1
|
Souard F, Perrier S, Noël V, Fave C, Fiore E, Peyrin E, Garcia J, Vanhaverbeke C. Optimization of Experimental Parameters to Explore Small-Ligand/Aptamer Interactions through Use of (1) H NMR Spectroscopy and Molecular Modeling. Chemistry 2015; 21:15740-8. [PMID: 26356596 DOI: 10.1002/chem.201501527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/25/2022]
Abstract
Aptamers constitute an emerging class of molecules designed and selected to recognize any given target that ranges from small compounds to large biomolecules, and even cells. However, the underlying physicochemical principles that govern the ligand-binding process still have to be clarified. A major issue when dealing with short oligonucleotides is their intrinsic flexibility that renders their active conformation highly sensitive to experimental conditions. To overcome this problem and determine the best experimental parameters, an approach based on the design-of-experiments methodology has been developed. Here, the focus is on DNA aptamers that possess high specificity and affinity for small molecules, L-tyrosinamide, and adenosine monophosphate. Factors such as buffer, pH value, ionic strength, Mg(2+) -ion concentration, and ligand/aptamer ratio have been considered to find the optimal experimental conditions. It was then possible to gain new insight into the conformational features of the two ligands by using ligand-observed NMR spectroscopic techniques and molecular mechanics.
Collapse
Affiliation(s)
- Florence Souard
- DPM, Université Grenoble Alpes, Grenoble, 38000 (France). .,DPM, CNRS, Grenoble, 38000 (France).
| | - Sandrine Perrier
- DPM, Université Grenoble Alpes, Grenoble, 38000 (France).,DPM, CNRS, Grenoble, 38000 (France)
| | - Vincent Noël
- ITODYS, UMR 7086 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205 (France)
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205 (France)
| | - Emmanuelle Fiore
- DPM, Université Grenoble Alpes, Grenoble, 38000 (France).,DPM, CNRS, Grenoble, 38000 (France)
| | - Eric Peyrin
- DPM, Université Grenoble Alpes, Grenoble, 38000 (France).,DPM, CNRS, Grenoble, 38000 (France)
| | - Julian Garcia
- DCM, Université Grenoble Alpes, Grenoble, 38000 (France).,DCM, CNRS, Grenoble, 38000 (France)
| | - Cécile Vanhaverbeke
- DPM, Université Grenoble Alpes, Grenoble, 38000 (France). .,DPM, CNRS, Grenoble, 38000 (France).
| |
Collapse
|
2
|
Groves P, Strzelecka-Kiliszek A, Sekrecka-Belniak A, Canales A, Jiménez-Barbero J, Bandorowicz-Pikula J, Pikula S, Cañada FJ. Exploring NMR methods as a tool to select suitable fluorescent nucleotide analogues. Org Biomol Chem 2014; 11:5332-8. [PMID: 23842795 DOI: 10.1039/c3ob40159f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fluorescent analogues provide important tools for biochemical/biophysical research. However, the analogues contain chemical modifications much larger than those known to affect ligand-binding, such as the inversion of a carbon centre or substitution of an atom. We lack experimental tools and protocols to select the most appropriate fluorescent analogue. Herein, we use several NMR spectroscopy methods, including Saturation Transfer Difference (STD), STD competition and transferred nuclear Overhauser effect spectroscopy (Tr-NOESY), as tools to select appropriate fluorescent probes. Annexin A6 (AnxA6) is a ubiquitous protein that forms in vitro GTP-induced ion channels. We used this protein as a model and screened guanosine triphosphate (GTP) and four fluorescent analogues against AnxA6. STD reported that the GTP moiety of all ligands made similar contacts with the protein, despite additional interactions between the fluorescent tags and AnxA6. Competition STD experiments verified that the analogues and GTP bind to the same site. Tr-NOESY indicated that the bound conformation of the base relative to ribose is altered for some analogues compared to GTP. MANT-GTP or the BODIPY thioester of guanosine 5'-O-(3-thiotriphosphate) are the most suitable fluorescent analogues for AnxA6, according to NMR. These results reveal NMR as a useful technique to select and design proper fluorescent tags for biochemical/biophysical assays.
