1
|
Will V, Frey C, Normant V, Kuhn L, Chicher J, Volck F, Schalk IJ. The role of FoxA, FiuA, and FpvB in iron acquisition via hydroxamate-type siderophores in Pseudomonas aeruginosa. Sci Rep 2024; 14:18795. [PMID: 39138320 PMCID: PMC11322547 DOI: 10.1038/s41598-024-69152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Siderophores are specialized molecules produced by bacteria and fungi to scavenge iron, a crucial nutrient for growth and metabolism. Catecholate-type siderophores are mainly produced by bacteria, while hydroxamates are mostly from fungi. This study investigates the capacity of nine hydroxamate-type siderophores from fungi and Streptomyces to facilitate iron acquisition by the human pathogen Pseudomonas aeruginosa. Growth assays under iron limitation and 55Fe incorporation tests showed that all nine siderophores promoted bacterial growth and iron transport. The study also aimed to identify the TonB-dependent transporters (TBDTs) involved in iron import by these siderophores. Using mutant strains lacking specific TBDT genes, it was found that iron is imported into P. aeruginosa cells by FpvB for coprogen, triacetylfusarinine, fusigen, ferrirhodin, and ferrirubin. Iron complexed by desferioxamine G is transported by FpvB and FoxA, ferricrocin-Fe and ferrichrycin-Fe by FpvB and FiuA, and rhodotoluric acid-Fe by FpvB, FiuA, and another unidentified TBDT. These findings highlight the effectiveness of hydroxamate-type siderophores in iron transport into P. aeruginosa and provide insights into the complex molecular mechanisms involved, which are important for understanding microbial interactions and ecological balance.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Chloé Frey
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Vincent Normant
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Institut de Biologie Moléculaire Et Cellulaire, CNRS, UAR1589, Plateforme Proteomique Strasbourg - Esplanade, 2 Allée Konrad Roentgen, 67084, Strasbourg Cedex, France
| | - Johana Chicher
- Institut de Biologie Moléculaire Et Cellulaire, CNRS, UAR1589, Plateforme Proteomique Strasbourg - Esplanade, 2 Allée Konrad Roentgen, 67084, Strasbourg Cedex, France
| | - Florian Volck
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Isabelle J Schalk
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| |
Collapse
|
2
|
Olshvang E, Fritsch S, Scholtyssek OC, Schalk IJ, Metzler-Nolte N. Vectorization via Siderophores Increases Antibacterial Activity of K(RW) 3 Peptides against Pseudomonas aeruginosa. Chemistry 2023; 29:e202300364. [PMID: 37541431 DOI: 10.1002/chem.202300364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/06/2023]
Abstract
A series of new conjugates comprised from a small synthetic antimicrobial peptide (AMP) and a siderophore-type vector component was designed and tested for activity on P. aeruginosa PAO1 and several genetically modified strains. As AMP, the well-established arginine-tryptophane combination K(RW)3 (P1) was chosen with an added lysine for siderophore attachment. This peptide is easy to prepare, modify, and possesses good anti-bacterial activity. On the vector part, we examined several moieties: (i) the natural siderophore deferoxamine (DFO); (ii) bidentate iron chelators based on the hydroxamate building block (4 a-c) ; (iii) the non-siderophore chelators deferasirox (DFX) and deferiprone-carboxylate (DFP-COOH). All conjugates were prepared by solid phase synthesis techniques and fully characterized by HPLC and mass spectrometry (including HR-MS). 55 Fe uptake assays indicate a receptor-mediated uptake for 4 a-c, DFP-COOH and DFO, which is dependent on the outer membrane transporter FoxA in the case of DFO. All conjugates showed increased antibacterial activity against P. aeruginosa compared to the parent peptide P1 alone when investigated in iron-depleted medium. MIC values were as low as 2 μM (for P1-DFP) on wild type P. aeruginosa. The activity of P1-DFO and P1-DFP was even better on genetically mutated strains unable to produce siderophores (down to 0.5 μM). Although the DFX vector on its own was not able to transport iron inside the bacterial cell as shown by 55 Fe uptake studies, the P1-DFX conjugate had excellent antibacterial activity compared to P1 (2 μM, and as low as 0.25 μM on a receptor-deficient strain unable to produce siderophores), suggesting that the conjugates were indeed recognized and internalized by an (unknown) transporter. Control experiments with an equimolar mixture of P1 and DFX confirm that the observed activity is intrinsic to vectorization. This work thus demonstrates the power of linking small AMPs covalently to siderophores for a new class of Trojan Horse antibiotics, with P1-DFP and P1-DFX being the most potent conjugates.
Collapse
Affiliation(s)
- Evgenia Olshvang
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Sarah Fritsch
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Oliver C Scholtyssek
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Isabelle J Schalk
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Conjugates of Iron-Transporting N-Hydroxylactams with Ciprofloxacin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123910. [PMID: 35745033 PMCID: PMC9228471 DOI: 10.3390/molecules27123910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Screening of a library of novel N-hydroxylactams amenable by the Castagnoli-Cushman reaction identified four lead compounds that facilitated 55Fe transport into P. aeruginosa cells (one of these synthetic siderophores was found to be as efficient at promoting iron uptake as the natural siderophores pyoverdine, pyochelin or enterobactin). Conjugates of the four lead siderophores with ciprofloxacin were tested for antibacterial activity against P. aeruginosa POA1 (wild type) and the ∆pvdF∆pchA mutant strain. The antibacterial activity was found to be pronounced against the ∆pvdF∆pchA mutant strain grown in CAA medium but not for the POA1 strain. This may be indicative of these compounds being ‘Trojan horse’ antibiotics. Further scrutiny of the mechanism of the antibacterial action of the newly developed conjugates is warranted.
Collapse
|
4
|
Fritsch S, Gasser V, Peukert C, Pinkert L, Kuhn L, Perraud Q, Normant V, Brönstrup M, Schalk IJ. Uptake Mechanisms and Regulatory Responses to MECAM- and DOTAM-Based Artificial Siderophores and Their Antibiotic Conjugates in Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1134-1146. [PMID: 35500104 DOI: 10.1021/acsinfecdis.2c00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new antibiotics against Gram-negative bacteria has to deal with the low permeability of the outer membrane. This obstacle can be overcome by utilizing siderophore-dependent iron uptake pathways as entrance routes for antibiotic uptake. Iron-chelating siderophores are actively imported by bacteria, and their conjugation to antibiotics allows smuggling the latter into bacterial cells. Synthetic siderophore mimetics based on MECAM (1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene) and DOTAM (1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane) cores, both chelating iron via catechol groups, have been recently applied as versatile carriers of functional cargo. In the present study, we show that MECAM and the MECAM-ampicillin conjugate 3 transport iron into Pseudomonas aeruginosa cells via the catechol-type outer membrane transporters PfeA and PirA and DOTAM solely via PirA. Differential proteomics and quantitative real-time polymerase chain reaction (qRT-PCR) showed that MECAM import induced the expression of pfeA, whereas 3 led to an increase in the expression of pfeA and ampc, a gene conferring ampicillin resistance. The presence of DOTAM did not induce the expression of pirA but upregulated the expression of two zinc transporters (cntO and PA0781), pointing out that bacteria become zinc starved in the presence of this compound. Iron uptake experiments with radioactive 55Fe demonstrated that import of this nutrient by MECAM and DOTAM was as efficient as with the natural siderophore enterobactin. The study provides a functional validation for DOTAM- and MECAM-based artificial siderophore mimetics as vehicles for the delivery of cargo into Gram-negative bacteria.
