.bpj.2016.11.3198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
Recent experimental work has demonstrated facilitated dissociation of certain nucleoid-associated proteins that exhibit an unbinding rate that depends on the concentration of freely diffusing proteins or DNA in solution. This concentration dependence arises due to binding competition with these other proteins or DNA. The identity of the binding competitor leads to different qualitative trends, motivating an investigation to understand observed differences in facilitated dissociation. We use a coarse-grained simulation that takes into account the dimeric nature of many nucleoid-associated proteins by allowing an intermediate binding state. The addition of this partially bound state allows the protein to be unbound, partially bound, or fully bound to a DNA strand, leaving opportunities for other molecules in solution to participate in the unbinding mechanism. Previous models postulated symmetric binding energies for each state of the coarse-grained protein corresponding to the symmetry of the dimeric protein; this model relaxes this assumption by assigning different energies for the different steps in the unbinding process. Allowing different unbinding energies not only has equilibrium effects on the system, but kinetic effects as well. We were able to reproduce the unbinding trends seen experimentally for both DNA and protein competitors. All trends collapse to a universal curve regardless of the unbinding energies used or the identity of the dissociation facilitator, suggesting that facilitated dissociation can be described with a single set of scaling parameters that are related to the energy landscape and geometric nature of the competitors.
Collapse
|
39
|
Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys Rev 2016; 9:17-40. [PMID: 28303166 PMCID: PMC5331113 DOI: 10.1007/s12551-016-0236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein–DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.
Collapse
|
40
|
Keenholtz RA, Grindley NDF, Hatfull GF, Marko JF. Crossover-site sequence and DNA torsional stress control strand interchanges by the Bxb1 site-specific serine recombinase. Nucleic Acids Res 2016; 44:8921-8932. [PMID: 27550179 PMCID: PMC5062993 DOI: 10.1093/nar/gkw724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 08/08/2016] [Indexed: 01/01/2023] Open
Abstract
DNA segment exchange by site-specific serine recombinases (SRs) is thought to proceed by rigid-body rotation of the two halves of the synaptic complex, following the cleavages that create the two pairs of exchangeable ends. It remains unresolved how the amount of rotation occurring between cleavage and religation is controlled. We report single-DNA experiments for Bxb1 integrase, a model SR, where dynamics of individual synapses were observed, using relaxation of supercoiling to report on cleavage and rotation events. Relaxation events often consist of multiple rotations, with the number of rotations per relaxation event and rotation velocity sensitive to DNA sequence at the center of the recombination crossover site, torsional stress and salt concentration. Bulk and single-DNA experiments indicate that the thermodynamic stability of the annealed, but cleaved, crossover sites controls ligation efficiency of recombinant and parental synaptic complexes, regulating the number of rotations during a breakage-religation cycle. The outcome is consistent with a ‘controlled rotation’ model analogous to that observed for type IB topoisomerases, with religation probability varying in accord with DNA base-pairing free energies at the crossover site. Significantly, we find no evidence for a special regulatory mechanism favoring ligation and product release after a single 180° rotation.
Collapse
Affiliation(s)
- Ross A Keenholtz
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Nigel D F Grindley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
41
|
Blair RH, Horn AE, Pazhani Y, Grado L, Goodrich JA, Kugel JF. The HMGB1 C-Terminal Tail Regulates DNA Bending. J Mol Biol 2016; 428:4060-4072. [PMID: 27558111 DOI: 10.1016/j.jmb.2016.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/26/2023]
Abstract
High mobility group box protein 1 (HMGB1) is an architectural protein that facilitates the formation of protein-DNA assemblies involved in transcription, recombination, DNA repair, and chromatin remodeling. Important to its function is the ability of HMGB1 to bend DNA non-sequence specifically. HMGB1 contains two HMG boxes that bind and bend DNA (the A box and the B box) and a C-terminal acidic tail. We investigated how these domains contribute to DNA bending by HMGB1 using single-molecule fluorescence resonance energy transfer (FRET), which enabled us to resolve heterogeneous populations of bent and unbent DNA. We found that full-length (FL) HMGB1 bent DNA more than the individual A and B boxes. Removing the C-terminal tail resulted in a protein that bent DNA to a greater extent than the FL protein. These data suggest that the A and B boxes simultaneously bind DNA in the absence of the C-terminal tail, but the tail modulates DNA binding and bending by one of the HMG boxes in the FL protein. Indeed, a construct composed of the B box and the C-terminal tail only bent DNA at higher protein concentrations. Moreover, in the context of the FL protein, mutating the A box such that it could not bend DNA resulted in a protein that bent DNA similar to a single HMG box and only at higher protein concentrations. We propose a model in which the HMGB1 C-terminal tail serves as an intramolecular damper that modulates the interaction of the B box with DNA.
