1
|
Christov PP, Yamanaka K, Choi JY, Takata KI, Wood RD, Guengerich FP, Lloyd RS, Rizzo CJ. Replication of the 2,6-diamino-4-hydroxy-N(5)-(methyl)-formamidopyrimidine (MeFapy-dGuo) adduct by eukaryotic DNA polymerases. Chem Res Toxicol 2012; 25:1652-61. [PMID: 22721435 DOI: 10.1021/tx300113e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N(6)-(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dGuo) has been identified as a stable DNA adduct that arises from the reaction of DNA with a variety of methylating agents. Since this lesion persists in DNA and may contribute to the overall mutagenesis from electrophilic methylating agents, the MeFapy-dGuo lesion was incorporated into oligonucleotides, and its replication bypass was examined in vitro with a panel of eukaryotic high fidelity (hPols α, β, and δ/PCNA) and translesion (hPols η, κ, ι, Rev1, ν, and yPol ζ) polymerases to address its miscoding potential. The MeFapy-dGuo was found to be a strong block to the high fidelity polymerases at either the insertion or the extension step. Efficient translesion synthesis was observed for hPols η and κ, and the combined activities of hRev1 and yPol ζ. The nucleotide sequences of the extension products were determined by mass spectrometry. The error-free extension product was the most abundant product observed for each polymerase. Misreplication products, which included misinsertion of Thy, Gua, and Ade opposite the MeFapy-dGuo lesion, as well as an interesting one-nucleotide deletion product, were observed when hPols η and κ were employed; these events accounted for 8-29% of the total extension products observed. The distribution and abundance of the misreplication products were dependent on the polymerases and local sequence context of the lesion. Collectively, these data suggest that although MeFapy-dGuo adducts represent a relatively minor proportion of the total alkylated lesions, their miscoding potentials could significantly contribute to genomic instability.
Collapse
Affiliation(s)
- Plamen P Christov
- Departments of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
3
|
Zhou Q, Qu Y, Mangrum JB, Wang X. DNA Alkylation with N-Methylquinolinium Quinone Methide to N2-dG Adducts Resulting in Extensive Stops in Primer Extension with DNA Polymerases and Subsequent Suppression of GFP Expression in A549 Cells. Chem Res Toxicol 2011; 24:402-11. [PMID: 21306116 DOI: 10.1021/tx100351c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qibing Zhou
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Department of medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Yun Qu
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - John B. Mangrum
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Xing Wang
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
4
|
Okahashi Y, Iwamoto T, Suzuki N, Shibutani S, Sugiura S, Itoh S, Nishiwaki T, Ueno S, Mori T. Quantitative detection of 4-hydroxyequilenin-DNA adducts in mammalian cells using an immunoassay with a novel monoclonal antibody. Nucleic Acids Res 2010; 38:e133. [PMID: 20406772 PMCID: PMC2896538 DOI: 10.1093/nar/gkq233] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Estrogen–DNA adducts are potential biomarkers for assessing the risk and development of estrogen-associated cancers. 4-Hydroxyequilenin (4-OHEN) and 4-hydroxyequilin (4-OHEQ), the metabolites of equine estrogens present in common hormone replacement therapy (HRT) formulations, are capable of producing bulky 4-OHEN–DNA adducts. Although the formation of 4-OHEN–DNA adducts has been reported, their quantitative detection in mammalian cells has not been done. To quantify such DNA adducts, we generated a novel monoclonal antibody (4OHEN-1) specific for 4-OHEN–DNA adducts. The primary epitope recognized is one type of stereoisomers of 4-OHEN–dA adducts and of 4-OHEN–dC adducts in DNA. An immunoassay with 4OHEN-1 revealed a linear dose–response between known amounts of 4-OHEN–DNA adducts and the antibody binding to those adducts, with a detection limit of approximately five adducts/108 bases in 1 µg DNA sample. In human breast cancer cells, the quantitative immunoassay revealed that 4-OHEN produces five times more 4-OHEN–DNA adducts than does 4-OHEQ. Moreover, in a mouse model for HRT, oral administration of Premarin increased the levels of 4-OHEN–DNA adducts in various tissues, including the uterus and ovaries, in a time-dependent manner. Thus, we succeeded in establishing a novel immunoassay for quantitative detection of 4-OHEN–DNA adducts in mammalian cells.
