1
|
Gu X, Yan Y, Novick SJ, Kovach A, Goswami D, Ke J, Tan MHE, Wang L, Li X, de Waal PW, Webb MR, Griffin PR, Xu HE, Melcher K. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. J Biol Chem 2017; 292:12653-12666. [PMID: 28615457 PMCID: PMC5535039 DOI: 10.1074/jbc.m117.793018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Indexed: 12/16/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism.
Collapse
Affiliation(s)
- Xin Gu
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Yan Yan
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503; VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Scott J Novick
- Department of Molecular Medicine, Translational Research Institute, The Scripps Research Institute, Jupiter, Florida 33458
| | - Amanda Kovach
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Devrishi Goswami
- Department of Molecular Medicine, Translational Research Institute, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jiyuan Ke
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - M H Eileen Tan
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Lili Wang
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Xiaodan Li
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Parker W de Waal
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Martin R Webb
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Patrick R Griffin
- Department of Molecular Medicine, Translational Research Institute, The Scripps Research Institute, Jupiter, Florida 33458
| | - H Eric Xu
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503; VARI-SIMM Center, Center for Structure and Function of Drug Targets, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Karsten Melcher
- Laboratories of Structural Sciences and Structural Biology and Biochemistry, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503.
| |
Collapse
|
2
|
Fili N, Toseland CP. Fluorescence and labelling: how to choose and what to do. ACTA ACUST UNITED AC 2014; 105:1-24. [PMID: 25095988 DOI: 10.1007/978-3-0348-0856-9_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This chapter provides an overview of fluorescent labelling of different reactants related to the biochemistry of motor proteins. The fluorescent properties of different labels and the advantages and disadvantages of the labelling methods are discussed. This will allow for a careful selection of fluorescent proteins for different applications relating to motor proteins.
Collapse
Affiliation(s)
- Natalia Fili
- Department of Cellular Physiology, Ludwig-Maximilians-Universität München, Schillerstrasse. 44, 80336, Munich, Germany,
| | | |
Collapse
|
3
|
Toseland CP. Fluorescence to study the ATPase mechanism of motor proteins. ACTA ACUST UNITED AC 2014; 105:67-86. [PMID: 25095991 DOI: 10.1007/978-3-0348-0856-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter provides an overview of different methodologies to dissect the ATPase mechanism of motor proteins. The use of ATP is fundamental to how these molecular engines work and how they can use the energy to perform various cellular roles. Rapid reaction and single-molecule techniques will be discussed to monitor reactions in real time through the application of fluorescence intensity, anisotropy and FRET. These approaches utilise fluorescent nucleotides and biosensors. While not every technique may be suitable for your motor protein, the different ways to determine the ATPase mechanism should allow a good evaluation of the kinetic parameters.
