1
|
Jedal JYB, Malmendal A, Ramløv H. Metabolites, ions, and the mechanisms behind seasonal cold hardening of Pyrochroa coccinea (Pyrochroidae) larvae. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104610. [PMID: 38145824 DOI: 10.1016/j.jinsphys.2023.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
The larvae of the black headed cardinal beetle Pyrochroa coccinea, overwinters under the bark of dead logs in northern European dioecious forests, and are thus exposed to temperatures below the melting point of their bodily fluids. Here we explore the mechanisms behind their seasonal cold hardening by characterising field samples collected monthly throughout the year. Both the lower lethal temperature and supercooling point dropped as much as 10℃ in the second half of November, reaching values around -15℃ by the beginning of December. This change was accompanied by a 320 mosmol/kg increase in hemolymph osmolality, which is a doubling compared to the summer levels. We used NMR metabolomics to identify and measure the absolute concentrations of the responsible cryoprotective C-H containing metabolites in the hemolymph. The largest increase was found to be in either glucose or trehalose, with an average total increase of 120 mM. Proline, alanine, and choline concentrations were found to increase by around 10 mM each. Contrarily, phosphocholine and phosphoethanolamine were halved, resulting in a total decrease of around 50 mM. These measurements were complemented with ion exchange chromatography measurements. This allowed us to account for all the osmotic pressure in the summer hemolymph, and the measured concentration changes explained as much as 40 % of the observed osmolality increase upon cold hardening. Preliminary results indicate that the remainder may be explained by non-colligative protein contributions.
Collapse
Affiliation(s)
- Jonathan Y B Jedal
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Anders Malmendal
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Hans Ramløv
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
2
|
Drori R, Stevens CA. Divergent Mechanisms of Ice Growth Inhibition by Antifreeze Proteins. Methods Mol Biol 2024; 2730:169-181. [PMID: 37943458 DOI: 10.1007/978-1-0716-3503-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Antifreeze proteins (AFPs) are biomolecules that can bind to ice and hinder its growth, thus holding significant potential for biotechnological and biomedical applications. AFPs are a subset of ice-binding proteins (IBPs) and are found in various organisms across different life kingdoms. This mini-review investigates the underlying mechanisms by which AFPs impede ice growth, emphasizing the disparities between hyperactive and moderate AFPs. Hyperactive AFPs exhibit heightened thermal hysteresis (TH) activity and can bind to both the basal and prism planes of ice crystals, enabling them to endure extremely cold temperatures. In contrast, moderate AFPs predominantly bind to the prism/pyramidal planes and demonstrate lower TH activity. The structural diversity of AFPs and the presence of ordered water molecules on their ice-binding sites (IBS) have been subjects of debate among researchers. Multiple hypotheses have been proposed concerning the significance of ordered water molecules in ice binding. Gaining insights into the binding dynamics and the factors influencing TH activity in AFPs is crucial for the development of efficient synthetic compounds and the establishment of comprehensive models to elucidate ice growth inhibition. Here we emphasize the necessity for further research to unravel the mechanisms of AFPs and presents a pathway for constructing models capable of comprehensively explaining their inhibitory effects on ice growth.
Collapse
Affiliation(s)
- Ran Drori
- Department of Chemistry and Biochemistry, Yeshiva University, New York, NY, USA.
| | - Corey A Stevens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Tomalty HE, Graham LA, Walker VK, Davies PL. Chilling injury in human kidney tubule cells after subzero storage is not mitigated by antifreeze protein addition. Cryobiology 2023:S0011-2240(23)00034-2. [PMID: 37164251 DOI: 10.1016/j.cryobiol.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/26/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
By preventing freezing, antifreeze proteins (AFPs) can permit cells and organs to be stored at subzero temperatures. As metabolic rates decrease with decreasing temperature, subzero static cold storage (SZ-SCS) could provide more time for tissue matching and potentially lead to fewer discarded organs. Human kidneys are generally stored for under 24 h and the tubule epithelium is known to be particularly sensitive to static cold storage (SCS). Here, telomerase-immortalized proximal-tubule epithelial cells from humans, which closely resemble their progenitors, were used as a proxy to assess the potential benefit of SZ-SCS for kidneys. The effects of hyperactive AFPs from a beetle and Cryostasis Storage Solution were compared to University of Wisconsin Solution at standard SCS temperatures (4 °C) and at -6 °C for up to six days. Although the AFPs helped guard against freezing, lower storage temperatures under these conditions were not beneficial. Compared to cells at 4 °C, those stored at -6 °C showed decreased viability as well as increased lactate dehydrogenase release and apoptosis. This suggests that this kidney cell type might be prone to chilling injury and that the addition of AFPs to enable SZ-SCS may not be effective for increasing storage times.
Collapse
Affiliation(s)
- Heather E Tomalty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
4
|
Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int J Mol Sci 2022; 23:2639. [PMID: 35269780 PMCID: PMC8910022 DOI: 10.3390/ijms23052639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (M.D.E.); (J.X.); (Y.H.); (X.L.); (F.L.); (J.X.); (R.Z.); (B.W.)
| |
Collapse
|
5
|
Arai T, Yamauchi A, Miura A, Kondo H, Nishimiya Y, Sasaki YC, Tsuda S. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin. Int J Mol Sci 2021; 22:3637. [PMID: 33807342 PMCID: PMC8038014 DOI: 10.3390/ijms22073637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated -5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6-8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo-ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP.
