1
|
Glasgow A, Hobbs HT, Perry ZR, Wells ML, Marqusee S, Kortemme T. Ligand-specific changes in conformational flexibility mediate long-range allostery in the lac repressor. Nat Commun 2023; 14:1179. [PMID: 36859492 PMCID: PMC9977783 DOI: 10.1038/s41467-023-36798-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Biological regulation ubiquitously depends on protein allostery, but the regulatory mechanisms are incompletely understood, especially in proteins that undergo ligand-induced allostery with few structural changes. Here we used hydrogen-deuterium exchange with mass spectrometry (HDX/MS) to map allosteric effects in a paradigm ligand-responsive transcription factor, the lac repressor (LacI), in different functional states (apo, or bound to inducer, anti-inducer, and/or DNA). Although X-ray crystal structures of the LacI core domain in these states are nearly indistinguishable, HDX/MS experiments reveal widespread differences in flexibility. We integrate these results with modeling of protein-ligand-solvent interactions to propose a revised model for allostery in LacI, where ligand binding allosterically shifts the conformational ensemble as a result of distinct changes in the rigidity of secondary structures in the different states. Our model provides a mechanistic basis for the altered function of distal mutations. More generally, our approach provides a platform for characterizing and engineering protein allostery.
Collapse
Affiliation(s)
- Anum Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| | - Helen T Hobbs
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zion R Perry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Malcolm L Wells
- Department of Physics, Columbia University, New York, NY, 10032, USA
| | - Susan Marqusee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
2
|
Campitelli P, Swint-Kruse L, Ozkan SB. Substitutions at Nonconserved Rheostat Positions Modulate Function by Rewiring Long-Range, Dynamic Interactions. Mol Biol Evol 2021; 38:201-214. [PMID: 32780837 PMCID: PMC7783170 DOI: 10.1093/molbev/msaa202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amino acid substitutions at nonconserved protein positions can have noncanonical and "long-distance" outcomes on protein function. Such outcomes might arise from changes in the internal protein communication network, which is often accompanied by changes in structural flexibility. To test this, we calculated flexibilities and dynamic coupling for positions in the linker region of the lactose repressor protein. This region contains nonconserved positions for which substitutions alter DNA-binding affinity. We first chose to study 11 substitutions at position 52. In computations, substitutions showed long-range effects on flexibilities of DNA-binding positions, and the degree of flexibility change correlated with experimentally measured changes in DNA binding. Substitutions also altered dynamic coupling to DNA-binding positions in a manner that captured other experimentally determined functional changes. Next, we broadened calculations to consider the dynamic coupling between 17 linker positions and the DNA-binding domain. Experimentally, these linker positions exhibited a wide range of substitution outcomes: Four conserved positions tolerated hardly any substitutions ("toggle"), ten nonconserved positions showed progressive changes from a range of substitutions ("rheostat"), and three nonconserved positions tolerated almost all substitutions ("neutral"). In computations with wild-type lactose repressor protein, the dynamic couplings between the DNA-binding domain and these linker positions showed varied degrees of asymmetry that correlated with the observed toggle/rheostat/neutral substitution outcomes. Thus, we propose that long-range and noncanonical substitutions outcomes at nonconserved positions arise from rewiring long-range communication among functionally important positions. Such calculations might enable predictions for substitution outcomes at a range of nonconserved positions.
Collapse
Affiliation(s)
- Paul Campitelli
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS
| | - S Banu Ozkan
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ
| |
Collapse
|
3
|
Cheng Q, DeYonker NJ. Acylation and deacylation mechanism and kinetics of penicillin G reaction with Streptomyces R61 DD-peptidase. J Comput Chem 2020; 41:1685-1697. [PMID: 32323874 DOI: 10.1002/jcc.26210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Two quantum mechanical (QM)-cluster models are built for studying the acylation and deacylation mechanism and kinetics of Streptomyces R61 DD-peptidase with the penicillin G at atomic level detail. DD-peptidases are bacterial enzymes involved in the cross-linking of peptidoglycan to form the cell wall, necessary for bacterial survival. The cross-linking can be inhibited by antibiotic beta-lactam derivatives through acylation, preventing the acyl-enzyme complex from undergoing further deacylation. The deacylation step was predicted to be rate-limiting. Transition state and intermediate structures are found using density functional theory in this study, and thermodynamic and kinetic properties of the proposed mechanism are evaluated. The acyl-enzyme complex is found lying in a deep thermodynamic sink, and deacylation is indeed the severely rate-limiting step, leading to suicide inhibition of the peptidoglycan cross-linking. The usage of QM-cluster models is a promising technique to understand, improve, and design antibiotics to disrupt function of the Streptomyces R61 DD-peptidase.