Collapse
Affiliation(s)
- Christopher P Toseland
- Chromosome Organisation and Dynamics, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany,
| |
Collapse
|
4
|
Kodera N, Ando T. The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 2014; 6:237-260. [PMID: 25505494 PMCID: PMC4256461 DOI: 10.1007/s12551-014-0141-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 01/14/2023] Open
Abstract
The quest for understanding the mechanism of myosin-based motility started with studies on muscle contraction. From numerous studies, the basic frameworks for this mechanism were constructed and brilliant hypotheses were put forward. However, the argument about the most crucial issue of how the actin-myosin interaction generates contractile force and shortening has not been definitive. To increase the "directness of measurement", in vitro motility assays and single-molecule optical techniques were created and used. Consequently, detailed knowledge of the motility of muscle myosin evolved, which resulted in provoking more arguments to a higher level. In parallel with technical progress, advances in cell biology led to the discovery of many classes of myosins. Myosin V was discovered to be a processive motor, unlike myosin II. The processivity reduced experimental difficulties because it allowed continuous tracing of the motor action of single myosin V molecules. Extensive studies of myosin V were expected to resolve arguments and build a consensus but did not necessarily do so. The directness of measurement was further enhanced by the recent advent of high-speed atomic force microscopy capable of directly visualizing biological molecules in action at high spatiotemporal resolution. This microscopy clearly visualized myosin V molecules walking on actin filaments and at last provided irrefutable evidence for the swinging lever-arm motion propelling the molecules. However, a peculiar foot stomp behavior also appeared in the AFM movie, raising new questions of the chemo-mechanical coupling in this motor and myosin motors in general. This article reviews these changes in the research of myosin motility and proposes new ideas to resolve the newly raised questions.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- PREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| |
Collapse
|
5
|
Toseland CP, Webb MR. ATPase mechanism of the 5'-3' DNA helicase, RecD2: evidence for a pre-hydrolysis conformation change. J Biol Chem 2013; 288:25183-25193. [PMID: 23839989 PMCID: PMC3757182 DOI: 10.1074/jbc.m113.484667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The superfamily 1 helicase, RecD2, is a monomeric, bacterial enzyme with a role in DNA repair, but with 5′-3′ activity unlike most enzymes from this superfamily. Rate constants were determined for steps within the ATPase cycle of RecD2 in the presence of ssDNA. The fluorescent ATP analog, mantATP (2′(3′)-O-(N-methylanthraniloyl)ATP), was used throughout to provide a complete set of rate constants and determine the mechanism of the cycle for a single nucleotide species. Fluorescence stopped-flow measurements were used to determine rate constants for adenosine nucleotide binding and release, quenched-flow measurements were used for the hydrolytic cleavage step, and the fluorescent phosphate biosensor was used for phosphate release kinetics. Some rate constants could also be measured using the natural substrate, ATP, and these suggested a similar mechanism to that obtained with mantATP. The data show that a rearrangement linked to Mg2+ coordination, which occurs before the hydrolysis step, is rate-limiting in the cycle and that this step is greatly accelerated by bound DNA. This is also shown here for the PcrA 3′-5′ helicase and so may be a general mechanism governing superfamily 1 helicases. The mechanism accounts for the tight coupling between translocation and ATPase activity.
Collapse
Affiliation(s)
- Christopher P Toseland
- From the MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom and; Institut für Zelluläre Physiologie and Center for NanoScience, Physiologisches Institut, Ludwig Maximilians Universität, Munich 80336, Germany
| | - Martin R Webb
- From the MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom and.
| |
Collapse
|
6
|
Abstract
Helicases are an important and much studied group of enzymes that generally couple ATP hydrolysis to the separation of strands of base-paired nucleic acids. Studying their biochemistry at different levels of organization requires assays that measure the progress of the reaction in different ways. One such method makes use of the single-stranded DNA-binding protein (SSB) from Escherichia coli. This is used as a protein framework to produce a "reagentless biosensor," making use of its tight and specific binding of single-stranded DNA. The attachment of a fluorophore to this protein produces a signal in response to that binding. Thus the (G26C)SSB, labeled with a diethylaminocoumarin, gives a ~5-fold fluorescence increase on binding to single-stranded DNA and this can be used to assay the progress of helicase action along double-stranded DNA. A protocol for this is described along with a variant that can be used to follow the unwinding on a single molecule scale.