Collapse
Affiliation(s)
- Yumiko Okahashi
- Radioisotope Research Center, Department of Neurology and Medical Genetics Research Center, Nara Medical University School of Medicine, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Equine estrogen-induced mammary tumors in rats. Toxicol Lett 2010; 193:224-8. [PMID: 20096754 DOI: 10.1016/j.toxlet.2010.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/28/2009] [Accepted: 01/14/2010] [Indexed: 11/21/2022]
Abstract
Long-term hormone replacement therapy is associated with an increased risk of breast, ovarian and endometrial cancers in women. Equine estrogens are a principal component of hormone replacement therapy; however, their tumorigenic potential toward mammary tissue and reproductive organs has not been extensively explored. A pellet containing equilin was inserted under the skin of female ACI rats and the development of mammary tumors was monitored. Histological examination revealed premalignant lesions such as apocrine metaplasia in whole-mount preparations of mammary gland from the equilin-treated rats. ACI rats given 10mg equilin developed palpable mammary tumors at 13 weeks of treatment, and 37.5% of the rats developed mammary tumors within 15 weeks. For 2.5mg equilin, palpable tumors were observed in 8.3% of the rats after 8 weeks' treatment; the frequency was lower than that (42.9%) observed with 2.5mg E(2). No tumors were observed in the untreated rats. Evidently, equilin is a mammary carcinogen, and this potential may be associated with development of breast and reproductive cancers in women receiving hormone replacement therapy.
Collapse
|
6
|
Zhang N, Ding S, Kolbanovskiy A, Shastry A, Kuzmin VA, Bolton JL, Patel DJ, Broyde S, Geacintov NE. NMR and computational studies of stereoisomeric equine estrogen-derived DNA cytidine adducts in oligonucleotide duplexes: opposite orientations of diastereomeric forms. Biochemistry 2009; 48:7098-109. [PMID: 19527068 DOI: 10.1021/bi9006429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The equine estrogens equilin (EQ) and equilenin (EN) are the active components in the widely prescribed hormone replacement therapy formulation Premarin. Metabolic activation of EQ and EN generates the catechol 4-hydroxyequilenin (4-OHEN) that autoxidizes to the reactive o-quinone form in aerated aqueous solutions. The o-quinones react predominantly with C, and to a lesser extent with A and G, to form premutagenic cyclic covalent DNA adducts in vitro and in vivo. To obtain insights into the structural properties of these biologically important DNA lesions, we have synthesized site-specifically modified oligonucleotides containing the stereoisomeric 1'S,2'R,3'R-4-OHEN-C3 and 1'R,2'S,3'S-4-OHEN-C4 adducts derived from the reaction of 4-OHEN with the C in the oligonucleotide 5'-GGTAGCGATGG in aqueous solution. A combined NMR and computational approach was utilized to determine the conformational characteristics of the two major 4-OHEN-C3 and 4-OHEN-C4 stereoisomeric adducts formed in this oligonucleotide hybridized with its complementary strand. In both cases, the modified C adopts an anti glycosidic bond conformation; the equilenin distal ring protrudes into the minor groove while its two proximal hydroxyl groups are exposed on the major groove side of the DNA duplex. The bulky 4-OHEN-C adduct distorts the duplex within the central GC*G portion, but Watson-Crick pairing is maintained adjacent to C* in both stereoisomeric adducts. For the 4-OHEN-C3 adduct, the equilenin rings are oriented toward the 5'-end of the modified strand, while in 4-OHEN-C4 the equilenin is 3'-directed. Correspondingly, the distortions of the double-helical structures are more pronounced on the 5'- or the 3'-side of the lesion, respectively. These differences in stereoisomeric adduct conformations may play a role in the processing of these lesions in cellular environments.
Collapse
Affiliation(s)
- Na Zhang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang Z, Edirisinghe P, Sohn J, Qin Z, Geacintov NE, Thatcher GRJ, Bolton JL. Development of a liquid chromatography electrospray ionization tandem mass spectrometry method for analysis of stable 4-hydroxyequilenin-DNA adducts in human breast cancer cells. Chem Res Toxicol 2009; 22:1129-36. [PMID: 19368368 DOI: 10.1021/tx900063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogen-DNA adducts are potential biomarkers for assessing cancer risk and progression in estrogen-dependent cancer. 4-Hydroxyequilenin (4-OHEN), the major catechol metabolite of equine estrogens present in hormone replacement therapy formulations, autoxidizes to a reactive o-quinone that subsequently causes DNA damage. The formation of stable stereoisomeric cyclic 4-OHEN-DNA adducts has been reported in vitro and in vivo, but their removal by DNA repair processes in cells has not been determined. Such studies have been hampered by low yields of cyclic adducts and poor reproducibility when treating cells in culture with 4-OHEN. These problems are attributed in part to the instability of 4-OHEN in aerobic, aqueous media. We show herein that low yields and reproducibility can be overcome by 4-OHEN diacetate as a novel, cell-permeable 4-OHEN precursor, in combination with a sensitive LC-MS/MS method developed for detecting adducts in human breast cancer cells. This method involves isolation of cellular DNA, DNA digestion to deoxynucleosides, followed by the addition of an isotope-labeled internal standard (4-OHEN-(15)N(5)-dG adduct) prior to analysis by LC-MS/MS. A concentration-dependent increase in adduct levels was observed in MCF-7 cells after exposure to 4-OHEN diacetate. The chemical stabilities of the adducts were also investigated to confirm that adducts were stable under assay conditions. In conclusion, this newly developed LC-MS/MS method allows detection and relative quantification of 4-OHEN-DNA adducts in human breast cancer cells, which could be adapted for adduct detection in human samples.