Collapse
Affiliation(s)
- Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex F-67084, France
| | - Quentin Perraud
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Vincent Normant
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig 38124, Germany
- Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, Hannover 30159, Germany
| | - Isabelle J. Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| |
Collapse
|
5
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
6
|
Perraud Q, Kuhn L, Fritsch S, Graulier G, Gasser V, Normant V, Hammann P, Schalk IJ. Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by Pseudomonas aeruginosa. Environ Microbiol 2020; 24:878-893. [PMID: 33350053 DOI: 10.1111/1462-2920.15372] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Iron is an essential nutrient for bacterial growth and the cause of a fierce battle between the pathogen and host during infection. Bacteria have developed several strategies to access iron from the host, the most common being the production of siderophores, small iron-chelating molecules secreted into the bacterial environment. The opportunist pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a wide panoply of xenosiderophores, siderophores produced by other microorganisms. Here, we demonstrate that catecholamine neurotransmitters (dopamine, l-DOPA, epinephrine and norepinephrine) are able to chelate iron and efficiently bring iron into P. aeruginosa cells via TonB-dependent transporters (TBDTs). Bacterial growth assays under strong iron-restricted conditions and with numerous mutants showed that the TBDTs involved are PiuA and PirA. PiuA exhibited more pronounced specificity for dopamine uptake than for norepinephrine, epinephrine and l-DOPA, whereas PirA specificity appeared to be higher for l-DOPA and norepinephrine. Proteomic and qRT-PCR approaches showed pirA transcription and expression to be induced in the presence of all four catecholamines. Finally, the oxidative properties of catecholamines enable them to reduce iron, and we observed ferrous iron uptake via the FeoABC system in the presence of l-DOPA.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Sarah Fritsch
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Gwenaëlle Graulier
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Vincent Normant
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Isabelle J Schalk
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| |
Collapse
|
7
|
Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur J Med Chem 2020; 208:112791. [DOI: 10.1016/j.ejmech.2020.112791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
|
8
|
Phenotypic Adaptation of Pseudomonas aeruginosa in the Presence of Siderophore-Antibiotic Conjugates during Epithelial Cell Infection. Microorganisms 2020; 8:microorganisms8111820. [PMID: 33218210 PMCID: PMC7699141 DOI: 10.3390/microorganisms8111820] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Iron acquisition pathways have often been considered to be gateways for the uptake of antibiotics into bacteria. Bacteria excrete chelators, called siderophores, to access iron. Antibiotic molecules can be covalently attached to siderophores for their transport into pathogens during the iron-uptake process. P. aeruginosa produces two siderophores and is also able to use many siderophores produced by other bacteria. We investigated the phenotypic plasticity of iron-uptake pathway expression in an epithelial cell infection assay in the presence of two different siderophore-antibiotic conjugates, one with a hydroxamate siderophore and the second with a tris-catechol. Proteomic and RT-qPCR approaches showed that P. aeruginosa was able to sense the presence of both compounds in its environment and adapt the expression of its iron uptake pathways to access iron via them. Moreover, the catechol-type siderophore-antibiotic was clearly more efficient in inducing the expression of its corresponding transporter than the hydroxamate compound when both were simultaneously present. In parallel, the expression of the proteins of the two iron uptake pathways using siderophores produced by P. aeruginosa was significantly repressed in the presence of both conjugates. Altogether, the data indicate that catechol-type siderophores are more promising vectors for antibiotic vectorization using a Trojan-horse strategy.
Collapse
|
9
|
Normant V, Josts I, Kuhn L, Perraud Q, Fritsch S, Hammann P, Mislin GLA, Tidow H, Schalk IJ. Nocardamine-Dependent Iron Uptake in Pseudomonas aeruginosa: Exclusive Involvement of the FoxA Outer Membrane Transporter. ACS Chem Biol 2020; 15:2741-2751. [PMID: 32902248 DOI: 10.1021/acschembio.0c00535] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron is a key nutrient for almost all living organisms. Paradoxically, it is poorly soluble and consequently poorly bioavailable. Bacteria have thus developed multiple strategies to access this metal. One of the most common consists of the use of siderophores, small compounds that chelate ferric iron with very high affinity. Many bacteria are able to produce their own siderophores or use those produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a large panel of exosiderophores. We investigated the ability of P. aeruginosa to use nocardamine (NOCA) and ferrioxamine B (DFOB) as exosiderophores under iron-limited planktonic growth conditions. Proteomic and RT-qPCR approaches showed induction of the transcription and expression of the outer membrane transporter FoxA in the presence of NOCA or DFOB in the bacterial environment. Expression of the proteins of the heme- or pyoverdine- and pyochelin-dependent iron uptake pathways was not affected by the presence of these two tris-hydroxamate siderophores. 55Fe uptake assays using foxA mutants showed ferri-NOCA to be exclusively transported by FoxA, whereas ferri-DFOB was transported by FoxA and at least one other unidentified transporter. The crystal structure of FoxA complexed with NOCA-Fe revealed very similar siderophore binding sites between NOCA-Fe and DFOB-Fe. We discuss iron uptake by hydroxamate exosiderophores in P. aeruginosa cells in light of these results.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Sarah Fritsch
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Isabelle J. Schalk
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| |
Collapse
|
10
|
Perraud Q, Cantero P, Roche B, Gasser V, Normant VP, Kuhn L, Hammann P, Mislin GLA, Ehret-Sabatier L, Schalk IJ. Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms. Mol Cell Proteomics 2020; 19:589-607. [PMID: 32024770 PMCID: PMC7124469 DOI: 10.1074/mcp.ra119.001829] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Paola Cantero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Béatrice Roche
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Vincent P Normant
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L A Mislin
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Isabelle J Schalk
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| |
Collapse
|
11
|
Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, Naismith JH. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat Commun 2019; 10:3673. [PMID: 31413254 PMCID: PMC6694100 DOI: 10.1038/s41467-019-11508-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
Bacteria use small molecules called siderophores to scavenge iron. Siderophore-Fe3+ complexes are recognised by outer-membrane transporters and imported into the periplasm in a process dependent on the inner-membrane protein TonB. The siderophore enterobactin is secreted by members of the family Enterobacteriaceae, but many other bacteria including Pseudomonas species can use it. Here, we show that the Pseudomonas transporter PfeA recognises enterobactin using extracellular loops distant from the pore. The relevance of this site is supported by in vivo and in vitro analyses. We suggest there is a second binding site deeper inside the structure and propose that correlated changes in hydrogen bonds link binding-induced structural re-arrangements to the structural adjustment of the periplasmic TonB-binding motif.
Collapse
Affiliation(s)
- Lucile Moynié
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Gaëtan L A Mislin
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Etienne Baco
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | | | - Malcolm G P Page
- Department of Life Sciences & Chemistry, Campus Ring 1, Bremen, 28759, Germany
| | - Isabelle J Schalk
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK.
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK.
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK.
| |
Collapse
|
12
|
Ringel MT, Brüser T. The biosynthesis of pyoverdines. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:424-437. [PMID: 30386787 PMCID: PMC6206403 DOI: 10.15698/mic2018.10.649] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023]
Abstract
Pyoverdines are fluorescent siderophores of pseudomonads that play important roles for growth under iron-limiting conditions. The production of pyoverdines by fluorescent pseudomonads permits their colonization of hosts ranging from humans to plants. Prominent examples include pathogenic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, all of which have a dihydroxyquinoline fluorophore in common, derived from oxidative cyclizations of non-ribosomal peptides. These serve as precursor of pyoverdines and are commonly known as ferribactins. Ferribactins of distinct species or even strains often differ in their sequence, resulting in a large variety of pyoverdines. However, synthesis of all ferribactins begins with an L-Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various acids and amides that are responsible for the range of distinguishable pyoverdines in individual strains. While ferribactin synthesis is a cytoplasmic process, the maturation to the fluorescent pyoverdine as well as the tailoring of the initial glutamate are exclusively periplasmic processes that have been a mystery until recently. Here we review the current knowledge of pyoverdine biosynthesis with a focus on the recent advancements regarding the periplasmic maturation and tailoring reactions.
Collapse
Affiliation(s)
- Michael T. Ringel
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
13
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
14
|
Ganne G, Brillet K, Basta B, Roche B, Hoegy F, Gasser V, Schalk IJ. Iron Release from the Siderophore Pyoverdine in Pseudomonas aeruginosa Involves Three New Actors: FpvC, FpvG, and FpvH. ACS Chem Biol 2017; 12:1056-1065. [PMID: 28192658 DOI: 10.1021/acschembio.6b01077] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Siderophores are iron chelators produced by bacteria to access iron, an essential nutriment. Pyoverdine (PVDI), the major siderophore produced by Pseudomonas aeruginosa PAO1, consists of a fluorescent chromophore linked to an octapeptide. The ferric form of PVDI is transported from the extracellular environment into the periplasm by the outer membrane transporter, FpvA. Iron is then released from the siderophore in the periplasm by a mechanism that does not involve chemical modification of the chelator but an iron reduction step. Here, we followed the kinetics of iron release from PVDI, in vitro and in living cells, by monitoring its fluorescence (as apo PVDI is fluorescent, whereas PVDI-Fe(III) is not). Deletion of the inner membrane proteins fpvG (PA2403) and fpvH (PA2404) affected 55Fe uptake via PVDI and completely abolished PVDI-Fe dissociation, indicating that these two proteins are involved in iron acquisition via this siderophore. PVDI-Fe dissociation studies, using an in vitro assay, showed that iron release from this siderophore requires the presence of an iron reducer (DTT) and an iron chelator (ferrozine). In this assay, DTT could be replaced by the inner membrane protein, FpvG, and ferrozine by the periplasmic protein, FpvC, suggesting that FpvG acts as a reductase and FpvC as an Fe2+ chelator in the process of PVDI-Fe dissociation in the periplasm of P. aeruginosa cells. This mechanism of iron release from PVDI is atypical among Gram-negative bacteria but seems to be conserved among Pseudomonads.