Collapse
Affiliation(s)
- Tatsuya Arai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
| | - Akari Yamauchi
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Hidemasa Kondo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| |
Collapse
|
6
|
Scholl CL, Tsuda S, Graham LA, Davies PL. Crystal waters on the nine polyproline type II helical bundle springtail antifreeze protein from Granisotoma rainieri match the ice lattice. FEBS J 2021; 288:4332-4347. [PMID: 33460499 DOI: 10.1111/febs.15717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
A springtail (Collembola) identified as Granisotoma rainieri was collected from snow in Hokkaido, Japan, in late winter when nighttime temperatures were below zero. Extracts of these arthropods showed antifreeze activity by shaping ice crystals and stopping their growth. The glycine-rich proteins responsible for this freezing point depression were isolated by ice-affinity purification and had principal masses of ~ 6.9 and 9.6 kDa. We identified a transcript for a 9.6-kDa component and produced it as a His-tagged recombinant protein for structural analysis. Its crystal structure was solved to a resolution of 1.21 Å and revealed a polyproline type II helical bundle, similar to the six-helix Hypogastrura harveyi AFP, but with nine helices organized into two layers held together by an extensive network of hydrogen bonds. One of the layers is flat, regular, and hydrophobic and likely serves as the ice-binding side. Although this surface makes close protein-protein contacts with its symmetry mate in the crystal, it has bound chains of waters present that resemble those on the basal and primary prism planes of ice. Molecular dynamic simulations indicate most of these crystal waters would preferentially occupy these sites if exposed to bulk solvent in the absence of the symmetry mate. These prepositioned waters lend further support to the ice-binding mechanism in which AFPs organize ice-like waters on one surface to adsorb to ice. DATABASES: Structural data are available in the Protein Data Bank under the accession number 7JJV. Transcript data are available in GenBank under accession numbers MT780727, MT780728, MT780729, MT780730, MT780731 and MT985982.
Collapse
Affiliation(s)
- Connor L Scholl
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Science and Technology (AIST), Sapporo, Japan
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
7
|
Hobbs RS, Hall JR, Graham LA, Davies PL, Fletcher GL. Antifreeze protein dispersion in eelpouts and related fishes reveals migration and climate alteration within the last 20 Ma. PLoS One 2020; 15:e0243273. [PMID: 33320906 PMCID: PMC7737890 DOI: 10.1371/journal.pone.0243273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Antifreeze proteins inhibit ice growth and are crucial for the survival of supercooled fish living in icy seawater. Of the four antifreeze protein types found in fishes, the globular type III from eelpouts is the one restricted to a single infraorder (Zoarcales), which is the only clade know to have antifreeze protein-producing species at both poles. Our analysis of over 60 unique antifreeze protein gene sequences from several Zoarcales species indicates this gene family arose around 18 Ma ago, in the Northern Hemisphere, supporting recent data suggesting that the Arctic Seas were ice-laden earlier than originally thought. The Antarctic was subject to widespread glaciation over 30 Ma and the Notothenioid fishes that produce an unrelated antifreeze glycoprotein extensively exploited the adjoining seas. We show that species from one Zoarcales family only encroached on this niche in the last few Ma, entering an environment already dominated by ice-resistant fishes, long after the onset of glaciation. As eelpouts are one of the dominant benthic fish groups of the deep ocean, they likely migrated from the north to Antarctica via the cold depths, losing all but the fully active isoform gene along the way. In contrast, northern species have retained both the fully active (QAE) and partially active (SP) isoforms for at least 15 Ma, which suggests that the combination of isoforms is functionally advantageous.
Collapse
Affiliation(s)
- Rod S. Hobbs
- Department of Ocean Sciences, Memorial University of Newfoundland, St John’s, Newfoundland, Canada
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Laurie A. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Garth L. Fletcher
- Department of Ocean Sciences, Memorial University of Newfoundland, St John’s, Newfoundland, Canada
| |
Collapse
|
8
|
Berger T, Meister K, DeVries AL, Eves R, Davies PL, Drori R. Synergy between Antifreeze Proteins Is Driven by Complementary Ice-Binding. J Am Chem Soc 2019; 141:19144-19150. [DOI: 10.1021/jacs.9b10905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tehilla Berger
- Department of Chemistry and Biochemistry, Yeshiva University, New York, New York 10016, United States
| | - Konrad Meister
- Max-Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - Arthur L. DeVries
- Department of Animal Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Ran Drori
- Department of Chemistry and Biochemistry, Yeshiva University, New York, New York 10016, United States
| |
Collapse
|
9
|
Tomalty HE, Graham LA, Eves R, Gruneberg AK, Davies PL. Laboratory-Scale Isolation of Insect Antifreeze Protein for Cryobiology. Biomolecules 2019; 9:biom9050180. [PMID: 31075842 PMCID: PMC6572240 DOI: 10.3390/biom9050180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/02/2022] Open
Abstract
Micromolar concentrations of hyperactive antifreeze proteins (AFPs) from insects can prevent aqueous solutions from freezing down to at least −6 °C. To explore cryopreservation of cells, tissues and organs at these temperatures without ice formation, we have developed a protocol to reliably produce ultrapure Tenebrio molitor AFP from cold-acclimated beetle larvae reared in the laboratory. The AFP was prepared from crude larval homogenates through five cycles of rotary ice-affinity purification, which can be completed in one day. Recovery of the AFP at each step was >90% and no impurities were detected in the final product. The AFP is a mixture of isoforms that are more active in combination than any one single component. Toxicity testing of the purified AFP in cell culture showed no inhibition of cell growth. The production process can easily be scaled up to industrial levels, and the AFP used in cryobiology applications was recovered for reuse in good yield and with full activity.