Collapse
|
7
|
Bloemink MJ, Melkani GC, Dambacher CM, Bernstein SI, Geeves MA. Two Drosophila myosin transducer mutants with distinct cardiomyopathies have divergent ADP and actin affinities. J Biol Chem 2011; 286:28435-43. [PMID: 21680742 PMCID: PMC3151086 DOI: 10.1074/jbc.m111.258228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two Drosophila myosin II point mutations (D45 and Mhc(5)) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc(5)) could stabilize (D45) or destabilize (Mhc(5)) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that causes the cardiomyopathic phenotypes to develop, we determined whether the kinetic properties of the mutant molecules have been altered. We used myosin subfragment 1 (S1) carrying either of the two mutations (S1(A261T) and S1(G200D)) from the indirect flight muscles of Drosophila. The kinetic data show that the two point mutations have an opposite effect on the enzymatic activity of S1. S1(A261T) is less active (reduced ATPase, higher ADP affinity for S1 and actomyosin subfragment 1 (actin · S1), and reduced ATP-induced dissociation of actin · S1), whereas S1(G200D) shows increased enzymatic activity (enhanced ATPase, reduced ADP affinity for both S1 and actin · S1). The opposite changes in the myosin properties are consistent with the induced cardiac phenotypes for S1(A261T) (dilated) and S1(G200D) (restrictive). Our results provide novel insights into the molecular mechanisms that cause different cardiomyopathy phenotypes for these mutants. In addition, we report that S1(A261T) weakens the affinity of S1 · ADP for actin, whereas S1(G200D) increases it. This may account for the suppression (A261T) or enhancement (G200D) of the skeletal muscle hypercontraction phenotype induced by the troponin I held-up(2) mutation in Drosophila.
Collapse
Affiliation(s)
- Marieke J Bloemink
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Tablet C, Matei I, Hillebrand M. Experimental study of the interaction of some coumarin derivatives with aniline in Triton-X-100 micelles. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2011.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Veigel C, Schmidt CF. Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 2011; 12:163-76. [PMID: 21326200 DOI: 10.1038/nrm3062] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Much has been learned in the past decades about molecular force generation. Single-molecule techniques, such as atomic force microscopy, single-molecule fluorescence microscopy and optical tweezers, have been key in resolving the mechanisms behind the power strokes, 'processive' steps and forces of cytoskeletal motors. However, it remains unclear how single force generators are integrated into composite mechanical machines in cells to generate complex functions such as mitosis, locomotion, intracellular transport or mechanical sensory transduction. Using dynamic single-molecule techniques to track, manipulate and probe cytoskeletal motor proteins will be crucial in providing new insights.
Collapse
Affiliation(s)
- Claudia Veigel
- Department of Cellular Physiology, Institute of Physiology, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany.
| | | |
Collapse
|
10
|
Ibanez-Garcia D, Requejo-Isidro J, Webb MR, West TG, French P, Ferenczi MA. Fluorescence lifetime imaging reveals that the environment of the ATP binding site of myosin in muscle senses force. Biophys J 2011; 99:2163-9. [PMID: 20923650 DOI: 10.1016/j.bpj.2010.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/06/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022] Open
Abstract
Fluorescence lifetime imaging microscopy is used to demonstrate that different loads applied to a muscle fiber change the microenvironment of the nucleotide binding pocket of myosin. Permeabilized skeletal muscle fibers in rigor were labeled with a fluorescent ATP analog, 3'-DEAC-propylenediamine (pda)-ATP (3'-O-{N-[3-(7-diethylaminocoumarin-3-carboxamido)propyl]carbamoyl}ATP), which was hydrolyzed to the diphosphate. Cycles of small-amplitude stretches and releases (<1% of muscle segment length) were synchronized with fluorescence lifetime imaging and force measurements to correlate the effect of force on the lifetime of the ATP analog bound to the actomyosin complex. Analysis of the fluorescence decay resolved two lifetimes, corresponding to the free nucleotide DEAC-pda-ATP (τ(1) = 0.47 ± 0.03 ns; mean ± SD) and nucleotide bound to the actomyosin complex (τ(2) = 2.21 ± 0.06 ns at low strain). Whereas τ(1) did not change with force, τ(2) showed a linear dependence with the force applied to the muscle of 0.43 ± 0.05 ps/kPa. Hence, the molecular environment of the nucleotide binding pocket of myosin is directly affected by a change of length applied at the ends of the fiber segments. These changes may help explain how force modulates the actomyosin ATPase cycle and thus the physiology and energetics of contraction.