Collapse
Affiliation(s)
- Géraldine Ganne
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242,
ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Karl Brillet
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242,
ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Beata Basta
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242,
ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Béatrice Roche
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242,
ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Françoise Hoegy
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242,
ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242,
ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Isabelle J. Schalk
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
- CNRS, UMR7242,
ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| |
Collapse
|
15
|
TonB-dependent ligand trapping in the BtuB transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3105-3112. [DOI: 10.1016/j.bbamem.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
|
16
|
Abstract
Methanotrophic bacteria use methane, a potent greenhouse gas, as their primary source of carbon and energy. The first step in methane metabolism is its oxidation to methanol. In almost all methanotrophs, this chemically challenging reaction is catalyzed by particulate methane monooxygenase (pMMO), a copper-dependent integral membrane enzyme. Methanotrophs acquire copper (Cu) for pMMO by secreting a small ribosomally produced, posttranslationally modified natural product called methanobactin (Mbn). Mbn chelates Cu with high affinity, and the Cu-loaded form (CuMbn) is reinternalized into the cell via an active transport process. Bioinformatic and gene regulation studies suggest that two proteins might play a role in CuMbn handling: the TonB-dependent transporter MbnT and the periplasmic binding protein MbnE. Disruption of the gene that encodes MbnT abolishes CuMbn uptake, as reported previously, and expression of MbnT in Escherichia coli confers the ability to take up CuMbn. Biophysical studies of MbnT and MbnE reveal specific interactions with CuMbn, and a crystal structure of apo MbnE is consistent with MbnE's proposed role as a periplasmic CuMbn transporter. Notably, MbnT and MbnE exhibit different levels of discrimination between cognate and noncognate CuMbns. These findings provide evidence for CuMbn-protein interactions and begin to elucidate the molecular mechanisms of its recognition and transport.
Collapse
|
17
|
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, Buchanan SK. Structural insight into the role of the Ton complex in energy transduction. Nature 2016; 538:60-65. [PMID: 27654919 PMCID: PMC5161667 DOI: 10.1038/nature19757] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Abstract
In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.
Collapse
Affiliation(s)
- Hervé Celia
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Stanislav D. Zakharov
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Enrica Bordignon
- Fachbereich Physik, Freie Universität, 14195 Berlin, Germany,Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 45810 Bochum, Germany
| | - Istvan Botos
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Monica Santamaria
- Departamento de Cirugia Experimental, Instituto de Investigacion Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Travis J. Barnard
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - William A. Cramer
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Roland Lloubes
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Susan K. Buchanan
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| |
Collapse
|
18
|
Gasser V, Baco E, Cunrath O, August PS, Perraud Q, Zill N, Schleberger C, Schmidt A, Paulen A, Bumann D, Mislin GLA, Schalk IJ. Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in Pseudomonas aeruginosa: an opportunity for siderophore-antibiotic conjugates development. Environ Microbiol 2016; 18:819-32. [PMID: 26718479 DOI: 10.1111/1462-2920.13199] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Previous studies have suggested that antibiotic vectorization by siderophores (iron chelators produced by bacteria) considerably increases the efficacy of such drugs. The siderophore serves as a vector: when the pathogen tries to take up iron via the siderophore, it also takes up the antibiotic. Catecholates are among the most common iron-chelating compounds used in synthetic siderophore-antibiotic conjugates. Using reverse transcription polymerase chain reaction and proteomic approaches, we showed that the presence of catecholate compounds in the medium of Pseudomonas aeruginosa led to strong activation of the transcription and expression of the outer membrane transporter PfeA, the ferri-enterobactin importer. Iron-55 uptake assays on bacteria with and without PfeA expression confirmed that catechol compounds imported iron into P. aeruginosa cells via PfeA. Uptake rates were between 0.3 × 10(3) and 2 × 10(3) Fe atoms/bacterium/min according to the used catechol siderophore in iron-restricted medium, and remained as high as 0.8 × 10(3) Fe atoms/bacterium/min for enterobactin, even in iron-rich medium. Reverse transcription polymerase chain reaction and proteomic approaches showed that in parallel to this switching on of PfeA expression, a repression of the expression of pyochelin (PCH) pathway genes (PCH being one of the two siderophores produced by P. aeruginosa for iron acquisition) was observed.
Collapse
Affiliation(s)
- Véronique Gasser
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Etienne Baco
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Olivier Cunrath
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Pamela Saint August
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Quentin Perraud
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Nicolas Zill
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | | | - Alexander Schmidt
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Aurélie Paulen
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Gaëtan L A Mislin
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Isabelle J Schalk
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| |
Collapse
|
19
|
Cunrath O, Gasser V, Hoegy F, Reimmann C, Guillon L, Schalk IJ. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environ Microbiol 2014; 17:171-85. [PMID: 24947078 DOI: 10.1111/1462-2920.12544] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
Abstract
Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.6 ± 0.2 nM and transports the ferri-siderophore complex from the periplasm into the cytoplasm: fptX deletion inhibited (55) Fe accumulation in the bacterial cytoplasm. Chromosomal replacement was used to generate P. aeruginosa strains producing fluorescent fusions with FptX, PchR (an AraC regulator), PchA (the first enzyme involved in the PCH biosynthesis) and PchE (a non-ribosomic peptide-synthetase involved in a further step). Fluorescence imaging and cellular fractionation showed a uniform repartition of FptX in the inner membrane. PchA and PchE were found in the cytoplasm, associated to the inner membrane all over the bacteria and also concentrated at the bacterial poles. PchE clustering at the bacterial poles was dependent on PchA expression, but on the opposite PchA clustering and membrane association was PchE-independent. PchA and PchE cellular organization suggests the existence of a siderosome for PCH biosynthesis as previously proposed for pyoverdine biosynthesis (another siderophore produced by P. aeruginosa).