Collapse
Affiliation(s)
- Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Cui M, Du J, Yao X. The Binding Mechanism Between Inositol Phosphate (InsP) and the Jasmonate Receptor Complex: A Computational Study. FRONTIERS IN PLANT SCIENCE 2018; 9:963. [PMID: 30073006 PMCID: PMC6058352 DOI: 10.3389/fpls.2018.00963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Jasmonates are critical plant hormones, mediating stress response in plants and regulating plant growth and development. The jasmonate receptor is a multi-component complex, composed of Arabidopsis SKP-LIKE PROTEIN1 (ASK1), CORONATINE INSENSITIVE 1 (COI1), inositol phosphate (InsP), and jasmonate ZIM-domain protein (JAZ). COI1 acts as multi-component signaling hub that binds with each component. InsP is suggested to play important roles in the hormone perception. How InsP binds with COI1 and the structural changes in COI1 upon binding with InsP, JA-Ile, and JAZ are not well understood. In this study, we integrated multiple computational methods, such as molecular docking, molecular dynamics simulations, residue interaction network analysis and binding free energy calculation, to explore the effect of InsP on the dynamic behavior of COI1 and the recognition mechanism of each component of the jasmonate receptor complex. We found that upon binding with InsP, JA-Ile, and JAZ1, the structure of COI1 becomes more compact. The binding of InsP with COI1 stabilizes the conformation of COI1 and promotes the binding between JA-Ile or JAZ1 and COI1. Analysis of the network parameters led to the identification of some hub nodes in this network, including Met88, His118, Arg120, Arg121, Arg346, Tyr382, Arg409, Trp467, and Lys492. The structural and dynamic details will be helpful for understanding the recognition mechanism of each component and the discovery and design of novel jasmonate signaling pathway modulators.
Collapse
Affiliation(s)
- Mengqi Cui
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Juan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - XiaoJun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Atitey K, Loskot P, Rees P. Determining the Transcription Rates Yielding Steady-State Production of mRNA in the Lac Genetic Switch of Escherichia coli. J Comput Biol 2018; 25:1023-1039. [PMID: 29957031 DOI: 10.1089/cmb.2018.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To elucidate the regulatory dynamics of the gene expression activation and inactivation, an in silico biochemical model of the lac circuit in Escherichia coli was used to evaluate the transcription rates that yield the steady-state mRNA production in active and inactive states of the lac circuit. This result can be used in synthetic biology applications to understand the limits of the genetic synthesis. Since most genetic networks involve many interconnected components with positive and negative feedback control, intuitive understanding of their dynamics is often difficult to obtain. Although the kinetic model of the lac circuit considered involves only a single positive feedback, the developed computational framework can be used to evaluate supported ranges of other reaction rates in genetic circuits with more complex regulatory networks. More specifically, the inducible lac gene switch in E. coli is regulated by unbinding and binding of the inducer-repressor complexes to or from the DNA operator to switch the gene expression on and off. The dependency of mRNA production at steady state on different transcription rates and the repressor complexes has been studied by computer simulations in the Lattice Microbe software. Provided that the lac circuit is in active state, the transcription rate is independent of the inducer-repressor complexes present in the cell. In inactive state, the transcription rate is dependent on the specific inducer-repressor complex bound to the operator that inactivates the gene expression. We found that the repressor complex with the largest affinity to the operator yields the smallest range of the feasible transcription rates to yield the steady state while the lac circuit is in inactive state. In contrast, the steady state in active state can be obtained for any value of the transcription rate.
Collapse
Affiliation(s)
- Komlan Atitey
- College of Engineering, Swansea University , Swansea, United Kingdom
| | - Pavel Loskot
- College of Engineering, Swansea University , Swansea, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University , Swansea, United Kingdom
| |
Collapse
|
6
|
Mehla K, Ramana J. Molecular Dynamics Simulations of Quinolone Resistance-Associated T86I and P104S Mutations in Campylobacter jejunigyrA: Unraveling Structural Repercussions. Microb Drug Resist 2018; 24:232-243. [DOI: 10.1089/mdr.2017.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kusum Mehla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
7
|
Piovesan D, Minervini G, Tosatto SCE. The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 2016; 44:W367-74. [PMID: 27198219 PMCID: PMC4987896 DOI: 10.1093/nar/gkw315] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/13/2016] [Indexed: 01/06/2023] Open
Abstract
Residue interaction networks (RINs) are an alternative way of representing protein structures where nodes are residues and arcs physico–chemical interactions. RINs have been extensively and successfully used for analysing mutation effects, protein folding, domain–domain communication and catalytic activity. Here we present RING 2.0, a new version of the RING software for the identification of covalent and non-covalent bonds in protein structures, including π–π stacking and π–cation interactions. RING 2.0 is extremely fast and generates both intra and inter-chain interactions including solvent and ligand atoms. The generated networks are very accurate and reliable thanks to a complex empirical re-parameterization of distance thresholds performed on the entire Protein Data Bank. By default, RING output is generated with optimal parameters but the web server provides an exhaustive interface to customize the calculation. The network can be visualized directly in the browser or in Cytoscape. Alternatively, the RING-Viz script for Pymol allows visualizing the interactions at atomic level in the structure. The web server and RING-Viz, together with an extensive help and tutorial, are available from URL: http://protein.bio.unipd.it/ring.