Collapse
|
11
|
Tanaka K, Kimura T, Maruta S. Synthesis of a novel fluorescent non-nucleotide ATP analogue and its interaction with myosin ATPase. J Biochem 2011; 149:395-403. [PMID: 21212073 DOI: 10.1093/jb/mvq154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel non-nucleotide fluorescent ATP analogue, N-methylanthraniloylamideethyl triphosphate (MANTTP), was designed and synthesized for kinetic studies with ATPases. The interaction of MANTTP with myosin ATPase was characterized. MANTTP was used as a substrate of myosin ATPase, and acceleration of actin-dependent hydrolysis was observed. The fluorescence property of MANTTP was not greatly affected by its binding to the ATPase site of myosin. In contrast, during MANTTP hydrolysis, significant fluorescence resonance energy transfer (FRET) was observed between MANTTP and intrinsic tryptophan residues in the myosin motor domain. Binding of MANTTP and formation of a ternary complex with a myosin-N-methylanthraniloylamideethyl diphosphate (MANTDP)-Pi analogue, which may mimic ATPase transient states, were monitored by FRET. The kinetic parameters of MANTTP binding to myosin and MANTDP release from the ATPase site were determined using a stopped-flow apparatus and compared with those of other ATP analogues. This novel fluorescent ATP analogue was shown to be applicable for kinetic analysis of ATPases.
Collapse
Affiliation(s)
- Keiko Tanaka
- Division of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | |
Collapse
|
12
|
Abstract
The interconversion of nucleoside triphosphate (NTP) and diphosphate occurs in some of the most -important cellular reactions. It is catalyzed by diverse classes of enzymes, such as nucleoside triphosphatases, kinases, and ATP synthases. Triphosphatases include helicases, myosins, and G-proteins, as well as many other energy-transducing enzymes. The transfer of phosphate by kinases is involved in many metabolic pathways and in control of enzyme activity through protein phosphorylation. To understand the processes catalyzed by these enzymes, it is important to measure the kinetics of individual elementary steps and conformation changes. Fluorescent nucleotides can directly report on the binding and release steps, and conformational changes associated with these processes. In single-molecule studies, fluorescent nucleotides can allow their role to be explored by following precisely the temporal and spatial changes in the bound nucleotide. Here, the selection of fluorophores and nucleotide modifications are discussed and methods are described to prepare ATP analogs with examples of two alternate fluorophores, diethylaminocoumarin and Cy3.
Collapse
|
13
|
FRET characterisation for cross-bridge dynamics in single-skinned rigor muscle fibres. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:13-27. [PMID: 20824272 PMCID: PMC3000472 DOI: 10.1007/s00249-010-0624-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/09/2010] [Accepted: 08/16/2010] [Indexed: 11/15/2022]
Abstract
In this work we demonstrate for the first time the use of Förster resonance energy transfer (FRET) as an assay to monitor the dynamics of cross-bridge conformational changes directly in single muscle fibres. The advantage of FRET imaging is its ability to measure distances in the nanometre range, relevant for structural changes in actomyosin cross-bridges. To reach this goal we have used several FRET couples to investigate different locations in the actomyosin complex. We exchanged the native essential light chain of myosin with a recombinant essential light chain labelled with various thiol-reactive chromophores. The second fluorophore of the FRET couple was introduced by three approaches: labelling actin, labelling SH1 cysteine and binding an adenosine triphosphate (ATP) analogue. We characterise FRET in rigor cross-bridges: in this condition muscle fibres are well described by a single FRET population model which allows us to evaluate the true FRET efficiency for a single couple and the consequent donor–acceptor distance. The results obtained are in good agreement with the distances expected from crystallographic data. The FRET characterisation presented herein is essential before moving onto dynamic measurements, as the FRET efficiency differences to be detected in an active muscle fibre are on the order of 10–15% of the FRET efficiencies evaluated here. This means that, to obtain reliable results to monitor the dynamics of cross-bridge conformational changes, we had to fully characterise the system in a steady-state condition, demonstrating firstly the possibility to detect FRET and secondly the viability of the present approach to distinguish small FRET variations.