Collapse
Affiliation(s)
- Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, Strasbourg, Illkirch, F-67413, France
| | | | | | | | | | | |
Collapse
|
20
|
Lee SW, Parker DL, Geszvain K, Tebo BM. Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1. Front Microbiol 2014; 5:301. [PMID: 25009534 PMCID: PMC4070179 DOI: 10.3389/fmicb.2014.00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium that produces pyoverdine-type siderophores (PVDs), which facilitate the uptake of Fe(III) but also influence MnO2 formation. Recently, a non-ribosomal peptide synthetase mutant that does not synthesize PVD was described. Here we identified a gene encoding the PVDGB-1 (PVD produced by strain GB-1) uptake receptor (PputGB1_4082) of strain GB-1 and confirmed its function by in-frame mutagenesis. Growth and other physiological responses of these two mutants and of wild type were compared during cultivation in the presence of three chemically distinct sets of PVDs (siderotypes n°1, n°2, and n°4) derived from various pseudomonads. Under iron-limiting conditions, Fe(III) complexes of various siderotype n°1 PVDs (including PVDGB-1) allowed growth of wild type and the synthetase mutant, but not the receptor mutant, confirming that iron uptake with any tested siderotype n°1 PVD depended on PputGB1_4082. Fe(III) complexes of a siderotype n°2 PVD were not utilized by any strain and strongly induced PVD synthesis. In contrast, Fe(III) complexes of siderotype n°4 PVDs promoted the growth of all three strains and did not induce PVD synthesis by the wild type, implying these complexes were utilized for iron uptake independent of PputGB1_4082. These differing properties of the three PVD types provided a way to differentiate between effects on MnO2 formation that resulted from iron limitation and others that required participation of the PVDGB-1 receptor. Specifically, MnO2 production was inhibited by siderotype n°1 but not n°4 PVDs indicating PVD synthesis or PputGB1_4082 involvement rather than iron-limitation caused the inhibition. In contrast, iron limitation was sufficient to explain the inhibition of Mn(II) oxidation by siderotype n°2 PVDs. Collectively, our results provide insight into how competition for iron via siderophores influences growth, iron nutrition and MnO2 formation in more complex environmental systems.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| | - Dorothy L Parker
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego San Diego, CA, USA
| | - Kati Geszvain
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
21
|
Parker DL, Lee SW, Geszvain K, Davis RE, Gruffaz C, Meyer JM, Torpey JW, Tebo BM. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1. Front Microbiol 2014; 5:202. [PMID: 24847318 PMCID: PMC4019867 DOI: 10.3389/fmicb.2014.00202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides of PVDGB-1 and PVDMnB1 as being (for both PVDs): chromophore-Asp-Lys-OHAsp-Ser-Gly-aThr-Lys-cOHOrn, resembling a structure previously reported for P. putida CFML 90-51, which does not oxidize Mn. All three strains also produced an azotobactin and a sulfonated PVD, each with the peptide sequence above, but with unknown regulatory or metabolic effects. Bioinformatic analysis of the sequenced genome of P. putida GB-1 suggested that a particular non-ribosomal peptide synthetase (NRPS), coded by the operon PputGB1_4083-4086, could produce the peptide backbone of PVDGB-1. To verify this prediction, plasmid integration disruption of PputGB1_4083 was performed and the resulting mutant failed to produce detectable PVD. In silico analysis of the modules in PputGB1_4083-4086 predicted a peptide sequence of Asp-Lys-Asp-Ser-Ala-Thr-Lsy-Orn, which closely matches the peptide determined by MS/MS. To extend these studies to other organisms, various Mn(II)-oxidizing and non-oxidizing isolates of P. putida, P. fluorescens, P. marincola, P. fluorescens-syringae group, P. mendocina-resinovorans group, and P. stutzerii group were screened for PVD synthesis. The PVD producers (12 out of 16 tested strains) were siderotyped and placed into four sets of differing PVD structures, some corresponding to previously characterized PVDs and some to novel PVDs. These results combined with previous studies suggested that the presence of OHAsp or the flexibility of the pyoverdine polypeptide may enable efficient binding of Mn(III).
Collapse
Affiliation(s)
- Dorothy L. Parker
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San DiegoLa Jolla, CA, USA
| | - Sung-Woo Lee
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Kati Geszvain
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Richard E. Davis
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Christelle Gruffaz
- Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de StrasbourgStrasbourg, France
| | - Jean-Marie Meyer
- Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de StrasbourgStrasbourg, France
| | - Justin W. Torpey
- Biomolecular Mass Spectrometry Facility, Department of Chemistry and Biochemistry, University of California San DiegoLa Jolla, CA, USA
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| |
Collapse
|
22
|
Baco E, Hoegy F, Schalk IJ, Mislin GLA. Diphenyl-benzo[1,3]dioxole-4-carboxylic acid pentafluorophenyl ester: a convenient catechol precursor in the synthesis of siderophore vectors suitable for antibiotic Trojan horse strategies. Org Biomol Chem 2014; 12:749-57. [DOI: 10.1039/c3ob41990h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Brillet K, Ruffenach F, Adams H, Journet L, Gasser V, Hoegy F, Guillon L, Hannauer M, Page A, Schalk IJ. An ABC transporter with two periplasmic binding proteins involved in iron acquisition in Pseudomonas aeruginosa. ACS Chem Biol 2012; 7:2036-45. [PMID: 23009327 DOI: 10.1021/cb300330v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyoverdine I is the main siderophore secreted byPseudomonas aeruginosa PAO1 to obtain access to iron. After extracellular iron chelation, pyoverdine-Fe uptake into the bacteria involves a specific outer-membrane transporter, FpvA. Iron is then released in the periplasm by a mechanism involving no siderophore modification but probably iron reduction. The proteins involved in this dissociation step are currently unknown. The pyoverdine locus contains the fpvCDEF operon, which contains four genes. These genes encode an ABC transporter of unknown function with the distinguishing characteristic of encompassing two periplasmic binding proteins, FpvC and FpvF, associated with the ATPase, FpvE, and the permease, FpvD. Deletion of these four genes partially inhibited cytoplasmic uptake of (55)Fe in the presence of pyoverdine and markedly slowed down the in vivo kinetics of iron release from the siderophore. This transporter is therefore involved in iron acquisition by pyoverdine in P. aeruginosa. Sequence alignments clearly showed that FpvC and FpvF belong to two different subgroups of periplasmic binding proteins. FpvC appears to be a metal-binding protein, whereas FpvF has homology with ferrisiderophore binding proteins. In vivo cross-linking assays and incubation of purified FpvC and FpvF proteins showed formation of complexes between both proteins. These complexes were able to bind in vitro PVDI-Fe, PVDI-Ga, or apo PVDI. This is the first example of an ABC transporter involved in iron acquisition via siderophores, with two periplasmic binding proteins interacting with the ferrisiderophore. The possible roles of FpvCDEF in iron uptake by the PVDI pathway are discussed.
Collapse
Affiliation(s)
- Karl Brillet
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire
et Cellulaire (IGBMC), INSERM Unité 964/UMR 7104 CNRS, Université de Strasbourg, 1, rue Laurent Fries,
67404 Illkirch, France
| | - Hendrik Adams
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| | - Laure Journet
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| | - Véronique Gasser
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| | - Francoise Hoegy
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| | - Laurent Guillon
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| | - Mélissa Hannauer
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| | - Adeline Page
- Institut de Génétique et de Biologie Moléculaire
et Cellulaire (IGBMC), INSERM Unité 964/UMR 7104 CNRS, Université de Strasbourg, 1, rue Laurent Fries,
67404 Illkirch, France
| | - Isabelle J. Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant,
F-67412 Illkirch, Strasbourg, France
| |
Collapse
|
24
|
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2012; 53:303-17. [PMID: 22733623 DOI: 10.1002/jobm.201100552] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Collapse
Affiliation(s)
- Ratul Saha
- Department of Microbiology and Molecular Biology, NSF International, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
25
|
Guillon L, El Mecherki M, Altenburger S, Graumann PL, Schalk IJ. High cellular organization of pyoverdine biosynthesis in Pseudomonas aeruginosa: clustering of PvdA at the old cell pole. Environ Microbiol 2012; 14:1982-94. [PMID: 22498339 DOI: 10.1111/j.1462-2920.2012.02741.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pyoverdine I (PVDI) is the major siderophore produced by Pseudomonas aeruginosa PAO1 to import iron. Its biosynthesis requires the coordinated action of cytoplasmic, periplasmic and membrane proteins. The individual enzymatic activities of these proteins are well known. However, their subcellular distribution in particular areas of the cytoplasm, periplasm, or within the membrane has never been investigated. We used chromosomal replacement to generate P.aeruginosa strains producing fluorescent fusions with PvdA, one of the initial enzymes in the biosynthetic pathway of PVDI in the cytoplasm, and PvdQ, involved in the maturation of PVDI in the periplasm. Cellular fractionation indicated that a substantial amount of PvdA-YFP was located in the membrane fraction. Epifluorescence microscopy imaging showed that PvdA-YFP was mainly clustered at the old cell pole of bacteria, indicating a polar segregation of the protein. Epifluorescence and TIRF imaging on cells expressing labelled PvdQ showed that this enzyme was uniformly distributed in the periplasm, in contrast with PvdA-YFP. The description of the intracellular distribution of these enzymes contributes to the understanding of the PVDI biosynthetic pathway.