Collapse
Affiliation(s)
- Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy CNR Institute of Neuroscience, Padua 35121, Italy
| |
Collapse
|
8
|
AlloRep: A Repository of Sequence, Structural and Mutagenesis Data for the LacI/GalR Transcription Regulators. J Mol Biol 2015; 428:671-678. [PMID: 26410588 DOI: 10.1016/j.jmb.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/04/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022]
Abstract
Protein families evolve functional variation by accumulating point mutations at functionally important amino acid positions. Homologs in the LacI/GalR family of transcription regulators have evolved to bind diverse DNA sequences and allosteric regulatory molecules. In addition to playing key roles in bacterial metabolism, these proteins have been widely used as a model family for benchmarking structural and functional prediction algorithms. We have collected manually curated sequence alignments for >3000 sequences, in vivo phenotypic and biochemical data for >5750 LacI/GalR mutational variants, and noncovalent residue contact networks for 65 LacI/GalR homolog structures. Using this rich data resource, we compared the noncovalent residue contact networks of the LacI/GalR subfamilies to design and experimentally validate an allosteric mutant of a synthetic LacI/GalR repressor for use in biotechnology. The AlloRep database (freely available at www.AlloRep.org) is a key resource for future evolutionary studies of LacI/GalR homologs and for benchmarking computational predictions of functional change.
Collapse
|
9
|
Bondos SE, Swint-Kruse L, Matthews KS. Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins. J Biol Chem 2015; 290:24669-77. [PMID: 26342073 DOI: 10.1074/jbc.r115.685032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To modulate transcription, a variety of input signals must be sensed by genetic regulatory proteins. In these proteins, flexibility and disorder are emerging as common themes. Prokaryotic regulators generally have short, flexible segments, whereas eukaryotic regulators have extended regions that lack predicted secondary structure (intrinsic disorder). Two examples illustrate the impact of flexibility and disorder on gene regulation: the prokaryotic LacI/GalR family, with detailed information from studies on LacI, and the eukaryotic family of Hox proteins, with specific insights from investigations of Ultrabithorax (Ubx). The widespread importance of structural disorder in gene regulatory proteins may derive from the need for flexibility in signal response and, particularly in eukaryotes, in protein partner selection.
Collapse
Affiliation(s)
- Sarah E Bondos
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Liskin Swint-Kruse
- the Department of Biochemistry and Molecular Biology, the University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | | |
Collapse
|
10
|
Cheng S, Fu HL, Cui DX. Characteristics Analyses and Comparisons of the Protein Structure Networks Constructed by Different Methods. Interdiscip Sci 2015; 8:65-74. [PMID: 26297308 DOI: 10.1007/s12539-015-0106-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 05/21/2014] [Indexed: 10/23/2022]
Abstract
Protein structure networks (PSNs) were widely used in analyses of protein structure and function. In this work, we analyzed and compared the characters of PSNs by different methods. The degrees of the different types of the nodes were found to be associated with the amino acid characters, including SAS, secondary structure, hydropathy and the volume of amino acids. It showed that PSNs by the methods of CA10, SC10 and AT5 inherited more amino acid characters and had higher correlations with the original protein structures. And PSNs by these three methods would be powerful tools in understanding the characters of protein structures.
Collapse
Affiliation(s)
- Shangli Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Chinese National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hua-Lin Fu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Chinese National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Da-Xiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Chinese National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
11
|
Riadi G, Caballero J. Easy Identification of Residues Involved on Structural Differences Between Nonphosphorylated and Phosphorylated CDK2Cyclin A Complexes Using Two-Dimensional Networks. Mol Inform 2013; 33:151-62. [PMID: 27485571 DOI: 10.1002/minf.201300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
The structures of proteins in Protein Data Bank (PDB) contain a lot of information that can be revealed through the use of tools to facilitate their organization and analysis. The increase in available structural data of nonphosphorylated and phosphorylated CDK2cyclin A (npCDK2cycA and pCDK2cycA) complexes has enabled a more realistic description of the fine structural details of the interface residues of these proteins. This work reports the application of two-dimensional network representations (TDNRs) to the structures deposited in PDB to distinguish the differences in the surface between both complexes due to phosphorylation. As a result, a detailed map of the hydrogen bonds (HBs) and hydrophobic interactions between the T-loop residues of CDK2 and the residues of cycA that are different among nonphosphorylated and phosphorylated complexes were described. In addition, we found some interesting subtle differences in the CDK2cycA interface between nonphosphorylated and phosphorylated complexes due to residues that are not located at the T-loop of CDK2. We noted that some HB interactions in CDK2cycA complex are reinforced when the CDK2 is phosphorylated.