Collapse
|
14
|
Toseland CP, Webb MR. Fluorescence tools to measure helicase activity in real time. Methods 2010; 51:259-68. [DOI: 10.1016/j.ymeth.2010.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 11/16/2022] Open
|
15
|
Morris MC. Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes. Cell Biochem Biophys 2010; 56:19-37. [PMID: 19921468 DOI: 10.1007/s12013-009-9070-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the escalation of drug discovery programmes, it has become essential to visualize and monitor biological activities in healthy and pathological cells, with high spatial and temporal resolution. To this aim, the development of probes and sensors, which can report on the levels and activities of specific intracellular targets, has become essential. Together with the discovery of the Green Fluorescent Protein (GFP), and the development of GFP-based reporters, recent advances in the synthesis of small molecule fluorescent probes, and the explosion of fluorescence-based imaging technologies, the biosensor field has witnessed a dramatic expansion of fluorescence-based reporters which can be applied to complex biological samples, living cells and tissues to probe protein/protein interactions, conformational changes and posttranslational modifications. Here, we review recent developments in the field of fluorescent biosensor technology. We describe different varieties and categories of fluorescent biosensors together with an overview of the technologies commonly employed to image biosensors in cellulo and in vivo. We discuss issues and strategies related to the choice of synthetic fluorescent probes, labelling, quenching, caging and intracellular delivery of biosensors. Finally, we provide examples of some well-characterized genetically encoded FRET reporter systems, peptide and protein biosensors and describe biosensor applications in a wide variety of fields.
Collapse
Affiliation(s)
- May C Morris
- Interactions and Molecular Mechanisms regulating Cell Cycle Progression, Université de Montpellier, CRBM-CNRS UMR5237, 1919 Route de Mende, IFR122, 34293, Montpellier, France.
| |
Collapse
|
16
|
De La Cruz EM, Olivares AO. Watching the walk: observing chemo-mechanical coupling in a processive myosin motor. HFSP JOURNAL 2009; 3:67-70. [PMID: 19794813 DOI: 10.2976/1.3095425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 11/19/2022]
Abstract
Molecular motors are cellular nanomachines that convert the energy from nucleotide binding, hydrolysis, and product release into mechanical work. Because molecular motors contribute to fundamental processes in all living organisms, including genome replication, gene transcription, protein synthesis, organelle transport, and cell division, understanding how the chemical (ATP utilization) and mechanical (motility) cycles are linked is of fundamental importance. A recent study reports the direct visualization of simultaneous nucleotide binding and mechanical displacement of a single myosin 5a molecule, a processive molecular motor protein that takes successive approximately 36-nm steps along actin filaments of the cytoskeleton. This new work demonstrates an exciting advance in single-molecule enzymology and advances our understanding of the link between chemical catalysis and mechanical work in molecular motors, particularly those that operate under internal and external loads.
Collapse
|
17
|
Forgacs E, Sakamoto T, Cartwright S, Belknap B, Kovács M, Tóth J, Webb MR, Sellers JR, White HD. Switch 1 mutation S217A converts myosin V into a low duty ratio motor. J Biol Chem 2008; 284:2138-49. [PMID: 19008235 DOI: 10.1074/jbc.m805530200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the kinetic mechanism and motile properties of the switch 1 mutant S217A of myosin Va. Phosphate dissociation from myosin V-ADP-Pi (inorganic phosphate) and actomyosin V-ADP-Pi and the rate of the hydrolysis step (myosin V-ATP-->myosin V-ADP-Pi) were all approximately 10-fold slower in the S217A mutant than in wild type (WT) myosin V, resulting in a slower steady-state rate of basal and filamentous actin (actin)-activated ATP hydrolysis. Substrate binding and ADP dissociation kinetics were all similar to or slightly faster in S217A than in WT myosin V and mechanochemical gating of the rates of dissociation of ADP between trail and lead heads is maintained. The reduction in the rate constants of the hydrolysis and phosphate dissociation steps reduces the duty ratio from approximately 0.85 in WT myosin V to approximately 0.25 in S217A and produces a motor in which the average run length on actin at physiological concentrations of ATP is reduced 10-fold. Thus we demonstrate that, by mutational perturbation of the switch 1 structure, myosin V can be converted into a low duty ratio motor that is processive only at low substrate concentrations.