Collapse
Affiliation(s)
- Laurent Guillon
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
26
|
Zheng T, Nolan EM. Siderophore-based detection of Fe(iii) and microbial pathogens. Metallomics 2012; 4:866-80. [DOI: 10.1039/c2mt20082a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Schalk IJ, Mislin GLA, Brillet K. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. CURRENT TOPICS IN MEMBRANES 2012; 69:37-66. [PMID: 23046646 DOI: 10.1016/b978-0-12-394390-3.00002-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To get access to iron, microorganisms produce and release into their environment small organic metal chelators called siderophores. In parallel, they produce siderophore-iron outer membrane transporters (also called TonB-Dependent Transporters or TBDT) embedded in the outer membrane; these proteins actively reabsorb the siderophore loaded with iron from the extracellular medium. This active uptake requires energy in the form of the proton motive force transferred from the inner membrane to the outer membrane transporter via the inner membrane TonB complex. Siderophores produced by microorganisms are structurally very diverse with molecular weights of 150 up to 2000Da. Siderophore-iron uptake from the extracellular medium by TBDTs is a highly selective and sometimes even stereoselective process, with each siderophore having a specific TBDT. Unlike the siderophores, all TBDTs have similar structures and belong to the outer membrane β-barrel protein superfamily. The way in which the siderophore-iron complex passes through the TBDT is still unclear. In some bacteria, TBDTs are also partners of signaling cascades regulating the expression of proteins involved in siderophore biosynthesis and siderophore-iron acquisition.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Boulevard Sébastien Brant, Strasbourg, France.
| | | | | |
Collapse
|
28
|
Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ. The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 2011; 14:1696-708. [PMID: 22187978 DOI: 10.1111/j.1462-2920.2011.02674.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyoverdine (PVD) is the major siderophore produced by Pseudomonas aeruginosa for iron acquisition. PvdRT-OpmQ is an ATP-dependent efflux pump involved in the secretion of newly synthesized pyoverdine (PVD) and of PVD that has transported and released its iron into the bacterium from the periplasm into the extracellular medium. This iron uptake pathway also involves an outer membrane transporter, FpvA, for PVD-Fe uptake from the extracellular medium into the periplasm. In binding assays, FpvA bound PVD in complex with many different metals, with affinities from 2.9 nM for PVD-Fe to 13 µM for PVD-Al. Uptake assays with various FpvA and PvdRT-OpmQ mutants, monitored by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for metal detection, and by fluorescence for PVD detection, showed that both metals and PVD accumulated in P. aeruginosa, due to the uptake of these compounds via the FpvA/PVD pathway. Higher levels of accumulation were observed in the absence of PvdRT-OpmQ expression. Thus, FpvA has a broad metal specificity for both the binding and uptake of PVD-metal complexes, and the PvdRT-OpmQ efflux pump exports unwanted metals complexed with PVD from the bacterium. This study provides the first evidence of efflux pump involvement in the export of unwanted siderophore-metal complexes and insight into the molecular mechanisms involved controlling the metal selectivity of siderophore-mediated iron uptake pathways.
Collapse
Affiliation(s)
- Mélissa Hannauer
- Université de Strasbourg-CNRS, Blvd Sébastien Brant, Illkirch, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
29
|
Noël S, Gasser V, Pesset B, Hoegy F, Rognan D, Schalk IJ, Mislin GLA. Synthesis and biological properties of conjugates between fluoroquinolones and a N3''-functionalized pyochelin. Org Biomol Chem 2011; 9:8288-300. [PMID: 22052022 DOI: 10.1039/c1ob06250f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyochelin is a siderophore common to Pseudomonas aeruginosa and several other pathogenic bacteria. A pyochelin functionalized at the N3'' position with a propyl-amine extension was previously synthesized. In the present work we proved that this analog binds FptA, the pyochelin outer membrane receptor, and transports iron(III) efficiently into bacteria. This functionalized pyochelin seemed to be a good candidate for antibiotic vectorization in the framework of a Trojan horse prodrug strategy. In this context, conjugates between pyochelin and three fluoroquinolones (norfloxacin, ciprofloxacin and N-desmethyl-ofloxacin) were synthesized with a spacer arm that was either stable or hydrolyzable in vivo. Some pyochelin-fluoroquinolone conjugates had antibacterial activities in growth inhibition experiments on several P. aeruginosa strains. However, these activities were weaker than those of the antibiotic alone. These properties appeared to be related to both the solubility and bioavailability of conjugates and to the stability of the spacer arm used.
Collapse
Affiliation(s)
- Sabrina Noël
- Team Transports Membranaires Bactériens, UMR 7242 Université de Strasbourg-CNRS, Boulevard Sébastien Brant, 67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Balasubramanian R, Kenney GE, Rosenzweig AC. Dual pathways for copper uptake by methanotrophic bacteria. J Biol Chem 2011; 286:37313-9. [PMID: 21900235 DOI: 10.1074/jbc.m111.284984] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Methanobactin (Mb), a 1217-Da copper chelator produced by the methanotroph Methylosinus trichosporium OB3b, is hypothesized to mediate copper acquisition from the environment, particularly from insoluble copper mineral sources. Although indirect evidence suggests that Mb provides copper for the regulation and activity of methane monooxygenase enzymes, experimental data for direct uptake of copper loaded Mb (Cu-Mb) are lacking. Uptake of intact Cu-Mb by M. trichosporium OB3b was demonstrated by isotopic and fluorescent labeling experiments. Confocal microscopy data indicate that Cu-Mb is localized in the cytoplasm. Both Cu-Mb and unchelated Cu are taken up by M. trichosporium OB3b, but by different mechanisms. Uptake of unchelated Cu is inhibited by spermine, suggesting a porin-dependent passive transport process. By contrast, uptake of Cu-Mb is inhibited by the uncoupling agents carbonyl cyanide m-chlorophenylhydrazone and methylamine, but not by spermine, consistent with an active transport process. Cu-Mb from M. trichosporium OB3b can also be internalized by other strains of methanotroph, but not by Escherichia coli, suggesting that Cu-Mb uptake is specific to methanotrophic bacteria. These findings are consistent with a key role for Cu-Mb in copper acquisition by methanotrophs and have important implications for further investigation of the copper uptake machinery.
Collapse
|
31
|
Nader M, Journet L, Meksem A, Guillon L, Schalk IJ. Mechanism of Ferripyoverdine Uptake by Pseudomonas aeruginosa Outer Membrane Transporter FpvA: No Diffusion Channel Formed at Any Time during Ferrisiderophore Uptake. Biochemistry 2011; 50:2530-40. [DOI: 10.1021/bi101821n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mirella Nader
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Laure Journet
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Ahmed Meksem
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Laurent Guillon
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| | - Isabelle J. Schalk
- UMR7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brandt, F-67513 Illkirch, France
| |
Collapse
|
32
|
Doorneweerd DD, Henne WA, Reifenberger RG, Low PS. Selective capture and identification of pathogenic bacteria using an immobilized siderophore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15424-15429. [PMID: 20704340 DOI: 10.1021/la101962w] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Rapid identification of infectious pathogens constitutes an important step toward limiting the spread of contagious diseases. Whereas antibody-based detection strategies are often selected because of their speed, mutation of the pathogen can render such tests obsolete. In an effort to develop a rapid yet mutation-proof method for pathogen identification, we have explored the use of "immutable ligands" to capture the desired microbe on a detection device. In this "proof-of-principle" study, we immobilize pyoverdine, a siderophore that Pseudomonas aeruginosa must bind to obtain iron, onto gold-plated glass chips and then examine the siderophore's ability to capture P. aeruginosa for its subsequent identification. We demonstrate that exposure of pyoverdine-coated chips to increasing dilutions of P. aeruginosa allows detection of the bacterium down to concentrations as low as 10(2)/mL. We further demonstrate that printing of the siderophore in a periodic pattern on the detection chip enables a sensitive method of detecting the bound pathogen by a Fourier transform analysis of light scattered by the patterned chip. Because unrelated bacteria are not captured on the pyoverdine chip, we conclude that pyoverdine can be exploited for the specific binding and identification of P. aeruginosa. It follows that the utilization of other microbe-specific "immutable ligands" may allow the specific identification of their cognate pathogens.
Collapse
Affiliation(s)
- Derek D Doorneweerd
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
33
|
Yeterian E, Martin LW, Lamont IL, Schalk IJ. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:412-418. [PMID: 23766114 DOI: 10.1111/j.1758-2229.2009.00115.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pyoverdine (PVDI) is a siderophore produced by Pseudomonas aeruginosa in order to obtain iron. This molecule is composed of a fluorescent chromophore linked to an octapeptide. Following secretion from the bacteria, PVDI chelates iron ions and the resulting Fe-PVDI complexes are taken up by the bacteria through a cell surface receptor protein. The iron is released in the periplasm and the resulting PVDI is recycled, being secreted out of the bacteria by a previously unknown mechanism. Three genes with the potential to encode an efflux system are adjacent to, and coregulated with, genes required for PVDI-mediated iron transport. Mutation of genes encoding this efflux pump (named PvdRT-OpmQ) prevented recycling of PVDI from the periplasm into the extracellular medium. Fluorescence microscopy showed that in the mutant bacteria PVDI accumulated in the periplasm. Gallium (Ga(3+) ), a metal that cannot be removed from PVDI by reduction, is taken up by P. aeruginosa when chelated by PVDI. Recycling did not occur after transport of PVDI-Ga(3+) and fluorescence accumulated in the periplasm even when the PvdRT-OpmQ efflux pump was functional. Cellular fractionation showed that PVDI-synthesizing bacteria lacking PvdRT-OpmQ secreted PVDI but had an approximately 20-fold increase in the amount of PVD present in the periplasm, consistent with an inability to recycle PVDI. Collectively, these data show that PvdRT-OpmQ is involved in recycling of PVDI from the periplasm to the extracellular medium and recycling requires release of the metal ion from PVDI.