Collapse
Affiliation(s)
- Gonzalo Riadi
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile tel: +56 71 2 418 850; fax: +56 71 2 201 662
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile tel: +56 71 2 418 850; fax: +56 71 2 201 662. ,
| |
Collapse
|
12
|
Cheng S, Lian B, Liang J, Shi T, Xie L, Zhao YL. Site selectivity for protein tyrosine nitration: insights from features of structure and topological network. MOLECULAR BIOSYSTEMS 2013; 9:2860-8. [DOI: 10.1039/c3mb70260j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
The emergence of protein complexes: quaternary structure, dynamics and allostery. Colworth Medal Lecture. Biochem Soc Trans 2012; 40:475-91. [PMID: 22616857 DOI: 10.1042/bst20120056] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All proteins require physical interactions with other proteins in order to perform their functions. Most of them oligomerize into homomers, and a vast majority of these homomers interact with other proteins, at least part of the time, forming transient or obligate heteromers. In the present paper, we review the structural, biophysical and evolutionary aspects of these protein interactions. We discuss how protein function and stability benefit from oligomerization, as well as evolutionary pathways by which oligomers emerge, mostly from the perspective of homomers. Finally, we emphasize the specificities of heteromeric complexes and their structure and evolution. We also discuss two analytical approaches increasingly being used to study protein structures as well as their interactions. First, we review the use of the biological networks and graph theory for analysis of protein interactions and structure. Secondly, we discuss recent advances in techniques for detecting correlated mutations, with the emphasis on their role in identifying pathways of allosteric communication.
Collapse
|
14
|
Benson NC, Daggett V. A comparison of multiscale methods for the analysis of molecular dynamics simulations. J Phys Chem B 2012; 116:8722-31. [PMID: 22494262 DOI: 10.1021/jp302103t] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) is the only technique available for obtaining dynamic protein data at atomic spatial resolution and picosecond or finer temporal resolution. In recent years, the cost of computational resources has decreased exponentially while the number of known protein structures, many of which are not characterized biochemically, has increased rapidly. These events have led to an increase in the use of MD in biological research, both to examine phenomena that cannot be resolved experimentally and to generate hypotheses that direct further experimental research. In fact, several databases of MD simulations have arisen in recent years. MD simulations, and especially MD simulation databases, contain massive amounts of data, yet interesting phenomena often occur over very short time periods and on the scale of only a few atoms. Analysis of such data must balance these fine-detail events with the global picture they create. Here, we address the multiscale nature of the problem by comparing several MD analysis methods to show their strengths and weaknesses at various scales using the wild-type and R282W mutant forms of the DNA-binding domain of protein p53. By leveraging these techniques together, we are able to pinpoint fine-detail and big picture differences between the protein's variants. Our analyses indicate that the R282W mutation of p53 destabilizes the L1 loop and loosens the H2 helix conformation, but the loosened L1 loop can be rescued by residue H115, preventing the R282W mutation from completely destabilizing the protein or abolishing activity.
Collapse
Affiliation(s)
- Noah C Benson
- Division of Biomedical and Health Informatics, University of Washington, Seattle, Washington 98195-7240, United States
| | | |
Collapse
|
15
|
Ardejani MS, Li NX, Orner BP. Stabilization of a protein nanocage through the plugging of a protein-protein interfacial water pocket. Biochemistry 2011; 50:4029-37. [PMID: 21488690 DOI: 10.1021/bi200207w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unique structural properties of the ferritin protein cages have provided impetus to focus on the methodical study of these self-assembling nanosystems. Among these proteins, Escherichia coli bacterioferritin (EcBfr), although architecturally very similar to other members of the family, shows structural instability and an incomplete self-assembly behavior by populating two oligomerization states. Through computational analysis and comparison to its homologues, we have found that this protein has a smaller than average dimeric interface on its 2-fold symmetry axis mainly because of the existence of an interfacial water pocket centered around two water-bridged asparagine residues. To investigate the possibility of engineering EcBfr for modified structural stability, we have used a semiempirical computational method to virtually explore the energy differences of the 480 possible mutants at the dimeric interface relative to that of wild-type EcBfr. This computational study also converged on the water-bridged asparagines. Replacing these two asparagines with hydrophobic amino acids resulted in proteins that folded into α-helical monomers and assembled into cages as evidenced by circular dichroism and transmission electron microscopy. Both thermal and chemical denaturation confirmed that, in all cases, these proteins, in agreement with the calculations, possessed increased stability. One of the three mutations shifts the population in favor of the higher-order oligomerization state in solution as evidenced by both size exclusion chromatography and native gel electrophoresis. These results taken together suggest that our low-level design was successful and that it may be possible to apply the strategy of targeting water pockets at protein--protein interfaces to other protein cage and self-assembling systems. More generally, this study further demonstrates the power of jointly employing in silico and in vitro techniques to understand and enhance biostructural energetics.