Collapse
Affiliation(s)
- Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sakamoto T, Webb MR, Forgacs E, White HD, Sellers JR. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 2008; 455:128-32. [PMID: 18668042 DOI: 10.1038/nature07188] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/03/2008] [Indexed: 11/09/2022]
Abstract
Myosin Va transports intracellular cargoes along actin filaments in cells. This processive, two-headed motor takes multiple 36-nm steps in which the two heads swing forward alternately towards the barbed end of actin driven by ATP hydrolysis. The ability of myosin Va to move processively is a function of its long lever arm, the high duty ratio of its kinetic cycle and the gating of the kinetics between the two heads such that ADP release from the lead head is greatly retarded. Mechanical studies at the multiple- and the single-molecule level suggest that there is tight coupling (that is, one ATP is hydrolysed per power stroke), but this has not been directly demonstrated. We therefore investigated the coordination between the ATPase mechanism of the two heads of myosin Va and directly visualized the binding and dissociation of single fluorescently labelled nucleotide molecules, while simultaneously observing the stepping motion of the fluorescently labelled myosin Va as it moved along an actin filament. Here we show that preferential ADP dissociation from the trail head of mouse myosin Va is followed by ATP binding and a synchronous 36-nm step. Even at low ATP concentrations, the myosin Va molecule retained at least one nucleotide (ADP in the lead head position) when moving. Thus, we directly demonstrate tight coupling between myosin Va movement and the binding and dissociation of nucleotide by simultaneously imaging with near nanometre precision.
Collapse
Affiliation(s)
- Takeshi Sakamoto
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Krieger F, Mourot A, Araoz R, Kotzyba-Hibert F, Molgó J, Bamberg E, Goeldner M. Fluorescent agonists for the Torpedo nicotinic acetylcholine receptor. Chembiochem 2008; 9:1146-53. [PMID: 18386276 DOI: 10.1002/cbic.200700757] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have synthesized a series of fluorescent acylcholine derivatives carrying different linkers that vary in length and structure and connect the acylcholine unit to the environment-sensitive fluorophores 7-(diethylamino)coumarin-3-carbonyl (DEAC) or N-(7-nitrobenz-2-oxa-1,3-diazol-yl) (NBD). The pharmacological properties of the fluorescent analogues were investigated on heterologously expressed nicotinic acetylcholine receptor (nAChR) from Torpedo californica and on oocytes transplanted with nAChR-rich Torpedo marmorata membranes. Agonist action strongly depends on the length and the structure of the linker. One particular analogue, DEAC-Gly-C6-choline, showed partial agonist behavior with about half of the maximum response of acetylcholine, which is at least 20 times higher than those observed with previously described fluorescent dansyl- and NBD-acylcholine analogues. Binding of DEAC-Gly-C6-choline to Torpedo nAChR induces a strong enhancement of fluorescence intensity. Association and displacement kinetic experiments revealed dissociation constants of 0.5 nM for the alphadelta-binding site and 15.0 nM for the alphagamma-binding site. Both the pharmacological and the spectroscopic properties of this agonist show great promise for characterizing the allosteric mechanism behind the function of the Torpedo nAChR, as well as for drug-screening studies.