Collapse
Affiliation(s)
- Patrick Groves
- Chemical Biology Division, Instituto de Tecnologia Química e Biológica (ITQB-UNL), Oeiras, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang N, Zhang S, Szostak JW. Activated ribonucleotides undergo a sugar pucker switch upon binding to a single-stranded RNA template. J Am Chem Soc 2012; 134:3691-4. [PMID: 22296305 PMCID: PMC3448298 DOI: 10.1021/ja212027q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Indexed: 12/02/2022]
Abstract
Template-directed polymerization of chemically activated ribonucleotide monomers, such as nucleotide 5'-phosphorimidazolides, has been studied as a model for nonenzymatic RNA replication during the origin of life. Kinetic studies of the polymerization of various nucleotide monomers on oligonucleotide templates have suggested that the A-form (C3'-endo sugar pucker) conformation is optimal for both monomers and templates for efficient copying. However, RNA monomers are predominantly in the C2'-endo conformation when free in solution, except for cytidine, which is approximately equally distributed between the C2'-endo and C3'-endo conformations. We hypothesized that ribonucleotides undergo a switch in sugar pucker upon binding to an A-type template and that this conformational switch allows or enhances subsequent polymerization. We used transferred nuclear Overhauser effect spectroscopy (TrNOESY), which can be used for specific detection of the bound conformation of small-molecule ligands with relatively weak affinity to receptors, to study the interactions between nucleotide 5'-phosphorimidazolides and single-stranded oligonucleotide templates. We found that the sugar pucker of activated ribonucleotides switches from C2'-endo in the free state to C3'-endo upon binding to an RNA template. This switch occurs only on RNA and not on DNA templates. Furthermore, activated 2'-deoxyribonucleotides maintain a C2'-endo sugar pucker in both the free and template-bound states. Our results provide a structural explanation for the observations that activated ribonucleotides are superior to activated deoxyribonucleotides and that RNA templates are superior to DNA templates in template-directed nonenzymatic primer-extension reactions.
Collapse
Affiliation(s)
- Na Zhang
- Howard Hughes
Medical Institute and Department of Molecular
Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
| | - Shenglong Zhang
- Howard Hughes
Medical Institute and Department of Molecular
Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Howard Hughes
Medical Institute and Department of Molecular
Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
| |
Collapse
|
4
|
Ray BD, Scott J, Yan H, Nageswara Rao B. Productive versus unproductive nucleotide binding in yeast guanylate kinase mutants: comparison of R41M with K14M by proton two dimensional transferred NOESY. Biochemistry 2009; 48:5532-40. [PMID: 19419194 PMCID: PMC2772131 DOI: 10.1021/bi900139a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The R41M and K14M mutant enzymes of yeast guanylate kinase (GKy) were studied to investigate the effects of these site-directed mutations on bound-substrate conformations. Published X-ray crystal structures of yeast guanylate kinase indicate that K14 is part of the "P" loop involved in ATP and ADP binding, while R41 is suggested as a hydrogen bonding partner for the phosphoryl moiety of GMP. Both of these residues might be involved in transition state stabilization. Adenosine conformations of ATP and ADP and guanosine conformations of GMP bound to R41M and K14M mutant yeast guanylate kinase in the complexes GKy.MgATP, GKy.MgADP, and GKy.MgADP.[u-(13)C]GMP were determined by two-dimensional transferred nuclear Overhauser effect (TRNOESY) measurements combined with molecular dynamics simulations, and these conformations were compared with previously published conformations for the wild type. In the fully constrained, two substrate complexes, GKy.MgADP.[u-(13)C]GMP, the guanyl glycosidic torsion angle, chi, is 51 +/- 5 degrees for R41M and 47 +/- 5 degrees for K14M. Both are similar to the published 50 +/- 5 degrees published for wild type. For R41M with adenyl nucleotides, the glycosidic torsion angle, chi, was 55 +/- 5 degrees with MgATP, and 47 +/- 5 degrees with MgADP, which compares well to the 54 +/- 5 degrees published for wild type. However, for K14M with adenyl nucleotides, the glycosidic torsion angle was 30 +/- 5 degrees with MgATP and 28 +/- 5 degrees with MgADP. The results indicate that bound adenyl-nucleotides have significantly different conformations in the wild-type and K14M mutant enzymes, suggesting that K14 plays an important role in orienting the triphosphate of MgATP for catalysis.