Collapse
Affiliation(s)
- Maziar S Ardejani
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | | | | |
Collapse
|
16
|
Martin AJM, Vidotto M, Boscariol F, Di Domenico T, Walsh I, Tosatto SCE. RING: networking interacting residues, evolutionary information and energetics in protein structures. Bioinformatics 2011; 27:2003-5. [DOI: 10.1093/bioinformatics/btr191] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Doncheva NT, Klein K, Domingues FS, Albrecht M. Analyzing and visualizing residue networks of protein structures. Trends Biochem Sci 2011; 36:179-82. [PMID: 21345680 DOI: 10.1016/j.tibs.2011.01.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 11/27/2022]
Abstract
The study of individual amino acid residues and their molecular interactions in protein structures is crucial for understanding structure-function relationships. Recent work has indicated that residue networks derived from 3D protein structures provide additional insights into the structural and functional roles of interacting residues. Here, we present the new software tools RINerator and RINalyzer for the automatized generation, 2D visualization, and interactive analysis of residue interaction networks, and highlight their use in different application scenarios.
Collapse
Affiliation(s)
- Nadezhda T Doncheva
- Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
18
|
Zhan H, Camargo M, Matthews KS. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Biochemistry 2010; 49:8636-45. [PMID: 20804152 DOI: 10.1021/bi101106x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The central region of the LacI N-subdomain monomer-monomer interface includes residues K84, V94, V95, V96, S97, and M98. The side chains of these residues line the β-strands at this interface and interact to create a network of hydrophobic, charged, and polar interactions that significantly rearranges in different functional states of LacI. Prior work showed that converting K84 to an apolar residue or converting V96 to an acidic residue impedes the allosteric response to inducer. Thus, we postulated that a disproportionate number of substitutions in this region of the monomer-monomer interface would alter the complex features of the LacI allosteric response. To explore this hypothesis, acidic, basic, polar, and apolar mutations were introduced at positions 94-98. Despite their varied locations along the β-strands that flank the interface, ∼70% of the mutations impact allosteric behavior, with the most significant effects found for charged substitutions. Of note, many of the LacI variants with minor functional impact exhibited altered stability to urea denaturation. The results confirm the critical role of amino acids 94-98 and indicate that this N-subdomain interface forms a primary pathway in LacI allosteric response.
Collapse
Affiliation(s)
- Hongli Zhan
- Department of Biochemistry and Cell Biology, Rice University, MS-140, 6100 South Main Street, Houston, Texas 77005, USA
| | | | | |
Collapse
|
19
|
Stenberg KAE, Vihinen M. Crystal structure of a 1.6-hexanediol bound tetrameric form of Escherichia coli lac-repressor refined to 2.1 A resolution. Proteins 2009; 75:748-59. [PMID: 19004002 DOI: 10.1002/prot.22284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report the structure of a novel tetrameric form of the lactose repressor (LacI) protein from Escherichia coli refined to 2.1 A resolution. The tetramer is bound to 1.6-hexanediol present in the crystallization solution and the final R(free) for the structure is 0.201. The structure confirms previously reported structures on the monomer level. However, the tetramer is much more densely packed. This adds a new level of complexity to the interpretation of mutational effects and challenges details in the current model for LacI function. Several amino acids, previously associated with changes in function but unexplained at the structural level, appear in a new structural context in this tetramer which provides new implications for their function.
Collapse
Affiliation(s)
- Kaj A E Stenberg
- Faculty of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
20
|
Xu W, Cai P, Yan M, Xu L, Ouyang PK. Molecular Dynamics Simulation of Temperature-dependent Flexibility of Thermophilic Xylose Isomerase. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/05/467-472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Zhan H, Taraban M, Trewhella J, Swint-Kruse L. Subdividing repressor function: DNA binding affinity, selectivity, and allostery can be altered by amino acid substitution of nonconserved residues in a LacI/GalR homologue. Biochemistry 2008; 47:8058-69. [PMID: 18616293 DOI: 10.1021/bi800443k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many mutations that impact protein function occur at residues that do not directly contact ligand. To understand the functional contributions from the sequence that links the DNA-binding and regulatory domains of the LacI/GalR homologues, we have created a chimeric protein (LLhP), which comprises the LacI DNA-binding domain, the LacI linker, and the PurR regulatory domain. Although DNA binding site residues are identical in LLhP and LacI, thermodynamic measurements of DNA binding affinity show that LLhP does not discriminate between alternative DNA ligands as well as LacI. In addition, small-angle scattering experiments show that LLhP is more compact than LacI. When DNA is released, LacI shows a 20 A increase in length that was previously attributed to unfolding of the linker. This change is not seen in apo-LLhP, even though the linker sequences of the two proteins are identical. Together, results indicate that long-range functional and structural changes are propagated across the interface that forms between the linker and regulatory domain. These changes could be mediated via the side chains of several linker residues that contact the regulatory domains of the naturally occurring proteins, LacI and PurR. Substitution of these residues in LLhP leads to a range of functional effects. Four variants exhibit altered affinity for DNA, with no changes in selectivity or allosteric response. Another two result in proteins that bind operator DNA with very low affinity and no allosteric response, similar to LacI binding nonspecific DNA sequences. Two more substitutions simultaneously diminish affinity, enhance allostery, and profoundly alter DNA ligand selectivity. Thus, positions within the linker can be varied to modulate different aspects of repressor function.