Collapse
Affiliation(s)
- Florian Krieger
- Laboratoire de Chimie Bioorganique UMR 7175 LC1 CNRS, Faculté de Pharmacie, Université Louis Pasteur Strasbourg, 74, Route du Rhin, BP24, 67401 Illkirch Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Forgacs E, Cartwright S, Sakamoto T, Sellers JR, Corrie JET, Webb MR, White HD. Kinetics of ADP dissociation from the trail and lead heads of actomyosin V following the power stroke. J Biol Chem 2007; 283:766-73. [PMID: 17965414 DOI: 10.1074/jbc.m704313200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin V is a cellular motor protein, which transports cargos along actin filaments. It moves processively by 36-nm steps that require at least one of the two heads to be tightly bound to actin throughout the catalytic cycle. To elucidate the kinetic mechanism of processivity, we measured the rate of product release from the double-headed myosin V-HMM using a new ATP analogue, 3'-(7-diethylaminocoumarin-3-carbonylamino)-3'-deoxy-ATP (deac-aminoATP), which undergoes a 20-fold increase in fluorescence emission intensity when bound to the active site of myosin V (Forgacs, E., Cartwright, S., Kovács, M., Sakamoto, T., Sellers, J. R., Corrie, J. E. T., Webb, M. R., and White, H. D. (2006) Biochemistry 45, 13035-13045). The kinetics of ADP and deac-aminoADP dissociation from actomyosin V-HMM, following the power stroke, were determined using double-mixing stopped-flow fluorescence. These used either deac-aminoATP as the substrate with ADP or ATP chase or alternatively ATP as the substrate with either a deac-aminoADP or deac-aminoATP chase. Both sets of experiments show that the observed rate of ADP or deac-aminoADP dissociation from the trail head of actomyosin V-HMM is the same as from actomyosin V-S1. The dissociation of ADP from the lead head is decreased by up to 250-fold.
Collapse
Affiliation(s)
- Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Comstock LR, Denu JM. Synthesis and biochemical evaluation of O-acetyl-ADP-ribose and N-acetyl analogs. Org Biomol Chem 2007; 5:3087-91. [PMID: 17878966 DOI: 10.1039/b710231c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic routes for the preparation of O-acetyl-ADP-ribose and two novel non-hydrolyzable analogs containing an N-acetyl are described and shown to interact with the macro domain of histone protein H2A1.1.
Collapse
Affiliation(s)
- Lindsay R Comstock
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
22
|
García DI, Lanigan P, Webb M, West TG, Requejo-Isidro J, Auksorius E, Dunsby C, Neil M, French P, Ferenczi MA. Fluorescence lifetime imaging to detect actomyosin states in mammalian muscle sarcomeres. Biophys J 2007; 93:2091-101. [PMID: 17496049 PMCID: PMC1959533 DOI: 10.1529/biophysj.106.096479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the use of fluorescence lifetime imaging microscopy (FLIM) of a fluorescently labeled ATP analog (3'-O-{N-[3-(7-diethylaminocoumarin-3-carboxamido)propyl]carbamoyl}ATP) to probe in permeabilized muscle fibers the changes in the environment of the nucleotide binding pocket caused by interaction with actin. Spatial averaging of FLIM data of muscle sarcomeres reduces photon noise, permitting detailed analysis of the fluorescence decay profiles. FLIM reveals that the lifetime of the nucleotide, in its ADP form because of the low concentration of nucleotide present, changes depending on whether the nucleotide is free in solution or bound to myosin, and on whether the myosin is bound to actin in an actomyosin complex. Characterization of the fluorescence decays by a multiexponential function allowed us to resolve the lifetimes and amplitudes of each of these populations, namely, the fluorophore bound to myosin, bound to actin, in an actomyosin complex, and free in the filament lattice. This novel application of FLIM to muscle fibers shows that with spatial averaging, detailed information about the nature of nucleotide complexes can be derived.
Collapse
Affiliation(s)
- Delisa I García
- Biological Nanoscience Section, National Heart and Lung Institute, and Photonics Group, Physics Department, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|