Collapse
Affiliation(s)
- Heather E Tomalty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Audrey K Gruneberg
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
10
|
Vu HM, Pennoyer JE, Ruiz KR, Portmann P, Duman JG. Beetle, Dendroides canadensis, antifreeze proteins increased high temperature survivorship in transgenic fruit flies, Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:68-72. [PMID: 30562493 DOI: 10.1016/j.jinsphys.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Paradoxically, some insects have an increased capacity to survive higher temperatures in winter than summer. Possible contributors to this increased heat tolerance in winter could be their sub-zero adaptations (high polyol concentrations, antifreeze proteins, antifreeze glycolipids, etc.). To investigate if a sub-zero adaptation can increase organismal high temperature survivorship, we tested transgenic fruit flies, Drosophila melanogaster, with antifreeze proteins from the fire-colored beetle, Dendroides canadensis (DAFPs). Transgenic Drosophila melanogaster with individual DAFPs-1 and -4 had increased survivorship compared to control flies after 24 h when placed at 35-36.5 °C. The 24 h ULT50 (Upper Lethal Temperature at which 50% mortality occurred) was calculated to be 36.3 °C for DAFP-1 flies, 36.2 °C for DAFP-4 flies, 35.4 °C for wild-type controls, and 34.9 °C for GAL4 controls. The results indicate that DAFPs may have an alternative function in insects and be a contributor in the unexpected phenomenon of increased higher temperature survivorship in winter.
Collapse
Affiliation(s)
- Henry M Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - James E Pennoyer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kevin R Ruiz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Patricia Portmann
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - John G Duman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
11
|
Mahatabuddin S, Tsuda S. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:321-337. [PMID: 30288717 DOI: 10.1007/978-981-13-1244-1_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous embryonic ice crystals are generated in water at the moment of freezing. These crystals grow and merge together to form an ice block that can be generally observed. Antifreeze protein (AFP) is capable of binding to the embryonic ice crystals, inhibiting such an ice block formation. Fish-derived AFP additionally binds to membrane lipid bilayers to prolong the lifetime of cells. These unique abilities of AFP have been studied extensively for the development of advanced techniques, such as ice recrystallization inhibitors, freeze-tolerant gels, cell preservation fluids, and high-porosity ceramics, for which mass-preparation method of the quality product of AFP utilizing fish muscle homogenates made a significant contribution. In this chapter, we present both fundamental and advanced information of fish AFPs that have been especially discovered from mid-latitude sea area, which will provide a hint to develop more advanced techniques applicable in both medical and industrial fields.
Collapse
Affiliation(s)
- Sheikh Mahatabuddin
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
| |
Collapse
|
12
|
Mahatabuddin S, Hanada Y, Nishimiya Y, Miura A, Kondo H, Davies PL, Tsuda S. Concentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive. Sci Rep 2017; 7:42501. [PMID: 28211917 PMCID: PMC5304152 DOI: 10.1038/srep42501] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/13/2017] [Indexed: 11/09/2022] Open
Abstract
A supersoluble 40-residue type I antifreeze protein (AFP) was discovered in a righteye flounder, the barfin plaice (bp). Unlike all other AFPs characterized to date, bpAFP transitions from moderately-active to hyperactive with increasing concentration. At sub-mM concentrations, bpAFP bound to pyramidal planes of ice to shape it into a bi-pyramidal hexagonal trapezohedron, similarly to the other moderately-active AFPs. At mM concentrations, bpAFP uniquely underwent further binding to the whole ice crystal surface including the basal planes. The latter caused a bursting ice crystal growth normal to c-axis, 3 °C of high thermal hysteresis, and alteration of an ice crystal into a smaller lemon-shaped morphology, all of which are well-known properties of hyperactive AFPs. Analytical ultracentrifugation showed this activity transition is associated with oligomerization to form tetramer, which might be the forerunner of a naturally occurring four-helix-bundle AFP in other flounders.
Collapse
Affiliation(s)
- Sheikh Mahatabuddin
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuichi Hanada
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, ioproduction Research Institute and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Ai Miura
- Bioproduction Research Institute, ioproduction Research Institute and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Hidemasa Kondo
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Bioproduction Research Institute, ioproduction Research Institute and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Peter L. Davies
- Protein Function Discovery Group and Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Sakae Tsuda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Bioproduction Research Institute, ioproduction Research Institute and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| |
Collapse
|
13
|
Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochem J 2016; 473:4011-4026. [DOI: 10.1042/bcj20160543] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
Snow mold fungus, Typhula ishikariensis, secretes seven antifreeze protein isoforms (denoted TisAFPs) that assist in the survival of the mold under snow cover. Here, the X-ray crystal structure of a hyperactive isoform, TisAFP8, at 1.0 Å resolution is presented. TisAFP8 folds into a right-handed β-helix accompanied with a long α-helix insertion. TisAFP8 exhibited significantly high antifreeze activity that is comparable with other hyperactive AFPs, despite its close structural and sequence similarity with the moderately active isoform TisAFP6. A series of mutations introduced into the putative ice-binding sites (IBSs) in the β-sheet and adjacent loop region reduced antifreeze activity. A double-mutant A20T/A212S, which comprises a hydrophobic patch between the β-sheet and loop region, caused the greatest depression of antifreeze activity of 75%, when compared with that of the wild-type protein. This shows that the loop region is involved in ice binding and hydrophobic residues play crucial functional roles. Additionally, bound waters around the β-sheet and loop region IBSs were organized into an ice-like network and can be divided into two groups that appear to mediate separately TisAFP and ice. The docking model of TisAFP8 with the basal plane via its loop region IBS reveals a better shape complementarity than that of TisAFP6. In conclusion, we present new insights into the ice-binding mechanism of TisAFP8 by showing that a higher hydrophobicity and better shape complementarity of its IBSs, especially the loop region, may render TisAFP8 hyperactive to ice binding.