Collapse
Affiliation(s)
- Bruce D. Ray
- Department of Physics, Indiana University - Purdue University at Indianapolis (IUPUI), 402 N. Blackford Street, Indianapolis, IN 46202-3273
| | - Joshua Scott
- Department of Physics, Indiana University - Purdue University at Indianapolis (IUPUI), 402 N. Blackford Street, Indianapolis, IN 46202-3273
| | - Honggao Yan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - B.D. Nageswara Rao
- Department of Physics, Indiana University - Purdue University at Indianapolis (IUPUI), 402 N. Blackford Street, Indianapolis, IN 46202-3273
| |
Collapse
|
5
|
Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:512-27. [PMID: 17727616 DOI: 10.1111/j.1365-313x.2007.03251.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Guanylate kinase (GK) is a critical enzyme in guanine nucleotide metabolism pathways, catalyzing the phosphorylation of (d)GMP to (d)GDP. Here we show that a novel gene, VIRESCENT 2 (V2), encodes a new type of GK (designated pt/mtGK) that is localized in plastids and mitochondria. We initially identified the V2 gene by positional cloning of the rice v2 mutant. The v2 mutant is temperature-sensitive and develops chlorotic leaves at restrictive temperatures. The v2 mutation causes inhibition of chloroplast differentiation; in particular, it disrupts the chloroplast translation machinery during early leaf development [Sugimoto et al. (2004)Plant Cell Physiol. 45, 985]. In the bacterial and animal species studied to date, GK is localized in the cytoplasm and participates in maintenance of the guanine nucleotide pools required for many fundamental cellular processes. Phenotypic analysis of rice seedlings with RNAi knockdown of cytosolic GK (designated cGK) showed that cGK is indispensable for the growth and development of plants, but not for chloroplast development. Thus, rice has two types of GK, as does Arabidopsis, suggesting that higher plants have two types of GK. Our results suggest that, of the two types of GK, only pt/mtGK is essential for chloroplast differentiation.
Collapse
Affiliation(s)
- Hiroki Sugimoto
- Department of Biological Sciences, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Lee YC, Jackson PL, Jablonsky MJ, Muccio DD. Conformation of 3'CMP bound to RNase A using TrNOESY. Arch Biochem Biophys 2007; 463:37-46. [PMID: 17416340 DOI: 10.1016/j.abb.2007.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 02/09/2007] [Indexed: 11/30/2022]
Abstract
The conditions for accurately determining distance constraints from TrNOESY data on a small ligand (3'CMP) bound to a small protein (RNase A, <14 kDa) are described. For small proteins, normal TrNOESY conditions of 10:1 ligand:protein or greater can lead to inaccurate structures for the ligand-bound conformation due to the contribution of the free ligand to the TrNOESY signals. By using two ligand:protein ratios (2:1 and 5:1), which give the same distance constraints, a conformation of 3'CMP bound to RNase A was determined (glycosidic torsion angle, chi=-166 degrees ; pseudorotational phase angle, 0 degrees < or = P < or =36 degrees ). Ligand-protein NOESY cross peaks were also observed and used to dock 3'CMP into the binding pocket of the apo-protein (7rsa). After energy minimization, the conformation of the 3'CMP:RNase A complex was similar to the X-ray structure (1 rpf) except that a C3'-endo conformation for the ribose ring (rather than C2'-exo conformation) was found in the TrNOESY structure.
Collapse
Affiliation(s)
- Yi-Chien Lee
- National Cancer Institute at Frederick, Laboratory of Medical Chemistry, 376 Boyles Street, Building 376, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
7
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|