Collapse
Affiliation(s)
- Zhican Wang
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:93-102. [DOI: 10.1007/978-0-387-09599-8_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Ding S, Wang Y, Kolbanovskiy A, Durandin A, Bolton JL, van Breemen RB, Broyde S, Geacintov NE. Determination of absolute configurations of 4-hydroxyequilenin-cytosine and -adenine adducts by optical rotatory dispersion, electronic circular dichroism, density functional theory calculations, and mass spectrometry. Chem Res Toxicol 2008; 21:1739-48. [PMID: 18680315 DOI: 10.1021/tx800095f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Estrogen components of some hormone replacement formulations have been implicated in the initiation of breast cancer. Some of these formulations contain equine estrogens such as equilin and equilenin that are metabolized to the genotoxic catechol 4-hydroxyequilenin (4-OHEN). Auto-oxidation generates the o-quinone form that reacts with dC and dA in oligodeoxynucleotides to form unusual stable cyclic bulky adducts, with four different stereoisomers identified for each base adduct. The dC and dA adducts have the same unsaturated bicyclo[3.3.1]nonane type linkage site with identical stereochemical characteristics. Stereochemical effects may play an important part in the biological consequences of the formation of 4-OHEN-DNA adducts, and the assignment of the absolute configurations of the stereoisomeric 4-OHEN-dC and -dA adducts is therefore needed to understand structure-function relationships. We used density functional theory (DFT) to compute the specific optical rotations and electronic circular dichroism (ECD) spectra of the four 4-OHEN-C stereoisomers, and the results were compared with experimentally measured optical rotatory dispersion (ORD) and ECD spectra. The predicted ORD curves for the four stereoisomeric base adducts reproduced the shapes and signs of experimental spectra in the transparent spectral region. The stereochemistry of the C3' atom was determined by comparison of the calculated and experimental ORD and ECD spectra, and the stereochemistry of C2' was determined by mass spectrometric methods. Combining the ORD and mass spectrometry data, the absolute configurations of the four 4-OHEN-C and the stereochemically identical -dC adducts have been identified. The molecular architecture of the linkage site at the 4-OHEN-C/A and 4-OHEN-dC/dA is identical, and it is shown that the deoxyribose group does not substantially contribute to the optical activities. The absolute configurations of the 4-OHEN-dA adducts were thus deduced by comparing the experimental ORD with computed ORD values of 4-OHEN-A adducts.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Biology, New York University, New York, 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Okamoto Y, Chou PH, Kim SY, Suzuki N, Laxmi YRS, Okamoto K, Liu X, Matsuda T, Shibutani S. Oxidative DNA Damage inXPC-Knockout and Its Wild Mice Treated with Equine Estrogen. Chem Res Toxicol 2008; 21:1120-4. [DOI: 10.1021/tx700428m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ding S, Shapiro R, Cai Y, Geacintov NE, Broyde S. Conformational properties of equilenin-DNA adducts: stereoisomer and base effects. Chem Res Toxicol 2008; 21:1064-73. [PMID: 18416538 DOI: 10.1021/tx800010u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Equilin and equilenin, components of the hormone replacement therapy drug Premarin, can be metabolized to the catechol 4-hydroxyequilenin (4-OHEN). The quinoids produced by 4-OHEN oxidation react with dC, dA, and dG to form unusual stable cyclic adducts, which have been found in human breast tumor tissue. Four stereoisomeric adducts have been identified for each base. These 12 Premarin-derived adducts provide a unique opportunity for analyzing effects of stereochemistry and base damage on DNA structure and consequently its function. Our computational studies have shown that these adducts, with obstructed Watson-Crick hydrogen-bond edges and near-perpendicular ring systems, have limited conformational flexibility and near-mirror-image conformations in stereoisomer pairs. The dC and dA adducts can adopt major- and minor-groove positions in the double helix, but the dG adducts are positioned only in the major groove. In all cases, opposite orientations of the equilenin rings with respect to the 5' --> 3' direction of the damaged strand are found in stereoisomer pairs derived from the same base, and no Watson-Crick pairing is possible. However, detailed structural properties in DNA duplexes are distinct for each stereoisomer of each damaged base. These differences may underlie observed differential stereoisomer and base-dependent mutagenicities and repair susceptibilities of these adducts.