Collapse
|
14
|
Qadeer S, Khan M, Shahzad Q, Azam A, Ansari M, Rakha B, Ejaz R, Husna A, Duman J, Akhter S. Efficiency of beetle (Dendroides canadensis) recombinant antifreeze protein for buffalo semen freezability and fertility. Theriogenology 2016; 86:1662-9. [DOI: 10.1016/j.theriogenology.2016.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
15
|
Wang C, Oliver EE, Christner BC, Luo BH. Functional Analysis of a Bacterial Antifreeze Protein Indicates a Cooperative Effect between Its Two Ice-Binding Domains. Biochemistry 2016; 55:3975-83. [PMID: 27359086 DOI: 10.1021/acs.biochem.6b00323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antifreeze proteins make up a class of ice-binding proteins (IBPs) that are possessed and expressed by certain cold-adapted organisms to enhance their freezing tolerance. Here we report the biophysical and functional characterization of an IBP discovered in a bacterium recovered from a deep glacial ice core drilled at Vostok Station, Antarctica (IBPv). Our study showed that the recombinant protein rIBPv exhibited a thermal hysteresis of 2 °C at concentrations of >50 μM, effectively inhibited ice recrystallization, and enhanced bacterial viability during freeze-thaw cycling. Circular dichroism scans indicated that rIBPv mainly consists of β strands, and its denaturing temperature was 53.5 °C. Multiple-sequence alignment of homologous IBPs predicted that IBPv contains two ice-binding domains, a feature unique among known IBPs. To examine functional differences between the IBPv domains, each domain was cloned, expressed, and purified. The second domain (domain B) expressed greater ice binding activity. Data from thermal hysteresis and gel filtration assays supported the idea that the two domains cooperate to achieve a higher ice binding effect by forming heterodimers. However, physical linkage of the domains was not required for this effect.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Erin E Oliver
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Brent C Christner
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Bing-Hao Luo
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
16
|
Basu K, Wasserman SS, Jeronimo PS, Graham LA, Davies PL. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. FEBS J 2016; 283:1504-15. [DOI: 10.1111/febs.13687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 02/16/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Koli Basu
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| | - Samantha S. Wasserman
- Department of Biochemistry; Programme in Cell Biology; Hospital for Sick Children; University of Toronto; Canada
| | - Paul S. Jeronimo
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| | - Laurie A. Graham
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| | - Peter L. Davies
- Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Canada
| |
Collapse
|
17
|
Duman JG. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 2015; 218:1846-55. [DOI: 10.1242/jeb.116905] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Ice-binding proteins (IBPs) assist in subzero tolerance of multiple cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice-nucleating proteins (INPs). Several structurally different IBPs have evolved, even within related taxa. Proteins that produce thermal hysteresis inhibit freezing by a non-colligative mechanism, whereby they adsorb onto ice crystals or ice-nucleating surfaces and prevent further growth. This lowers the so-called hysteretic freezing point below the normal equilibrium freezing/melting point, producing a difference between the two, termed thermal hysteresis. True AFPs with high thermal hysteresis are found in freeze-avoiding animals (those that must prevent freezing, as they die if frozen) especially marine fish, insects and other terrestrial arthropods where they function to prevent freezing at temperatures below those commonly experienced by the organism. Low thermal hysteresis IBPs are found in freeze-tolerant organisms (those able to survive extracellular freezing), and function to inhibit recrystallization – a potentially damaging process whereby larger ice crystals grow at the expense of smaller ones – and in some cases, prevent lethal propagation of extracellular ice into the cytoplasm. Ice-nucleator proteins inhibit supercooling and induce freezing in the extracellular fluid at high subzero temperatures in many freeze-tolerant species, thereby allowing them to control the location and temperature of ice nucleation, and the rate of ice growth. Numerous nuances to these functions have evolved. Antifreeze glycolipids with significant thermal hysteresis activity were recently identified in insects, frogs and plants.
Collapse
|
18
|
Gaukel V, Leiter A, Spieß WE. Synergism of different fish antifreeze proteins and hydrocolloids on recrystallization inhibition of ice in sucrose solutions. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Qadeer S, Khan M, Ansari M, Rakha B, Ejaz R, Husna A, Ashiq M, Iqbal R, Ullah N, Akhter S. Evaluation of antifreeze protein III for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci 2014; 148:26-31. [DOI: 10.1016/j.anireprosci.2014.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
|
20
|
Halwani DO, Brockbank KGM, Duman JG, Campbell LH. Recombinant Dendroides canadensis antifreeze proteins as potential ingredients in cryopreservation solutions. Cryobiology 2014; 68:411-8. [PMID: 24662031 DOI: 10.1016/j.cryobiol.2014.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Abstract
Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as -26°C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0 to 3mg/mL in Unisol base mixed with 1M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9°C) when compared to single DAFPs and/or conventional 1M Me2SO control solutions. Concentrations of DAFPs as low as 1 μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues.