Collapse
Affiliation(s)
- Hongli Zhan
- Department of Biochemistry and Molecular Biology, MSN 3030, 3901 Rainbow Boulevard, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
22
|
Daily MD, Upadhyaya TJ, Gray JJ. Contact rearrangements form coupled networks from local motions in allosteric proteins. Proteins 2008; 71:455-66. [PMID: 17957766 DOI: 10.1002/prot.21800] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Allosteric proteins bind an effector molecule at one site resulting in a functional change at a second site. We hypothesize that networks of contacts altered, formed, or broken are a significant contributor to allosteric communication in proteins. In this work, we identify which interactions change significantly between the residue-residue contact networks of two allosteric structures, and then organize these changes into graphs. We perform the analysis on 15 pairs of allosteric structures with effector and substrate each present in at least one of the two structures. Most proteins exhibit large, dense regions of contact rearrangement, and the graphs form connected paths between allosteric effector and substrate sites in five of these proteins. In the remaining 10 proteins, large-scale conformational changes such as rigid-body motions are likely required in addition to contact rearrangement networks to account for substrate-effector communication. On average, clusters which contain at least one substrate or effector molecule comprise 20% of the protein. These allosteric graphs are small worlds; that is, they typically have mean shortest path lengths comparable to those of corresponding random graphs and average clustering coefficients enhanced relative to those of random graphs. The networks capture 60-80% of known allostery-perturbing mutants in three proteins, and the metrics degree and closeness are statistically good discriminators of mutant residues from nonmutant residues within the networks in two of these three proteins. For two proteins, coevolving clusters of residues which have been hypothesized to be allosterically important differ from the regions with the most contact rearrangement. Residues and contacts which modulate normal mode fluctuations also often participate in the contact rearrangement networks. In summary, residue-residue contact rearrangement networks provide useful representations of the portions of allosteric pathways resulting from coupled local motions.
Collapse
Affiliation(s)
- Michael D Daily
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
23
|
Zhu H, Sommer I, Lengauer T, Domingues FS. Alignment of non-covalent interactions at protein-protein interfaces. PLoS One 2008; 3:e1926. [PMID: 18382693 PMCID: PMC2274958 DOI: 10.1371/journal.pone.0001926] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/28/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.
Collapse
Affiliation(s)
- Hongbo Zhu
- Max-Planck-Institut für Informatik, Saarbrücken, Germany.
| | | | | | | |
Collapse
|
24
|
Tungtur S, Egan SM, Swint-Kruse L. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence. Proteins 2007; 68:375-88. [PMID: 17436321 PMCID: PMC2084478 DOI: 10.1002/prot.21412] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homologue function can be differentiated by changing residues that affect binding sites or long-range interactions. LacI and PurR are two proteins that represent the LacI/GalR family (>500 members) of bacterial transcription regulators. All members have distinct DNA-binding and regulatory domains linked by approximately 18 amino acids. Each homologue has specificity for different DNA and regulatory effector ligands; LacI and PurR also exhibit differences in allosteric communication between DNA and effector binding sites. A comparative study of LacI and PurR suggested that alterations in the interface between the regulatory domain and linker are important for differentiating their functions. Four residues (equivalent to LacI positions 48, 55, 58, and 61) appear particularly important for creating a unique interface and were predicted to be necessary for allosteric regulation. However, nearby residues in the linker interact with DNA ligand. Thus, differences observed in interactions between linker and regulatory domain may be the cause of altered function or an effect of the two proteins binding different DNA ligands. To separate these possibilities, we created a chimeric protein with the LacI DNA-binding domain/linker and the PurR regulatory domain (LLhP). If the interface requires homologue-specific interactions in order to propagate the signal from effector binding, then LLhP repression should not be allosterically regulated by effector binding. Experiments show that LLhP is capable of repression from lacO1 and, contrary to expectation, allosteric response is intact. Further, restoring the potential for PurR-like interactions via substitutions in the LLhP linker tends to diminish repression. These effects are especially pronounced for residues 58 and 61. Clearly, binding affinity of LLhP for the lacO1 DNA site is sensitive to long-range changes in the linker. This result also raises the possibility that mutations at positions 58 and 61 co-evolved with changes in the DNA-binding site. In addition, repression measured in the absence and presence of effector ligand shows that allosteric response increases for several LLhP variants with substitutions at positions 48 and 55. Thus, while side chain variation at these sites does not generally dictate the presence or absence of allostery, the nature of the amino acid can modulate the response to effector.
