1
|
Schwab S, Dame RT. Identification, characterization and classification of prokaryotic nucleoid-associated proteins. Mol Microbiol 2024. [PMID: 39039769 DOI: 10.1111/mmi.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.
Collapse
Affiliation(s)
- Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. PLoS One 2017; 12:e0169627. [PMID: 28068385 PMCID: PMC5222340 DOI: 10.1371/journal.pone.0169627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
The Sso7c4 from Sulfolobus solfataricus forms a dimer, which is believed to function as a chromosomal protein involved in genomic DNA compaction and gene regulation. Here, we present the crystal structure of wild-type Sso7c4 at a high resolution of 1.63 Å, showing that the two basic C-termini are disordered. Based on the fluorescence polarization (FP) binding assay, two arginine pairs, R11/R22' and R11'/R22, on the top surface participate in binding DNA. As shown in electron microscopy (EM) images, wild-type Sso7c4 compacts DNA through bridging and bending interactions, whereas the binding of C-terminally truncated proteins rigidifies and opens DNA molecules, and no compaction of the DNA occurs. Moreover, the FP, EM and fluorescence resonance energy transfer (FRET) data indicated that the two basic and flexible C-terminal arms of the Sso7c4 dimer play a crucial role in binding and bending DNA. Sso7c4 has been classified as a repressor-like protein because of its similarity to Escherichia coli Ecrep 6.8 and Ecrep 7.3 as well as Agrobacterium tumefaciens ACCR in amino acid sequence. Based on these data, we proposed a model of the Sso7c4-DNA complex using a curved DNA molecule in the catabolite activator protein-DNA complex. The DNA end-to-end distance measured with FRET upon wild-type Sso7c4 binding is almost equal to the distance measured in the model, which supports the fidelity of the proposed model. The FRET data also confirm the EM observation showing that the binding of wild-type Sso7c4 reduces the DNA length while the C-terminal truncation does not. A functional role for Sso7c4 in the organization of chromosomal DNA and/or the regulation of gene expression through bridging and bending interactions is suggested.
Collapse
|
3
|
Driessen RPC, Lin SN, Waterreus WJ, van der Meulen ALH, van der Valk RA, Laurens N, Moolenaar GF, Pannu NS, Wuite GJL, Goosen N, Dame RT. Diverse architectural properties of Sso10a proteins: Evidence for a role in chromatin compaction and organization. Sci Rep 2016; 6:29422. [PMID: 27403582 PMCID: PMC4941522 DOI: 10.1038/srep29422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022] Open
Abstract
Sso10a proteins are small DNA-binding proteins expressed by the crenarchaeal model organism Sulfolobus solfataricus. Based on the structure of Sso10a1, which contains a winged helix-turn-helix motif, it is believed that Sso10a proteins function as sequence-specific transcription factors. Here we show that Sso10a1 and Sso10a2 exhibit different distinct DNA-binding modes. While the ability to bend DNA is shared between the two proteins, DNA bridging is observed only for Sso10a1 and only Sso10a2 exhibits filament formation along DNA. The architectural properties of Sso10a proteins suggest that these proteins fulfil generic roles in chromatin organization and compaction. As these proteins exhibit different binding behaviour depending on their DNA binding stoichiometry, altered levels of expression in the cell can be exploited to drive changes in local genome folding, which may operate to modulate transcription.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Szu-Ning Lin
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Department of Physics and Astronomy, VU University, Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Willem-Jan Waterreus
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alson L H van der Meulen
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Niels Laurens
- Department of Physics and Astronomy, VU University, Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Geri F Moolenaar
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Navraj S Pannu
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, VU University, Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Nora Goosen
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Cell Observatory and Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
4
|
Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea. Int J Mol Sci 2014; 15:17162-87. [PMID: 25257534 PMCID: PMC4200833 DOI: 10.3390/ijms150917162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.
Collapse
|
5
|
|
6
|
Črnigoj M, Podlesek Z, Zorko M, Jerala R, Anderluh G, Ulrih NP. Interactions of archaeal chromatin proteins Alba1 and Alba2 with nucleic acids. PLoS One 2013; 8:e58237. [PMID: 23469156 PMCID: PMC3585288 DOI: 10.1371/journal.pone.0058237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/01/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Architectural proteins have important roles in compacting and organising chromosomal DNA. There are two potential histone counterpart peptide sequences (Alba1 and Alba2) in the Aeropyrum pernix genome (APE1832.1 and APE1823). METHODOLOGY/PRINCIPAL FINDINGS THESE TWO PEPTIDES WERE EXPRESSED AND THEIR INTERACTIONS WITH VARIOUS DNAS WERE STUDIED USING A COMBINATION OF VARIOUS EXPERIMENTAL TECHNIQUES: surface plasmon resonance, UV spectrophotometry, circular dichroism-spectropolarimetry, gel-shift assays, and isothermal titration calorimetry. CONCLUSIONS/SIGNIFICANCE Our data indicate that there are significant differences in the properties of the Alba1 and Alba2 proteins. Both of these Alba proteins can thermally stabilise DNA polynucleotides, as seen from UV melting curves. Alba2 and equimolar mixtures of Alba1/Alba2 have greater effects on the thermal stability of poly(dA-dT).poly(dA-dT). Surface plasmon resonance sensorgrams for binding of Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 to DNA oligonucleotides show different binding patterns. Circular dichroism indicates that Alba2 has a less-ordered secondary structure than Alba1. The secondary structures of the Alba proteins are not significantly influenced by DNA binding, even at high temperatures. Based on these data, we conclude that Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 show different properties in their binding to various DNAs.
Collapse
Affiliation(s)
- Miha Črnigoj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zdravko Podlesek
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Zorko
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
| | - Roman Jerala
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
| | - Gregor Anderluh
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP), Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
7
|
Driessen RPC, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar UD, White MF, Schiessel H, van Noort J, Dame RT. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Res 2012; 41:196-205. [PMID: 23155062 PMCID: PMC3592393 DOI: 10.1093/nar/gks1053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein–DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Physics of Life Processes, Leiden Institute of Physics and Cell Observatory, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Architectural proteins play an important role in compacting and organizing the chromosomal DNA in all three kingdoms of life (Eukarya, Bacteria and Archaea). These proteins are generally not conserved at the amino acid sequence level, but the mechanisms by which they modulate the genome do seem to be functionally conserved across kingdoms. On a generic level, architectural proteins can be classified based on their structural effect as DNA benders, DNA bridgers or DNA wrappers. Although chromatin organization in archaea has not been studied extensively, quite a number of architectural proteins have been identified. In the present paper, we summarize the knowledge currently available on these proteins in Crenarchaea. By the type of architectural proteins available, the crenarchaeal nucleoid shows similarities with that of Bacteria. It relies on the action of a large set of small, abundant and generally basic proteins to compact and organize their genome and to modulate its activity.
Collapse
|
9
|
Abstract
Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.
Collapse
|
10
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|