Collapse
Affiliation(s)
- Dina O Halwani
- Cell & Tissue Systems, Inc., N. Charleston, SC 29406, USA.
| | - Kelvin G M Brockbank
- Cell & Tissue Systems, Inc., N. Charleston, SC 29406, USA; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John G Duman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lia H Campbell
- Cell & Tissue Systems, Inc., N. Charleston, SC 29406, USA
| |
Collapse
|
21
|
A novel function – Thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis. Cryobiology 2013. [DOI: 10.1016/j.cryobiol.2012.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Haridas V, Naik S. Natural macromolecular antifreeze agents to synthetic antifreeze agents. RSC Adv 2013. [DOI: 10.1039/c3ra00081h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
23
|
Nickell PK, Sass SJ, Verleye DM, Blumenthal EM, Duman JG. Antifreeze proteins in the primary urine of larvae of the beetle Dendroides canadensis (Latreille). J Exp Biol 2013; 216:1695-703. [DOI: 10.1242/jeb.082461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
To avoid freezing while overwintering beneath the bark of fallen trees, Dendroides canadensis (Coleoptera: Pyrochroidae) larvae produce a family of antifreeze proteins (DAFPs) that are transcribed in specific tissues and have specific compartmental fates. DAFPs and associated thermal hysteresis activity (THA) have been shown previously in hemolymph and midgut fluid, but the presence of DAFPs has not been explored in primary urine, a potentially important site that can contain endogenous ice nucleating compounds that could induce freezing. A maximum mean thermal hysteresis activity of 2.65±0.33°C was observed in primary urine of winter collected D. canadensis larvae. Thermal hysteresis activity in primary urine increased significantly through autumn, peaked in the winter and decreased through spring to levels of 0.2-0.3°C in summer, in a pattern similar to that of hemolymph and midgut fluid. Thermal hysteresis activity was also found in hindgut fluid and excreted rectal fluid suggesting that these larvae not only concentrate AFPs in the hindgut, but also excrete AFPs from the rectal cavity. Based on dafps isolated from Malpighian tubule epithelia, cDNAs were cloned and sequenced, identifying the presence of transcripts encoding 24 DAFP isoforms. Six of these Malpighian tubule DAFPs were known previously, but 18 are new. We also provide functional evidence that DAFPs can inhibit ice nucleators present in insect primary urine. This is potentially critical because D. canadensis larvae die if frozen, and therefore ice formation in any body fluid, including the urine, would be lethal.
Collapse
|
24
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Kubota N. Effects of cooling rate, annealing time and biological antifreeze concentration on thermal hysteresis reading. Cryobiology 2011; 63:198-209. [DOI: 10.1016/j.cryobiol.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 10/17/2022]
|
26
|
Wen X, Wang S, Amornwittawat N, Houghton EA, Sacco MA. Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement. J Mol Recognit 2011; 24:1025-32. [PMID: 22038809 PMCID: PMC4872661 DOI: 10.1002/jmr.1151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Antifreeze proteins (AFPs) found in many organisms can noncolligatively lower the freezing point of water without altering the melting point. The difference between the depressed freezing point and the melting point, termed thermal hysteresis (TH), is usually a measure of the antifreeze activity of AFPs. Certain low molecular mass molecules and proteins can further enhance the antifreeze activity of AFPs. Interaction between an enhancer and arginine is known to play an important role in enhancing the antifreeze activity of an AFP from the beetle Dendroides canadensis (DAFP-1). Here, we examined the enhancement effects of several prevalent phosphate-containing coenzymes on the antifreeze activity of DAFP-1. β-Nicotinamide adenine dinucleotide (reduced) (NADH) is identified as the most efficient enhancer of DAFP-1, which increases the antifreeze activity of DAFP-1 by around 10 times. Examination of the enhancement abilities of a series of NADH analogs and various molecular fragments of NADH reveals that the modifications of nicotinamide generate a series of highly efficient enhancers, though none as effective as NADH itself, and the whole molecular structure of NADH is necessary for its highly efficient enhancement effect. We also demonstrated a 1:1 binding between DAFP-1 and NADH. The binding was characterized by high-performance liquid chromatography (HPLC) using the gel filtration method of Hummel and Dreyer. The data analysis suggests binding between DAFP-1 and NADH with a dissociation constant in the micromolar range. Interactions between DAFP-1 and NADH are discussed along with molecular mechanisms of enhancer action.