Collapse
Affiliation(s)
- Emilie Yeterian
- Metaux et microorganismes: Chimie, Biologie et Applications. FRE 3211, CNRS-Université de Strasbourg, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France. Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
34
|
The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J Bacteriol 2010; 192:1212-20. [PMID: 20047910 DOI: 10.1128/jb.01539-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uptake of iron into Pseudomonas aeruginosa is mediated by two major siderophores produced by the bacterium, pyoverdine and pyochelin. The bacterium is also able of utilize several heterologous siderophores of bacterial or fungal origin. In this work, we have investigated the iron uptake in P. aeruginosa PAO1 by the heterologous ferrichrome siderophore. (55)Fe uptake assays showed that ferrichrome is transported across the outer membrane primarily (80%) by the FiuA receptor and to a lesser extent (20%) by a secondary transporter. Moreover, we demonstrate that like in the uptake of ferripyoverdine and ferripyochelin, the energy required for both pathways of ferrichrome uptake is provided by the inner membrane protein TonB1. Desferrichrome-(55)Fe uptake in P. aeruginosa was also dependent on the expression of the permease FiuB, suggesting that this protein is the inner membrane transporter of the ferrisiderophore. A biomimetic fluorescent analogue of ferrichrome, RL1194, was used in vivo to monitor the kinetics of iron release from ferrichrome in P. aeruginosa in real time. This dissociation involves acylation of ferrichrome and its biomimetic analogue RL1194 and recycling of both modified siderophores into the extracellular medium. FiuC, an N-acetyltransferase, is certainly involved in this mechanism of iron release, since its mutation abolished desferrichrome-(55)Fe uptake. The acetylated derivative reacts with iron in the extracellular medium and is able to be taken up again by the cells. All these observations are discussed in light of the current knowledge concerning ferrichrome uptake in P. aeruginosa and in Escherichia coli.
Collapse
|
35
|
Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 2009; 38:1447-59. [PMID: 19787431 DOI: 10.1007/s00726-009-0358-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Pyoverdines, the main siderophores produced by fluorescent Pseudomonads, comprise a fluorescent dihydroxyquinoline chromophore attached to a strain-specific peptide. These molecules are thought to be synthesized as non-fluorescent precursor peptides that are then modified to give functional pyoverdines. Using the fluorescent properties of PVDI, the pyoverdine produced by Pseudomonas aeruginosa PAO1, we were able to show that PVDI was not present in the cytoplasm of the bacteria, but large amounts of a fluorescent PVDI precursor PVDIp were stored in the periplasm. Like PVDI, PVDIp is able to transport iron into P. aeruginosa cells. Mutation of genes encoding the periplasmic PvdN, PvdO and PvdP proteins prevented accumulation of PVDIp in the periplasm and secretion of PVDI into the growth medium, indicating that these three enzymes are involved in PVDI synthesis. Mutation of the gene encoding PvdQ resulted in the presence of fluorescent PVDI precursor in the periplasm and secretion of a functional fluorescent siderophore that had different isoelectric properties to PVDI, suggesting a role for PvdQ in the periplasmic maturation of PVDI. Mutation of the gene encoding the export ABC transporter PvdE prevented PVDI production and accumulation of PVDIp in the periplasm. These data are consistent with a model in which a PVDI precursor peptide is synthesized in the cytoplasm and exported to the periplasm by PvdE where siderophore maturation, including formation of the chromophore moiety, occurs in a process involving the PvdN, PvdO, PvdP and PvdQ proteins.
Collapse
|
36
|
The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 2009; 191:3517-25. [PMID: 19329644 DOI: 10.1128/jb.00010-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyochelin (Pch) is one of the two major siderophores produced and secreted by Pseudomonas aeruginosa PAO1 to assimilate iron. It chelates iron in the extracellular medium and transports it into the cell via a specific outer membrane transporter, FptA. We used the fluorescent properties of Pch to show that this siderophore chelates, in addition to Fe(3+) albeit with substantially lower affinities, Ag(+), Al(3+), Cd(2+), Co(2+), Cr(2+), Cu(2+), Eu(3+), Ga(3+), Hg(2+), Mn(2+), Ni(2+), Pb(2+), Sn(2+), Tb(3+), Tl(+), and Zn(2+). Surprisingly, the Pch complexes with all these metals bound to FptA with affinities in the range of 10 nM to 4.8 microM (the affinity of Pch-Fe is 10 nM) and were able to inhibit, with various efficiencies, Pch-(55)Fe uptake in vivo. We used inductively coupled plasma atomic emission spectrometry to follow metal uptake by P. aeruginosa. Energy-dependent metal uptake, in the presence of Pch, was efficient only for Fe(3+). Co(2+), Ga(3+), and Ni(2+) were also transported, but the uptake rates were 23- to 35-fold lower than that for Fe(3+). No uptake was seen for all the other metals. Thus, cell surface FptA has broad metal specificity at the binding stage but is much more selective for the metal uptake process. This uptake pathway does not appear to efficiently assimilate any metal other than Fe(3+).
Collapse
|
37
|
Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 2009; 11:1079-91. [PMID: 19207567 DOI: 10.1111/j.1462-2920.2008.01838.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyoverdine (PvdI) is the major siderophore secreted by Pseudomonas aeruginosa PAOI in order to get access to iron. After being loaded with iron in the extracellular medium, PvdI is transported across the bacterial outer membrane by the transporter, FpvAI. We used the spectral properties of PvdI to show that in addition to Fe(3+), this siderophore also chelates, but with lower efficiencies, all the 16 metals used in our screening. Afterwards, FpvAI at the cell surface binds Ag(+), Al(3+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Mn(2+), Ni(2+) or Zn(2+) in complex with PvdI. We used Inductively Coupled Plasma-Atomic Emission Spectrometry to monitor metal uptake in P. aeruginosa: TonB-dependent uptake, in the presence of PvdI, was only efficient for Fe(3+). Cu(2+), Ga(3+), Mn(2+) and Ni(2+) were also transported into the cell but with lower uptake rates. The presence of Al(3+), Cu(2+), Ga(3+), Mn(2+), Ni(2+) and Zn(2+) in the extracellular medium induced PvdI production in P. aeruginosa. All these data allow a better understanding of the behaviour of the PvdI uptake pathway in the presence of metals other than iron: FpvAI at the cell surface has broad metal specificity at the binding stage and it is highly selective for Fe(3+) only during the uptake process.
Collapse
Affiliation(s)
- Armelle Braud
- Métaux et Microorganismes, Chimie, Biologie et Applications, UMR 7175-LC1, CNRS-Université Louis Pasteur, ESBS, Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
38
|
The metal dependence of pyoverdine interactions with its outer membrane receptor FpvA. J Bacteriol 2008; 190:6548-58. [PMID: 18641139 DOI: 10.1128/jb.00784-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To acquire iron, Pseudomonas aeruginosa secretes the fluorescent siderophore pyoverdine (Pvd), which chelates iron and shuttles it into the cells via the specific outer membrane transporter FpvA. We studied the role of iron and other metals in the binding and transport of Pvd by FpvA and conclude that there is no significant affinity between FpvA and metal-free Pvd. We found that the fluorescent in vivo complex of iron-free FpvA-Pvd is in fact a complex with aluminum (FpvA-Pvd-Al) formed from trace aluminum in the growth medium. When Pseudomonas aeruginosa was cultured in a medium that had been treated with a metal affinity resin, the in vivo formation of the FpvA-Pvd complex and the recycling of Pvd on FpvA were nearly abolished. The accumulation of Pvd in the periplasm of Pseudomonas aeruginosa was also reduced in the treated growth medium, while the addition of 1 microM AlCl(3) to the treated medium restored the effects of trace metals observed in standard growth medium. Using fluorescent resonance energy transfer and surface plasmon resonance techniques, the in vitro interactions between Pvd and detergent-solubilized FpvA were also shown to be metal dependent. We demonstrated that FpvA binds Pvd-Fe but not Pvd and that Pvd did not compete with Pvd-Fe for FpvA binding. In light of our finding that the Pvd-Al complex is transported across the outer membrane of Pseudomonas aeruginosa, a model for siderophore recognition based on a metal-induced conformation followed by redox selectivity for iron is discussed.