Collapse
Affiliation(s)
- Rebecca H Blair
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA
| | - Abigail E Horn
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA
| | - Yogitha Pazhani
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA
| | - Lizbeth Grado
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA
| | - James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA.
| | - Jennifer F Kugel
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309-0596, USA.
| |
Collapse
|
42
|
Jeong J, Le TT, Kim HD. Single-molecule fluorescence studies on DNA looping. Methods 2016; 105:34-43. [PMID: 27064000 PMCID: PMC4967024 DOI: 10.1016/j.ymeth.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks.
Collapse
Affiliation(s)
- Jiyoun Jeong
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Tung T Le
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| |
Collapse
|
43
|
Song D, Graham TGW, Loparo JJ. A general approach to visualize protein binding and DNA conformation without protein labelling. Nat Commun 2016; 7:10976. [PMID: 26952553 PMCID: PMC4786781 DOI: 10.1038/ncomms10976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/08/2016] [Indexed: 01/29/2023] Open
Abstract
Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein–DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein–DNA interactions. Single-molecule imaging of protein-DNA association requires fluorescently labelled protein, which limits the protein concentration that can be used. Here the authors exploit protein induced fluorescent enhancement of DNA sparsely labelled with Cy3 to visualize protein binding and correlate it with changes in DNA conformation.
Collapse
Affiliation(s)
- Dan Song
- Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA
| | - Thomas G W Graham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA
| |
Collapse
|
44
|
Dame RT, Tark-Dame M. Bacterial chromatin: converging views at different scales. Curr Opin Cell Biol 2016; 40:60-65. [PMID: 26942688 DOI: 10.1016/j.ceb.2016.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 01/13/2023]
Abstract
Bacterial genomes are functionally organized and compactly folded into a structure referred to as bacterial chromatin or the nucleoid. An important role in genome folding is attributed to Nucleoid-Associated Proteins, also referred to as bacterial chromatin proteins. Although a lot of molecular insight in the mechanisms of operation of these proteins has been generated in the test tube, knowledge on genome organization in the cellular context is still lagging behind severely. Here, we discuss important advances in the understanding of three-dimensional genome organization due to the application of Chromosome Conformation Capture and super-resolution microscopy techniques. We focus on bacterial chromatin proteins whose proposed role in genome organization is supported by these approaches. Moreover, we discuss recent insights into the interrelationship between genome organization and genome activity/stability in bacteria.
Collapse
Affiliation(s)
- Remus T Dame
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.
| | - Mariliis Tark-Dame
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Kim H, Loparo JJ. Multistep assembly of DNA condensation clusters by SMC. Nat Commun 2016; 7:10200. [PMID: 26725510 PMCID: PMC4725763 DOI: 10.1038/ncomms10200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022] Open
Abstract
SMC (structural maintenance of chromosomes) family members play essential roles in chromosome condensation, sister chromatid cohesion and DNA repair. It remains unclear how SMCs structure chromosomes and how their mechanochemical cycle regulates their interactions with DNA. Here we used single-molecule fluorescence microscopy to visualize how Bacillus subtilis SMC (BsSMC) interacts with flow-stretched DNAs. We report that BsSMC can slide on DNA, switching between static binding and diffusion. At higher concentrations, BsSMCs form clusters that condense DNA in a weakly ATP-dependent manner. ATP increases the apparent cooperativity of DNA condensation, demonstrating that BsSMC can interact cooperatively through their ATPase head domains. Consistent with these results, ATPase mutants compact DNA more slowly than wild-type BsSMC in the presence of ATP. Our results suggest that transiently static BsSMC molecules can nucleate the formation of clusters that act to locally condense the chromosome while forming long-range DNA bridges. The Structural Maintenance of Chromosomes (SMC) proteins are essential for chromosome condensation, cohesion and DNA repair. Here the authors use single molecule imaging to visualise how Bacillus subtilis SMC interacts with and condenses DNA.
Collapse
Affiliation(s)
- HyeongJun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
46
|
DNA-Segment-Facilitated Dissociation of Fis and NHP6A from DNA Detected via Single-Molecule Mechanical Response. J Mol Biol 2015. [PMID: 26220077 DOI: 10.1016/j.jmb.2015.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate of dissociation of a DNA-protein complex is often considered to be a property of that complex, without dependence on other nearby molecules in solution. We study the kinetics of dissociation of the abundant Escherichia coli nucleoid protein Fis from DNA, using a single-molecule mechanics assay. The rate of Fis dissociation from DNA is strongly dependent on the solution concentration of DNA. The off-rate (k(off)) of Fis from DNA shows an initially linear dependence on solution DNA concentration, characterized by an exchange rate of k(ex)≈9×10(-4) (ng/μl)(-1) s(-1) for 100 mM univalent salt buffer, with a very small off-rate at zero DNA concentration. The off-rate saturates at approximately k(off,max)≈8×10(-3) s(-1) for DNA concentrations above ≈20 ng/μl. This exchange reaction depends mainly on DNA concentration with little dependence on the length of the DNA molecules in solution or on binding affinity, but this does increase with increasing salt concentration. We also show data for the yeast HMGB protein NHP6A showing a similar DNA-concentration-dependent dissociation effect, with faster rates suggesting generally weaker DNA binding by NHP6A relative to Fis. Our results are well described by a model with an intermediate partially dissociated state where the protein is susceptible to being captured by a second DNA segment, in the manner of "direct transfer" reactions studied for other DNA-binding proteins. This type of dissociation pathway may be important to protein-DNA binding kinetics in vivo where DNA concentrations are large.