Collapse
Affiliation(s)
- Xin Wen
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA.
| | | | | | | | | |
Collapse
|
27
|
Gong H, Croft K, Driedzic WR, Ewart KV. Chemical chaperoning action of glycerol on the antifreeze protein of rainbow smelt. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2010.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Brockbank KGM, Campbell LH, Greene ED, Brockbank MCG, Duman JG. Lessons from nature for preservation of mammalian cells, tissues, and organs. In Vitro Cell Dev Biol Anim 2010; 47:210-7. [PMID: 21191664 DOI: 10.1007/s11626-010-9383-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
The study of mechanisms by which animals tolerate environmental extremes may provide strategies for preservation of living mammalian materials. Animals employ a variety of compounds to enhance their survival, including production of disaccharides, glycerol, and antifreeze compounds. The cryoprotectant glycerol was discovered before its role in amphibian survival. In the last decade, trehalose has made an impact on freezing and drying methods for mammalian cells. Investigation of disaccharides was stimulated by the variety of organisms that tolerate dehydration stress by accumulation of disaccharides. Several methods have been developed for the loading of trehalose into mammalian cells, including inducing membrane lipid-phase transitions, genetically engineered pores, endocytosis, and prolonged cell culture with trehalose. In contrast, the many antifreeze proteins (AFPs) identified in a variety of organisms have had little impact. The first AFPs to be discovered were found in cold water fish; their AFPs have not found a medical application. Insect AFPs function by similar mechanisms, but they are more active and recombinant AFPs may offer the best opportunity for success in medical applications. For example, in contrast to fish AFPs, transgenic organisms expressing insect AFPs exhibit reduced ice nucleation. However, we must remember that nature's survival strategies may include production of AFPs, antifreeze glycolipids, ice nucleators, polyols, disaccharides, depletion of ice nucleators, and partial desiccation in synchrony with the onset of winter. We anticipate that it is only by combining several natural low temperature survival strategies that the full potential benefits for mammalian cell survival and medical applications can be achieved.
Collapse
Affiliation(s)
- Kelvin G M Brockbank
- Cell & Tissue Systems, Inc, 2231 Technical Parkway, Suite A, North Charleston, SC 29401, USA.
| | | | | | | | | |
Collapse
|
29
|
Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry 2010; 49:9063-71. [PMID: 20853841 DOI: 10.1021/bi100516e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By binding to the surface of ice crystals, type III antifreeze protein (AFP) can depress the freezing point of fish blood to below that of freezing seawater. This 7-kDa globular protein is encoded by a multigene family that produces two major isoforms, SP and QAE, which are 55% identical. Disruptive mutations on the ice-binding site of type III AFP lower antifreeze activity but can also change ice crystal morphology. By attaching green fluorescent protein to different mutants and isoforms and by examining the binding of these fusion proteins to single-crystal ice hemispheres, we show that type III AFP has a compound ice-binding site. There are two adjacent, flat, ice-binding surfaces at 150° to each other. One binds the primary prism plane of ice; the other, a pyramidal plane. Steric mutations on the latter surface cause elongation of the ice crystal as primary prism plane binding becomes dominant. SP isoforms naturally have a greatly reduced ability to bind the prism planes of ice. Mutations that make the SP isoforms more QAE-like slow down the rate of ice growth. On the basis of these observations we postulate that other types of AFP also have compound ice-binding sites that enable them to bind to multiple planes of ice.
Collapse
|
30
|
Lin X, O'Tousa JE, Duman JG. Expression of two self-enhancing antifreeze proteins from the beetle Dendroides canadensis in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:341-349. [PMID: 19931275 DOI: 10.1016/j.jinsphys.2009.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/07/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Antifreeze proteins (AFPs) lower the freezing point of water without affecting the melting point. This difference between melting point and freezing point has been termed thermal hysteresis. Antifreeze protein genes, dafp-1 and/or dafp-4, from the freeze-avoiding insect, Dendroides canadensis, were transferred to Drosophila melanogaster via P-element-mediated transformation. The Northern and Western blots showed expression of DAFP(s) at both transcript and protein levels. The highest thermal hysteresis activity of 6.78+/-0.12 degrees C was detected in 5-day adult flies containing two copies of each of the dafp-1 and dafp-4 genes, while flies with two copies of either dafp-1 or dafp-4 had less activity, 5.52 and 3.24 degrees C, respectively (measured by nanoliter osmometer). This suggests synergistic enhancement of thermal hysteresis activity between DAFP-1 and DAFP-4 in transgenic D. melanogaster containing both DAFPs. Supercooling points without ice in contact with the insects were lowered in all 5 transgenic lines compared with controls, however, when ice was in contact with the flies, supercooling points were lowered only in the heterozygous <DAFP-1>+<DAFP-4> transgenic line. Also, transgenic D. melanogaster exhibited higher survivorship compared with controls when placed at low non-freezing temperatures (0 and 4 degrees C), however, DAFP-1 and DAFP-4 did not display any synergistic enhancement in these non-freezing survival experiments.
Collapse
Affiliation(s)
- Xia Lin
- Department of Biological Sciences, 107 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
31
|
Abstract
It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44 degrees C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing.