Collapse
|
39
|
Schalk IJ. Metal trafficking via siderophores in Gram-negative bacteria: Specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 2008; 102:1159-69. [DOI: 10.1016/j.jinorgbio.2007.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/03/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
40
|
Wasielewski E, Tzou DL, Dillmann B, Czaplicki J, Abdallah MA, Atkinson RA, Kieffer B. Multiple Conformations of the Metal-Bound Pyoverdine PvdI, a Siderophore of Pseudomonas aeruginosa: A Nuclear Magnetic Resonance Study,. Biochemistry 2008; 47:3397-406. [DOI: 10.1021/bi702214s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emeric Wasielewski
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Der-Lii Tzou
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Baudoin Dillmann
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Jerzy Czaplicki
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Mohamed A. Abdallah
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - R. Andrew Atkinson
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| | - Bruno Kieffer
- Laboratoire de Biologie et de Génomique Structurales, Biomolecular NMR group, IGBMC UMR 7104 CNRS, ESBS, bd Sébastien Brandt BP 10413, 67404 Illkirch Cedex, France, Institute of Chemistry, Academia Sinica, 128 Yen-Chiu-Yuan Road,Sec. 2, Nankang, Taipei 115, Taiwan, Republic of China, Université Paul Sabatier/Institut de Pharmacologie et de Biologie Structurale CNRS, 205, route de Narbonne, 31077 Toulouse, France, and Département Récepteurs et Protéines Membranaires, UMR 7175 École Supérieure de
| |
Collapse
|
41
|
A β Strand Lock Exchange for Signal Transduction in TonB-Dependent Transducers on the Basis of a Common Structural Motif. Structure 2007; 15:1383-91. [DOI: 10.1016/j.str.2007.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/24/2022]
|
42
|
Greenwald J, Hoegy F, Nader M, Journet L, Mislin GLA, Graumann PL, Schalk IJ. Real Time Fluorescent Resonance Energy Transfer Visualization of Ferric Pyoverdine Uptake in Pseudomonas aeruginosa. J Biol Chem 2007; 282:2987-95. [PMID: 17148441 DOI: 10.1074/jbc.m609238200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To acquire iron, Pseudomonas aeruginosa secretes a major fluorescent siderophore, pyoverdine (PvdI), that chelates iron and shuttles it into the cells via the specific outer membrane transporter, FpvAI. We took advantage of the fluorescence properties of PvdI and its metal chelates as well as the efficient FRET between donor tryptophans in FpvAI and PvdI to follow the fate of the siderophore during iron uptake. Our findings with PvdI-Ga and PvdI-Cr uptake indicate that iron reduction is required for the dissociation of PvdI-Fe, that a ligand exchange for iron occurs, and that this dissociation occurs in the periplasm. We also observed a delay between PvdI-Fe dissociation and the rebinding of PvdI to FpvAI, underlining the kinetic independence of metal release and siderophore recycling. Meanwhile, PvdI is not modified but recycled to the medium, still competent for iron chelation and transport. Finally, in vivo fluorescence microscopy revealed patches of PvdI, suggesting that uptake occurs via macromolecular assemblies on the cell surface.
Collapse
Affiliation(s)
- Jason Greenwald
- Métaux et Microorganismes: Chimie, Biologie, et Applications, UMR 7175-LC1 Institut Gilbert-Laustriat, CNRS-Université Louis Pasteur, ESBS, Boulevard Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Adams H, Zeder-Lutz G, Schalk I, Pattus F, Celia H. Interaction of TonB with the outer membrane receptor FpvA of Pseudomonas aeruginosa. J Bacteriol 2006; 188:5752-61. [PMID: 16885443 PMCID: PMC1540090 DOI: 10.1128/jb.00435-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyoverdine-mediated iron uptake by the FpvA receptor in the outer membrane of Pseudomonas aeruginosa is dependent on the inner membrane protein TonB1. This energy transducer couples the proton-electrochemical potential of the inner membrane to the transport event. To shed more light upon this process, a recombinant TonB1 protein lacking the N-terminal inner membrane anchor (TonB(pp)) was constructed. This protein was, after expression in Escherichia coli, purified from the soluble fraction of lysed cells by means of an N-terminal hexahistidine or glutathione S-transferase (GST) tag. Purified GST-TonB(pp) was able to capture detergent-solubilized FpvA, regardless of the presence of pyoverdine or pyoverdine-Fe. Targeting of the TonB1 fragment to the periplasm of P. aeruginosa inhibited the transport of ferric pyoverdine by FpvA in vivo, indicating an interference with endogenous TonB1, presumably caused by competition for binding sites at the transporter or by formation of nonfunctional TonB heterodimers. Surface plasmon resonance experiments demonstrated that the FpvA-TonB(pp) interactions have apparent affinities in the micromolar range. The binding of pyoverdine or ferric pyoverdine to FpvA did not modulate this affinity. Apparently, the presence of either iron or pyoverdine is not essential for the formation of the FpvA-TonB complex in vitro.
Collapse
Affiliation(s)
- Hendrik Adams
- ESBS UMR7175, Récepteurs et Protéines Membranaires, Rue Sebastien Brant, BP 10413 F-67412 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
44
|
Voulhoux R, Filloux A, Schalk IJ. Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport. J Bacteriol 2006; 188:3317-23. [PMID: 16621825 PMCID: PMC1447448 DOI: 10.1128/jb.188.9.3317-3323.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under iron-limiting conditions, Pseudomonas aeruginosa PAO1 secretes a fluorescent siderophore called pyoverdine (Pvd). After chelating iron, this ferric siderophore is transported back into the cells via the outer membrane receptor FpvA. The Pvd-dependent iron uptake pathway requires several essential genes involved in both the synthesis of Pvd and the uptake of ferric Pvd inside the cell. A previous study describing the global phenotype of a tat-deficient P. aeruginosa strain showed that the defect in Pvd-mediated iron uptake was due to the Tat-dependent export of proteins involved in Pvd biogenesis and ferric Pvd uptake (U. Ochsner, A. Snyder, A. I. Vasil, and M. L. Vasil, Proc. Natl. Acad. Sci. USA 99:8312-8317, 2002). Using biochemical and biophysical tools, we showed that despite its predicted Tat signal sequence, FpvA is correctly located in the outer membrane of a tat mutant and is fully functional for all steps of the iron uptake process (ferric Pvd uptake and recycling of Pvd on FpvA after iron release). However, in the tat mutant, no Pvd was produced. This suggested that a key element in the Pvd biogenesis pathway must be exported to the periplasm by the Tat pathway. We located PvdN, a still unknown but essential component in Pvd biogenesis, at the periplasmic side of the cytoplasmic membrane and showed that its export is Tat dependent. Our results further support the idea that a critical step of the Pvd biogenesis pathway involving PvdN occurs at the periplasmic side of the cytoplasmic membrane.