Collapse
Affiliation(s)
- Sudheer Tungtur
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Susan M. Egan
- Department of Molecular Biosciences, The University of Kansas–Lawrence, Lawrence, Kansas 66045
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
- *Correspondence to: Liskin Swint-Kruse, Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160. E-mail:
| |
Collapse
|
25
|
Taraban M, Zhan H, Whitten AE, Langley DB, Matthews KS, Swint-Kruse L, Trewhella J. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. J Mol Biol 2007; 376:466-81. [PMID: 18164724 DOI: 10.1016/j.jmb.2007.11.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/16/2007] [Accepted: 11/20/2007] [Indexed: 11/30/2022]
Abstract
We present here the results of a series of small-angle X-ray scattering studies aimed at understanding the role of conformational changes and structural flexibility in DNA binding and allosteric signaling in a bacterial transcription regulator, lactose repressor protein (LacI). Experiments were designed to detect possible conformational changes that occur when LacI binds either DNA or the inducer IPTG, or both. Our studies included the native LacI dimer of homodimers and a dimeric variant (R3), enabling us to probe conformational changes within the homodimers and distinguish them from those involving changes in the homodimer-homodimer relationships. The scattering data indicate that removal of operator DNA (oDNA) from R3 results in an unfolding and extension of the hinge helix that connects the LacI regulatory and DNA-binding domains. In contrast, only very subtle conformational changes occur in the R3 dimer-oDNA complex upon IPTG binding, indicative of small adjustments in the orientations of domains and/or subdomains within the structure. The binding of IPTG to native (tetrameric) LacI-oDNA complexes also appears to facilitate a modest change in the average homodimer-homodimer disposition. Notably, the crystal structure of the native LacI-oDNA complex differs significantly from the average solution conformation. The solution scattering data are best fit by an ensemble of structures that includes (1) approximately 60% of the V-shaped dimer of homodimers observed in the crystal structure and (2) approximately 40% of molecules with more "open" forms, such as those generated when the homodimers move with respect to each other about the tetramerization domain. In gene regulation, such a flexible LacI would be beneficial for the interaction of its two DNA-binding domains, positioned at the tips of the V, with the required two of three LacI operators needed for full repression.
Collapse
Affiliation(s)
- Marc Taraban
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Reichmann D, Cohen M, Abramovich R, Dym O, Lim D, Strynadka NCJ, Schreiber G. Binding Hot Spots in the TEM1–BLIP Interface in Light of its Modular Architecture. J Mol Biol 2007; 365:663-79. [PMID: 17070843 DOI: 10.1016/j.jmb.2006.09.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/07/2006] [Accepted: 09/26/2006] [Indexed: 12/24/2022]
Abstract
Proteins bind one another in aqua's solution to form tight and specific complexes. Previously we have shown that this is achieved through the modular architecture of the interaction network formed by the interface residues, where tight cooperative interactions are found within modules but not between them. Here we extend this study to cover the entire interface of TEM1 beta-lactamase and its protein inhibitor BLIP using an improved method for deriving interaction maps based on REDUCE to add hydrogen atoms and then by evaluating the interactions using modifications of the programs PROBE, NCI and PARE. An extensive mutagenesis study of the interface residues indeed showed that each module is energetically independent on other modules, and that cooperativity is found only within a module. By solving the X-ray structure of two interface mutations affecting two different modules, we demonstrated that protein-protein binding occur via the structural reorganization of the binding modules, either by a "lock and key" or an induced fit mechanism. To explain the cooperativity within a module, we performed multiple-mutant cycle analysis of cluster 2 resulting in a high-resolution energy map of this module. Mutant studies are usually done in reference to alanine, which can be regarded as a deletion of a side-chain. However, from a biological perspective, there is a major interest to understand non-Ala substitutions, as they are most common. Using X-ray crystallography and multiple-mutant cycle analysis we demonstrated the added complexity in understanding non-Ala mutations. Here, a double mutation replacing the wild-type Glu,Tyr to Tyr,Asn on TEM1 (res id 104,105) caused a major backbone structural rearrangement of BLIP, changing the composition of two modules but not of other modules within the interface. This shows the robustness of the modular approach, yet demonstrates the complexity of in silico protein design.