Collapse
|
32
|
Mok YF, Lin FH, Graham LA, Celik Y, Braslavsky I, Davies PL. Structural Basis for the Superior Activity of the Large Isoform of Snow Flea Antifreeze Protein. Biochemistry 2010; 49:2593-603. [DOI: 10.1021/bi901929n] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yee-Foong Mok
- Department of Biochemistry and Protein Function Discovery Group, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Feng-Hsu Lin
- Department of Biochemistry and Protein Function Discovery Group, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Laurie A. Graham
- Department of Biochemistry and Protein Function Discovery Group, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Yeliz Celik
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Ido Braslavsky
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Peter L. Davies
- Department of Biochemistry and Protein Function Discovery Group, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
33
|
Wang S, Amornwittawat N, Banatlao J, Chung M, Kao Y, Wen X. Hofmeister effects of common monovalent salts on the beetle antifreeze protein activity. J Phys Chem B 2010; 113:13891-4. [PMID: 19778062 DOI: 10.1021/jp907762u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antifreeze proteins (AFPs) noncolligatively depress the freezing point of a solution and produce a difference between the melting and freezing points termed thermal hysteresis (TH). While the mechanism of the enhancement effect is not well understood, various low-molecular-mass solutes including neutral salts have been identified to enhance the TH activities of AFPs. Here, the effect of monovalent salts on salting out an AFP from the beetle Dendroides canadensis (DAFP-1) on the ice was treated using a simple classical theory, and the relationship between the TH activity and the salt concentration was developed. The TH activities of DAFP-1 in the presence of the series of monovalent salts were assessed by differential scanning calorimetry (DSC), and the salting-out constants of DAFP-1 by these salts were determined. This study demonstrates an indirect way to determine the salting-out constants of AFPs by these salts. The results suggest that the Hofmeister effect is a potential mechanism for the TH enhancement effects of some common monovalent salts.
Collapse
Affiliation(s)
- Sen Wang
- Molecular Imaging Program, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
34
|
Takamichi M, Nishimiya Y, Miura A, Tsuda S. Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. FEBS J 2009; 276:1471-9. [PMID: 19187223 DOI: 10.1111/j.1742-4658.2009.06887.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III antifreeze protein is naturally expressed as a mixture of sulfopropyl-Sephadex (SP) and quaternary aminoethyl-Sephadex (QAE)-binding isoforms, whose sequence identity is approximately 55%. We studied the ice-binding properties of a SP isoform (nfeAFP6) and the differences from those of a QAE isoform (nfeAFP8); both of these isoforms have been identified from the Japanese fish Zoarces elongatus Kner. The two isoforms possessed ice-shaping ability, such as the creation of an ice bipyramid, but nfeAFP6 was unable to halt crystal growth and exhibited no thermal hysteresis activity. For example, the ice growth rate for nfeAFP6 was 1000-fold higher than that for nfeAFP8 when measured for 0.1 mm protein solution at 0.25 degrees C below the melting point. Nevertheless, nfeAFP6 exhibited full thermal hysteresis activity in the presence of only 1% nfeAFP8 (i.e. [nfeAFP8]/[nfeAFP6] = 0.01), the effectiveness of which was indistinguishable from that of nfeAFP8 alone. We also observed a burst of ice crystal growth from the tip of the ice bipyramid for both isoforms on lowering the temperature. These results suggest that the ice growth inhibitory activity of an antifreeze protein isoform lacking the active component is restored by the addition of a minute amount of the active isoform.
Collapse
Affiliation(s)
- Manabu Takamichi
- Functional Protein Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | | | | |
Collapse
|
35
|
Amornwittawat N, Wang S, Banatlao J, Chung M, Velasco E, Duman JG, Wen X. Effects of polyhydroxy compounds on beetle antifreeze protein activity. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:341-6. [PMID: 19038370 PMCID: PMC4869536 DOI: 10.1016/j.bbapap.2008.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/17/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
Antifreeze proteins (AFPs) noncolligatively depress the nonequilibrium freezing point of a solution and produce a difference between the melting and freezing points termed thermal hysteresis (TH). Some low-molecular-mass solutes can affect the TH values. The TH enhancement effects of selected polyhydroxy compounds including polyols and carbohydrates on an AFP from the beetle Dendroides canadensis were systematically investigated using differential scanning calorimetry (DSC). The number of hydroxyl groups dominates the molar enhancement effectiveness of polyhydroxy compounds having one to five hydroxyl groups. However, the above rule does not apply for polyhydroxy compounds having more than five hydroxyl groups. The most efficient polyhydroxy enhancer identified is trehalose. In a combination of enhancers the strongest enhancer plays the major role in determining the TH enhancement. Mechanistic insights into identification of highly efficient AFP enhancers are discussed.
Collapse
Affiliation(s)
- Natapol Amornwittawat
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Sen Wang
- Molecular Imaging Program, 318 Campus Drive, Clark E 150, Stanford University, CA 94305, USA
| | - Joseph Banatlao
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Melody Chung
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Efrain Velasco
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - John G. Duman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xin Wen
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| |
Collapse
|
36
|
Amornwittawat N, Wang S, Duman JG, Wen X. Polycarboxylates enhance beetle antifreeze protein activity. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1784:1942-8. [PMID: 18620083 PMCID: PMC2632549 DOI: 10.1016/j.bbapap.2008.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/28/2008] [Accepted: 06/05/2008] [Indexed: 11/17/2022]
Abstract
Antifreeze proteins (AFPs) lower the noncolligative freezing point of water in the presence of ice below the ice melting point. The temperature difference between the melting point and the noncolligative freezing point is termed thermal hysteresis (TH). The magnitude of the TH depends on the specific activity and the concentration of AFP, and the concentration of enhancers in the solution. Known enhancers are certain low molecular mass molecules and proteins. Here, we investigated a series of polycarboxylates that enhance the TH activity of an AFP from the beetle Dendroides canadensis (DAFP) using differential scanning calorimetry (DSC). Triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetate, the most efficient enhancer identified in this work, can increase the TH of DAFP by nearly 1.5 fold over than that of the published best enhancer, citrate. The Zn(2+) coordinated carboxylate results in loss of the enhancement ability of the carboxylate on antifreeze activity. There is not an additional increase in TH when a weaker enhancer is added to a stronger enhancer solution. These observations suggest that the more carboxylate groups per enhancer molecule the better the efficiency of the enhancer and that the freedom of motion of these molecules is necessary for them to serve as enhancers for AFP. The hydroxyl groups in the enhancer molecules can also positively affect their TH enhancement efficiency, though not as strongly as carboxylate groups. Mechanisms are discussed.