Collapse
|
45
|
Mislin GLA, Hoegy F, Cobessi D, Poole K, Rognan D, Schalk IJ. Binding Properties of Pyochelin and Structurally Related Molecules to FptA of Pseudomonas aeruginosa. J Mol Biol 2006; 357:1437-48. [PMID: 16499928 DOI: 10.1016/j.jmb.2006.01.080] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/29/2022]
Abstract
Pyochelin (Pch) is a siderophore that is produced in iron-limited conditions, by both Pseudomonas aeruginosa and Burkholderia cepacia. This iron uptake pathway could therefore be a target for the development of new antibiotics. Pch is (4'R,2''R/S,4''R)-2'-(2-hydroxyphenyl)-3''-methyl-4',5',2'',3'',4'',5''-hexahydro-[4',2'']bithiazolyl-4''-carboxylic acid, and has three chiral centres located at positions C4', C2'' and C4''. In P.aeruginosa, this siderophore chelates iron in the extracellular medium and transports it into the cells via a specific outer membrane transporter FptA. Docking experiments using the X-ray structure of FptA-Pch-Fe showed that iron-loaded or unloaded Pch diastereoisomers could bind to FptA. This was confirmed by in vivo binding assays. These binding properties and the iron uptake ability were not affected by removal of the C4' chiral centre. After removal of both the C4' and C2'' chiral centres, the molecule still bound to FptA but was unable to transport iron. The overall binding mode of this iron-complexed analogue was inverted. These findings describe the first antagonist of the Pch/FptA iron uptake pathway. Pch also complexes with iron in conjunction with other bidentate ligands such as cepabactin (Cep) or ethylene glycol. Docking experiments showed that such complexes bind to FptA via the Pch molecule. The mixed Pch-Fe-Cep complex was also recognized by FptA, having an affinity intermediate between that for Pch(2)-Fe and Cep(3)-Fe. Finally, the iron uptake properties of the different Pch-related molecules suggested a mechanism for FptA-Pch-Fe complex formation similar to that of the FpvA/Pvd uptake system. All these findings improve our understanding of specificity of the interaction between FptA and its siderophore.
Collapse
Affiliation(s)
- Gaëtan L A Mislin
- Métaux et Microorganismes: Chimie, Biologie et Applications, UMR 7175-LC1 Institut Gilbert-Laustriat, CNRS, Université Louis Pasteur (Strasbourg 1), ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
46
|
Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol 2006; 187:8300-11. [PMID: 16321934 PMCID: PMC1317028 DOI: 10.1128/jb.187.24.8300-8311.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe(3+) and vitamin B(12)-the substrates hitherto known to be transported by TonB-dependent transporters-the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [(14)C]maltodextrins from [(14)C]maltose to [(14)C]maltopentaose. [(14)C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a K(d) of 0.2 microM, while the second transport had a K(d) of 5 microM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 microM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe(3+)-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe(3+)-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of the C. crescentus malA mutant was slower than permeation through the outer membrane of an E. coli lamB mutant, which suggests a low porin activity in C. crescentus. The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant. The data are consistent with the proposal that binding of maltodextrins to MalA requires energy and MalA actively transports maltodextrins with K(d) values 1,000-fold smaller than those for the LamB porin and 100-fold larger than those for the vitamin B(12) and ferric siderophore outer membrane transporters. MalA is the first example of an outer membrane protein for which an ExbB/ExbD-dependent transport of a nutrient other than iron and vitamin B(12) has been demonstrated.
Collapse
Affiliation(s)
- Heidi Neugebauer
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Shen JS, Geoffroy V, Neshat S, Jia Z, Meldrum A, Meyer JM, Poole K. FpvA-mediated ferric pyoverdine uptake in Pseudomonas aeruginosa: identification of aromatic residues in FpvA implicated in ferric pyoverdine binding and transport. J Bacteriol 2006; 187:8511-5. [PMID: 16321958 PMCID: PMC1317021 DOI: 10.1128/jb.187.24.8511-8515.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of aromatic residues were seen to cluster in the upper portion of the three-dimensional structure of the FpvA ferric pyoverdine receptor of Pseudomonas aeruginosa, reminiscent of the aromatic binding pocket for ferrichrome in the FhuA receptor of Escherichia coli. Alanine substitutions in three of these, W362, W391, and F795, markedly compromised ferric pyoverdine binding and transport, consistent with a role of FpvA in ferric pyoverdine recognition.
Collapse
Affiliation(s)
- Jiang-Sheng Shen
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Cobessi D, Celia H, Pattus F. Crystal Structure at High Resolution of Ferric-pyochelin and its Membrane Receptor FptA from Pseudomonas aeruginosa. J Mol Biol 2005; 352:893-904. [PMID: 16139844 DOI: 10.1016/j.jmb.2005.08.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/03/2005] [Accepted: 08/07/2005] [Indexed: 01/30/2023]
Abstract
Pyochelin is a siderophore and virulence factor common to Burkholderia cepacia and several Pseudomonas strains. We describe at 2.0 A resolution the crystal structure of the pyochelin outer membrane receptor FptA bound to the iron-pyochelin isolated from Pseudomonas aeruginosa. One pyochelin molecule bound to iron is found in the protein structure, providing the first three-dimensional structure at the atomic level of this siderophore. The pyochelin molecule provides a tetra-dentate coordination of iron, while the remaining bi-dentate coordination is ensured by another molecule not specifically recognized by the protein. The overall structure of the pyochelin receptor is typical of the TonB-dependent transporter superfamily, which uses the proton motive force from the cytoplasmic membrane through the TonB-ExbB-ExbD energy transducing complex to transport ferric ions across the bacterial outer membrane: a transmembrane 22 beta-stranded barrel occluded by a N-terminal domain that contains a mixed four-stranded beta-sheet. The N-terminal TonB box is disordered in two crystal forms, and loop L8 is found to point towards the iron-pyochelin complex, suggesting that the receptor is in a transport-competent conformation.
Collapse
Affiliation(s)
- David Cobessi
- Département Récepteurs et Protéines Membranaires, UMR7100 CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67412 Illkirch, France.
| | | | | |
Collapse
|
49
|
Hoegy F, Celia H, Mislin GL, Vincent M, Gallay J, Schalk IJ. Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa. J Biol Chem 2005; 280:20222-30. [PMID: 15784620 DOI: 10.1074/jbc.m500776200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TonB-dependent iron transporters present in the outer membranes of Gram-negative bacteria transport ferric-siderophore complexes into the periplasm. This requires proton motive force and an integral inner membrane complex, TonB-ExbB-ExbD. Recognition of iron-free siderophores by TonB-dependent outer membrane transporters (OMT) has only been described for a subfamily called OMT(N). These OMT(N)s have an additional domain at the N terminus, which interacts with an inner membrane regulatory protein to activate a cytoplasmic sigma factor. This induces transcription of iron transport genes. Here we showed that the ability to bind aposiderophores is not specific to the OMT(N) subfamily but may be a more general feature of OMTs. FhuA, the ferrichrome OMT in Escherichia coli, and FptA, the pyochelin (Pch) OMT in Pseudomonas aeruginosa, were both able to bind in vitro and in vivo the apo-forms and the ferric forms of their corresponding siderophore at a common binding site. FptA produced in P. aeruginosa cells grown in an iron-deficient medium copurifies with a ligand that, as characterized by fluorescence, is iron-free Pch. As described previously for the FpvA transporter (pyoverdine OMT in P. aeruginosa), it appears that in conditions of iron limitation all the FptA receptors at the cell surface are loaded with apoPch. This FptA-Pch complex is less stable in vitro than the previously described copurified FpvA-Pvd complex and can be loaded with iron in vitro in the presence of Pch-Fe, citrate-Fe, or ferrichrome-Fe. These findings improved our understanding of the iron uptake mechanism via siderophores in Gram-negative bacteria.
Collapse
Affiliation(s)
- Françoise Hoegy
- Département des Récepteurs et Protéines Membranaires, UPR 9050 CNRS, ESBS, Bld. Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
50
|
Schalk IJ, Yue WW, Buchanan SK. Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 2004; 54:14-22. [PMID: 15458401 DOI: 10.1111/j.1365-2958.2004.04241.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TonB-dependent iron transporters reside in the outer membranes of Gram-negative bacteria, transporting ferric-complexes into the periplasm by a mechanism requiring proton motive force and an integral inner membrane complex, TonB-ExbB-ExbD. Certain TonB-dependent transporters contain an additional domain at the N-terminus, which interacts with an inner membrane regulatory protein and a cytoplasmic sigma factor to induce transcription of iron transport genes when a ferric-ligand is bound at the extracellular surface of the transporter. Transport of the ferric-ligand is apparently not necessary for transcription induction. Recent biophysical and crystallographic experiments have shown that this subclass of TonB-dependent iron transporters can bind iron-free ligands, whereas only the ferric-ligands are transported into the periplasm. This review focuses on the ligand binding properties of these transporters and includes a discussion of the biological function of the additional domain, the mechanism of transcription induction and the mechanism of ferric-ligand transport.
Collapse
Affiliation(s)
- Isabelle J Schalk
- Département des Récepteurs et Protéines Membranaires, UPR 9050, CNRS, ESBS, Bld Sébastien Brant, F-67 400 Illkirch, Strasbourg, France.
| | | | | |
Collapse
|