Collapse
Affiliation(s)
- D Reichmann
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhan H, Swint-Kruse L, Matthews KS. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Biochemistry 2006; 45:5896-906. [PMID: 16669632 PMCID: PMC2701349 DOI: 10.1021/bi052619p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A significant number of eukaryotic regulatory proteins are predicted to have disordered regions. Many of these proteins bind DNA, which may serve as a template for protein folding. Similar behavior is seen in the prokaryotic LacI/GalR family of proteins that couple hinge-helix folding with DNA binding. These hinge regions form short alpha-helices when bound to DNA but appear to be disordered in other states. An intriguing question is whether and to what degree intrinsic helix propensity contributes to the function of these proteins. In addition to its interaction with operator DNA, the LacI hinge helix interacts with the hinge helix of the homodimer partner as well as to the surface of the inducer-binding domain. To explore the hierarchy of these interactions, we made a series of substitutions in the LacI hinge helix at position 52, the only site in the helix that does not interact with DNA and/or the inducer-binding domain. The substitutions at V52 have significant effects on operator binding affinity and specificity, and several substitutions also impair functional communication with the inducer-binding domain. Results suggest that helical propensity of amino acids in the hinge region alone does not dominate function; helix-helix packing interactions appear to also contribute. Further, the data demonstrate that variation in operator sequence can overcome side chain effects on hinge-helix folding and/or hinge-hinge interactions. Thus, this system provides a direct example whereby an extrinsic interaction (DNA binding) guides internal events that influence folding and functionality.
Collapse
Affiliation(s)
- Hongli Zhan
- Department of Biochemistry and Cell Biology, MS 140, Rice University, Houston, TX 77005
- Department of Biochemistry and Molecular Biology, MS 3030, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, MS 3030, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Kathleen Shive Matthews
- Department of Biochemistry and Cell Biology, MS 140, Rice University, Houston, TX 77005
- W. M. Keck Center for Computational Biology, MS 140, Rice University, Houston, TX 77005
- To whom correspondence should be addressed. Telephone: 713−348−4871; Fax: 713−348−6149;
| |
Collapse
|
28
|
Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS. Ligand interactions with lactose repressor protein and the repressor-operator complex: the effects of ionization and oligomerization on binding. Biophys Chem 2006; 126:94-105. [PMID: 16860458 DOI: 10.1016/j.bpc.2006.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/09/2006] [Accepted: 06/10/2006] [Indexed: 10/24/2022]
Abstract
Specific interactions between proteins and ligands that modify their functions are crucial in biology. Here, we examine sugars that bind the lactose repressor protein (LacI) and modify repressor affinity for operator DNA using isothermal titration calorimetry and equilibrium DNA binding experiments. High affinity binding of the commonly-used inducer isopropyl-beta,D-thiogalactoside is strongly driven by enthalpic forces, whereas inducer 2-phenylethyl-beta,D-galactoside has weaker affinity with low enthalpic contributions. Perturbing the dimer interface with either pH or oligomeric state shows that weak inducer binding is sensitive to changes in this distant region. Effects of the neutral compound o-nitrophenyl-beta,D-galactoside are sensitive to oligomerization, and at elevated pH this compound converts to an anti-inducer ligand with slightly enhanced enthalpic contributions to the binding energy. Anti-inducer o-nitrophenyl-beta,D-fucoside exhibits slightly enhanced affinity and increased enthalpic contributions at elevated pH. Collectively, these results both demonstrate the range of energetic consequences that occur with LacI binding to structurally-similar ligands and expand our insight into the link between effector binding and structural changes at the subunit interface.
Collapse
Affiliation(s)
- Corey J Wilson
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | | | | | | |
Collapse
|
29
|
Sobolev V, Eyal E, Gerzon S, Potapov V, Babor M, Prilusky J, Edelman M. SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment. Nucleic Acids Res 2005; 33:W39-43. [PMID: 15980496 PMCID: PMC1160159 DOI: 10.1093/nar/gki398] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe a suite of SPACE tools for analysis and prediction of structures of biomolecules and their complexes. LPC/CSU software provides a common definition of inter-atomic contacts and complementarity of contacting surfaces to analyze protein structure and complexes. In the current version of LPC/CSU, analyses of water molecules and nucleic acids have been added, together with improved and expanded visualization options using Chime or Java based Jmol. The SPACE suite includes servers and programs for: structural analysis of point mutations (MutaProt); side chain modeling based on surface complementarity (SCCOMP); building a crystal environment and analysis of crystal contacts (CryCo); construction and analysis of protein contact maps (CMA) and molecular docking software (LIGIN). The SPACE suite is accessed at .
Collapse
Affiliation(s)
- Vladimir Sobolev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | |
Collapse
|
30
|
Swint-Kruse L, Brown CS. Resmap: automated representation of macromolecular interfaces as two-dimensional networks. Bioinformatics 2005; 21:3327-8. [PMID: 15914544 DOI: 10.1093/bioinformatics/bti511] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED To aid detailed comparison of a large number of macromolecular structures, Resmap imports Protein Data Bank files and represents subunit/domain interfaces as two-dimensional networks. AVAILABILITY http://www.kumc.edu/biochemistry/resmap/. SUPPLEMENTARY INFORMATION Default definitions and directions for graphically managing networks are available at the same website.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|