Collapse
Affiliation(s)
- Natapol Amornwittawat
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Sen Wang
- Molecular Imaging Program, 318 Campus Drive, Clark E 150, Stanford, CA 94305, USA
| | - John G. Duman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xin Wen
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| |
Collapse
|
37
|
Funakoshi K, Inada T, Kawabata H, Tomita T. Cooperative Function of Ammonium Polyacrylate with Antifreeze Protein Type I. Biomacromolecules 2008; 9:3150-6. [DOI: 10.1021/bm800739s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kunio Funakoshi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan, and Fine and Specialty Chemicals Research Center, Nippon Shokubai Company, Ltd., 5-8 Nishi Otabi-cho, Suita, Osaka 564-8512, Japan
| | - Takaaki Inada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan, and Fine and Specialty Chemicals Research Center, Nippon Shokubai Company, Ltd., 5-8 Nishi Otabi-cho, Suita, Osaka 564-8512, Japan
| | - Hiroshi Kawabata
- National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan, and Fine and Specialty Chemicals Research Center, Nippon Shokubai Company, Ltd., 5-8 Nishi Otabi-cho, Suita, Osaka 564-8512, Japan
| | - Takashi Tomita
- National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan, and Fine and Specialty Chemicals Research Center, Nippon Shokubai Company, Ltd., 5-8 Nishi Otabi-cho, Suita, Osaka 564-8512, Japan
| |
Collapse
|
38
|
Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL. The basis for hyperactivity of antifreeze proteins. Cryobiology 2006; 53:229-39. [PMID: 16887111 DOI: 10.1016/j.cryobiol.2006.06.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/09/2006] [Accepted: 06/19/2006] [Indexed: 11/27/2022]
Abstract
Antifreeze proteins (AFPs) bind to the surface of ice crystals and lower the non-equilibrium freezing temperature of the icy solution below its melting point. We have recently reported the discovery of three novel hyperactive AFPs from a bacterium, a primitive insect and a fish, which, like two hyperactive AFPs previously recognized in beetles and moths, are considerably better at depressing the freezing point than most fish AFPs. When cooled below the non-equilibrium freezing temperature, ice crystals formed in the presence of any of five distinct, moderately active fish AFPs grow suddenly along the c-axis. Ice crystals formed in the presence of any of the five evolutionarily and structurally distinct hyperactive AFPs remain stable to lower temperatures, and then grow explosively in a direction normal to the c-axis when cooled below the freezing temperature. We argue that this one consistent distinction in the behaviour of these two classes of AFPs is the key to hyperactivity. Whereas both AFP classes bind irreversibly to ice, the hyperactive AFPs are better at preventing ice growth out of the basal planes.
Collapse
Affiliation(s)
- Andrew J Scotter
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
39
|
Nicodemus J, O'tousa JE, Duman JG. Expression of a beetle, Dendroides canadensis, antifreeze protein in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:888-96. [PMID: 16828791 DOI: 10.1016/j.jinsphys.2006.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 05/10/2023]
Abstract
Antifreeze protein 1 (DAFP-1), from the beetle Dendroides canadensis, was expressed in Drosophila melanogaster. Mean thermal hysteresis values (the difference between freezing and melting points), indicative of antifreeze protein activity, in the hemolymph of transgenic flies were found to be as high as 6.23+/-0.10 degrees C (using the nanoliter osmometer). Direct comparisons of the capillary and nanoliter osmometer techniques for measuring THA were made, illustrating the much higher values obtained by the latter. Transgenic Drosophila had supercooling points, both in contact with ice and not, that were slightly, but significantly, lower than wild-type controls (1.5-2.0 degrees C and 2.0-4.0 degrees C, respectively). The results indicate functionality of DAFP-1 in Drosophila melanogaster (the ability of DAFP-1 to inhibit both inoculative freezing across the cuticle and freezing initiated by endogenous ice nucleators). The much larger effects of DAFPs in inhibiting inoculative freezing and ice nucleation in Dendroides canadensis relative to the transgenic Drosophila may partially result from the lower DAFP concentrations and activities in Drosophila, however the absence of multiple types of DAFPs and absence of tissue specific expression may also contribute. Transgenic Drosophila were also able to live significantly longer than controls at 0 degrees C and 4 degrees C, indicating that DAFP-1 is able to increase cold tolerance at above freezing temperatures.
Collapse
Affiliation(s)
- Jessie Nicodemus
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
40
|
Pedersen SA, Kristiansen E, Hansen BH, Andersen RA, Zachariassen KE. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:846-53. [PMID: 16806256 DOI: 10.1016/j.jinsphys.2006.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/08/2006] [Accepted: 05/08/2006] [Indexed: 05/10/2023]
Abstract
The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.
Collapse
Affiliation(s)
- Sindre A Pedersen
- Department of Biology, Realfagsbygget, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|