1
|
Béhar G, Pacheco S, Maillasson M, Mouratou B, Pecorari F. Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability. J Biotechnol 2015; 192 Pt A:123-9. [PMID: 25450641 DOI: 10.1016/j.jbiotec.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/07/2014] [Indexed: 12/23/2022]
Abstract
As a useful reagent for biotechnological applications, a scaffold protein needs to be as stable as possible to ensure longer lifetimes. We have developed archaeal extremophilic proteins from the “7 kDa DNA-binding” family as scaffolds to derive affinity proteins (Affitins). In this study, we evaluated a rational structure/sequence-guided approach to stabilize an Affitin derived from Sac7d by transferring its human IgG binding site onto the framework of the more thermally stable Sso7d homolog. The chimera obtained was functional, well expressed in Escherichia coli, but less thermally stable than the original Affitin (T(m) = 74.2 °C vs. T(m) = 80.4 °C). Two single mutations described as thermally stabilizing wild type Sso7d were introduced into chimeras. Only the double mutation nearly restored thermal stability (T(m) = 76.9 °C). Interestingly, the chimera and its double mutant were stable from pH 0 up to at least pH 13. Our results show that it is possible to increase further the stability of Affitins toward alkaline conditions (+2 pH units) while conserving their advantageous properties. As Affitins are based on a growing family of homologs from archaeal extremophiles, we conclude that this approach offers new potential for their improvement, which will be useful in demanding biotechnological applications.
Collapse
|
2
|
Pacheco S, Béhar G, Maillasson M, Mouratou B, Pecorari F. Affinity transfer to the archaeal extremophilic Sac7d protein by insertion of a CDR. Protein Eng Des Sel 2015; 27:431-8. [PMID: 25301962 DOI: 10.1093/protein/gzu042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Artificially transforming a scaffold protein into binders often consists of introducing diversity into its natural binding region by directed mutagenesis. We have previously developed the archaeal extremophilic Sac7d protein as a scaffold to derive affinity reagents (Affitins) by randomization of only a flat surface, or a flat surface and two short loops with natural lengths. Short loops are believed to contribute to stability of extremophilic proteins, and loop extension has been reported detrimental for the thermal and chemical stabilities of mesophilic proteins. In this work, we wanted to evaluate the possibility of designing target-binding proteins based on Sac7d by using a complementary determining region (CDR). To this aim, we inserted into three different loops a 10 residues CDR from the cAb-Lys3 anti-lysozyme camel antibody. The chimeras obtained were as stable as wild-type (WT) Sac7d at extreme pH and their structural integrity was supported. Chimeras were thermally stable, but with T(m)s from 60.9 to 66.3°C (cf. 91°C for Sac7d) which shows that loop extension is detrimental for thermal stability of Sac7d. The loop 3 enabled anti-lysozyme activity. These results pave the way for the use of CDR(s) from antibodies and/or extended randomized loop(s) to increase the potential of binding of Affitins.
Collapse
Affiliation(s)
- Sabino Pacheco
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Institut Pasteur, CNRS UMR 3528, Unité de Microbiologie Structurale, 25 rue du Dr. Roux, 72724 Paris Cedex 15, France
| | - Ghislaine Béhar
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Mike Maillasson
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Plate-forme IMPACT Biogenouest, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Barbara Mouratou
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Frédéric Pecorari
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| |
Collapse
|
4
|
Béhar G, Bellinzoni M, Maillasson M, Paillard-Laurance L, Alzari PM, He X, Mouratou B, Pecorari F. Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins. Protein Eng Des Sel 2013; 26:267-75. [PMID: 23315487 DOI: 10.1093/protein/gzs106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Engineered protein scaffolds have received considerable attention as alternatives to antibodies in both basic and applied research, as they can offer superior biophysical properties often associated with a simpler molecular organization. Sac7d has been demonstrated as an effective scaffold for molecular recognition. Here, we used the initial L1 'flat surface' library constructed by randomization of 14 residues, to identify ligands specific for human immunoglobulin G. To challenge the plasticity of the Sac7d protein scaffold, we designed the alternative L2 'flat surface & loops' library whereof only 10 residues are randomized. Representative binders (Affitins) of the two libraries exhibited affinities in the low nanomolar range and were able to recognize different epitopes within human immunoglobulin G. These Affitins were stable up to pH 12 while largely conserving other favorable properties of Sac7d protein, such as high expression yields in Escherichia coli, solubility, thermal stability up to 80.7°C, and acidic stability (pH 0). In agreement with our library designs, mutagenesis study revealed two distinct binding areas, one including loops. Together, our results indicate that the Sac7d scaffold tolerates alternative library designs, which further expands the diversity of Affitins and may provide a general way to create tailored affinity tools for demanding applications.
Collapse
Affiliation(s)
- Ghislaine Béhar
- Université de Nantes, UMR CNRS 6204, Ingénierie de la reconnaissance, F-44322 Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
van Dijk M, Bonvin AMJJ. Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK's performance. Nucleic Acids Res 2010; 38:5634-47. [PMID: 20466807 PMCID: PMC2943626 DOI: 10.1093/nar/gkq222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intrinsic flexibility of DNA and the difficulty of identifying its interaction surface have long been challenges that prevented the development of efficient protein-DNA docking methods. We have demonstrated the ability our flexible data-driven docking method HADDOCK to deal with these before, by using custom-built DNA structural models. Here we put our method to the test on a set of 47 complexes from the protein-DNA docking benchmark. We show that HADDOCK is able to predict many of the specific DNA conformational changes required to assemble the interface(s). Our DNA analysis and modelling procedure captures the bend and twist motions occurring upon complex formation and uses these to generate custom-built DNA structural models, more closely resembling the bound form, for use in a second docking round. We achieve throughout the benchmark an overall success rate of 94% of one-star solutions or higher (interface root mean square deviation ≤4 A and fraction of native contacts >10%) according to CAPRI criteria. Our improved protocol successfully predicts even the challenging protein-DNA complexes in the benchmark. Finally, our method is the first to readily dock multiple molecules (N > 2) simultaneously, pushing the limits of what is currently achievable in the field of protein-DNA docking.
Collapse
Affiliation(s)
- Marc van Dijk
- Bijvoet Center for Biomolecular Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD. Proc Natl Acad Sci U S A 2007; 104:17983-8. [PMID: 17984049 DOI: 10.1073/pnas.0702963104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We engineered a class of proteins that binds selected polypeptides with high specificity and affinity. Use of the protein scaffold of Sac7d, belonging to a protein family that binds various ligands, overcomes limitations inherent in the use of antibodies as intracellular inhibitors: it lacks disulfide bridges, is small and stable, and can be produced in large amounts. An in vitro combinatorial/selection approach generated specific, high-affinity (up to 140 pM) binders against bacterial outer membrane secretin PulD. When exported to the Escherichia coli periplasm, they inhibited PulD oligomerization, thereby blocking the type II secretion pathway of which PulD is part. Thus, high-affinity inhibitors of protein function can be derived from Sac7d and can be exported to, and function in, a cell compartment other than that in which they are produced.
Collapse
|