Collapse
Affiliation(s)
- Shuang Ding
- Departments of Biology and Chemistry, New York University, 100 Washington Square East, New York City, New York 10003, USA
| | | | | | | | | |
Collapse
|
12
|
Bolton JL, Thatcher GRJ. Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol 2007; 21:93-101. [PMID: 18052105 DOI: 10.1021/tx700191p] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a clear association between the excessive exposure to estrogens and the development of cancer in hormone-sensitive tissues (breast, endometrium). It has become clear that there are likely multiple overlapping mechanisms of estrogen carcinogenesis. One major pathway is the extensively studied hormonal pathway, by which estrogen stimulates cell proliferation through nuclear estrogen receptor (ER)-mediated signaling, thus resulting in an increased risk of genomic mutations during DNA replication. A similar "nongenomic pathway", potentially involving newly discovered membrane-associated ERs, also appears to regulate extranuclear estrogen signaling pathways. This perspective is focused on a third pathway involving the metabolism of estrogens to catechols mediated by cytochrome P450 and further oxidation of these catechols to estrogen o-quinones. Oxidative enzymes, metal ions, and in some cases molecular oxygen can catalyze o-quinone formation, so that these electrophilic/redox-active quinones can cause damage within cells by alkylation and/or oxidation of cellular proteins and DNA in many tissues. It appears that the endogenous estrogen quinones primarily form unstable N3-adenine or N7-guanine DNA adducts, ultimately resulting in mutagenic apurinic sites. In contrast, equine estrogen quinones, formed from estrogens present in popular hormone replacement therapy prescriptions, generate a variety of DNA lesions, including bulky stable adducts, apurinic sites, DNA strand cleavage, and oxidation of DNA bases. DNA damage induced by these equine quinones is significantly increased in cells containing ERs, leading us to hypothesize a mechanism involving ER binding/alkylation by the catchol/quinone, resulting in a "Trojan horse". The "Trojan horse" carries the highly redox-active catechol to estrogen -sensitive genes, where high amounts of reactive oxygen species are generated, causing selective DNA damage. Our data further suggest that other key protein targets for estrogen o-quinones could be redox-sensitive enzymes (i.e, GST P1-1, QR). These proteins are involved in stress response cascades that are known to contribute to the regulation of cell proliferation and apoptosis. Finally, it has been shown that catechol estrogens can transform breast epithelial cells into a tumorigenic phenotype and that these transformed cells had differential gene expression of several genes involved in oxidative stress. Given the direct link between excessive exposure to estrogens, metabolism of estrogens, and increased risk of breast cancer, it is crucial that factors that affect the formation, reactivity, and cellular targets of estrogen quinoids be thoroughly explored.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemisry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612-7231, USA.
| | | |
Collapse
|
13
|
Ding S, Shapiro R, Geacintov NE, Broyde S. 4-hydroxyequilenin-adenine lesions in DNA duplexes: stereochemistry, damage site, and structure. Biochemistry 2007; 46:182-91. [PMID: 17198388 PMCID: PMC2582198 DOI: 10.1021/bi061652o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The equine estrogens, equilin and equilenin, are major components of the drug Premarin, the most widely used formula for hormone replacement therapy. The derivative 4-hydroxyequilenin (4-OHEN), a major phase I metabolite of equilin and equilenin, autoxidizes to potent cytotoxic quinoids that can react in vitro and in vivo with cytosine and adenine in DNA. Unique cyclic adducts containing the same bicyclo[3.3.1]nonane-type connection ring are produced. Each base adduct has four stereoisomers. In order to elucidate the structural effects of A versus C modification, we have carried out molecular dynamics simulations of the stereoisomeric 4-OHEN-A adducts in DNA 11-mer duplexes and compared results with an earlier study of the C adducts (Ding, S., Shapiro, R., Geacintov, N.E., and Broyde, S. (2005) Equilenin-Derived DNA Adducts to Cytosine in DNA Duplexes: Structures and Thermodynamics, Biochemistry 44, 14565-14576). Similar stereochemical principles govern the orientations in DNA duplexes of the 4-OHEN-A adducts as for the analogous C adducts, with opposite orientations of the equilenin rings in stereoisomeric pairs of adducts characterized by near-mirror image circular dichroism (CD) spectra. However, the larger purine adducts have unique structural properties in the duplexes that distinguish their characteristics from those of the pyrimidine adducts. Significant differences are observed in terms of hydrogen bonding, stacking, bending, groove dimensions, solvent exposure, and hydrophobic interactions; also, each of the four stereoisomeric 4-OHEN-A adducts exhibit distinct structural features. Each base adduct and stereoisomer distorts the structure of the DNA duplex differently. These characteristics may manifest themselves in terms of differential nucleotide excision repair susceptibilities and mutagenic activities of the 4-OHEN-A and C adducts.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Robert Shapiro
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Corresponding author: Suse Broyde, tel. (212)998-8231, fax (212)995-4015, email
| |
Collapse
|