Collapse
|
47
|
Abstract
The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed.
Collapse
Affiliation(s)
- John F Marko
- Department of Physics & Astronomy and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois USA 60208
| |
Collapse
|
48
|
Kim DH, Im H, Jee JG, Jang SB, Yoon HJ, Kwon AR, Kang SM, Lee BJ. β-Arm flexibility of HU fromStaphylococcus aureusdictates the DNA-binding and recognition mechanism. ACTA ACUST UNITED AC 2014; 70:3273-89. [DOI: 10.1107/s1399004714023931] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
HU, one of the major nucleoid-associated proteins, interacts with the minor groove of DNA in a nonspecific manner to induce DNA bending or to stabilize bent DNA. In this study, crystal structures are reported for both free HU fromStaphylococcus aureusMu50 (SHU) and SHU bound to 21-mer dsDNA. The structures, in combination with electrophoretic mobility shift assays (EMSAs), isothermal titration calorimetry (ITC) measurements and molecular-dynamics (MD) simulations, elucidate the overall and residue-specific changes in SHU upon recognizing and binding to DNA. Firstly, structural comparison showed the flexible nature of the β-sheets of the DNA-binding domain and that the β-arms bend inwards upon complex formation, whereas the other portions are nearly unaltered. Secondly, it was found that the disruption and formation of salt bridges accompanies DNA binding. Thirdly, residue-specific free-energy analyses using the MM-PBSA method with MD simulation data suggested that the successive basic residues in the β-arms play a central role in recognizing and binding to DNA, which was confirmed by the EMSA and ITC analyses. Moreover, residue Arg55 resides in the hinge region of the flexible β-arms, exhibiting a remarkable role in their flexible nature. Fourthly, EMSAs with various DNAs revealed that SHU prefers deformable DNA. Taken together, these data suggest residue-specific roles in local shape and base readouts, which are primarily mediated by the flexible β-arms consisting of residues 50–80.
Collapse
|
49
|
Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, Dame RT. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014; 53:6430-8. [PMID: 25291500 PMCID: PMC5451147 DOI: 10.1021/bi500344j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
helical structure of double-stranded DNA is destabilized by
increasing temperature. Above a critical temperature (the melting
temperature), the two strands in duplex DNA become fully separated.
Below this temperature, the structural effects are localized. Using
tethered particle motion in a temperature-controlled sample chamber,
we systematically investigated the effect of increasing temperature
on DNA structure and the interplay between this effect and protein
binding. Our measurements revealed that (1) increasing temperature
enhances DNA flexibility, effectively leading to more compact folding
of the double-stranded DNA chain, and (2) temperature differentially
affects different types of DNA-bending chromatin proteins from mesophilic
and thermophilic organisms. Thus, our findings aid in understanding
genome organization in organisms thriving at moderate as well as extreme
temperatures. Moreover, our results underscore the importance of carefully
controlling and measuring temperature in single-molecule DNA (micromanipulation)
experiments.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Leiden University , 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Luo Y, North JA, Poirier MG. Single molecule fluorescence methodologies for investigating transcription factor binding kinetics to nucleosomes and DNA. Methods 2014; 70:108-18. [PMID: 25304387 DOI: 10.1016/j.ymeth.2014.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/03/2014] [Accepted: 09/30/2014] [Indexed: 11/20/2022] Open
Abstract
Site specific DNA binding complexes must bind their DNA target sites and then reside there for a sufficient amount of time for proper regulation of DNA processing including transcription, replication and DNA repair. In eukaryotes, the occupancy of DNA binding complexes at their target sites is regulated by chromatin structure and dynamics. Methodologies that probe both the binding and dissociation kinetics of DNA binding proteins with naked and nucleosomal DNA are essential for understanding the mechanisms by which these complexes function. Here, we describe single-molecule fluorescence methodologies for quantifying the binding and dissociation kinetics of transcription factors at a target site within DNA, nucleosomes and nucleosome arrays. This approach allowed for the unexpected observation that nucleosomes impact not only binding but also dissociation kinetics of transcription factors and is well-suited for the investigation of numerous DNA processing complexes that directly interact with DNA organized into chromatin.
Collapse
Affiliation(s)
- Yi Luo
- Department of Physics, The Ohio State University, Columbus, OH 43210-1117, United States; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210-1117, United States
| | - Justin A North
- Department of Physics, The Ohio State University, Columbus, OH 43210-1117, United States
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210-1117, United States; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210-1117, United States.
| |
Collapse
|