1
|
Pavlou A, Styring S, Mamedov F. The S 1 to S 2 and S 2 to S 3 state transitions in plant photosystem II: relevance to the functional and structural heterogeneity of the water oxidizing complex. PHOTOSYNTHESIS RESEARCH 2024; 162:401-411. [PMID: 38662327 PMCID: PMC11614919 DOI: 10.1007/s11120-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
In Photosystem II, light-induced water splitting occurs via the S state cycle of the CaMn4O5-cluster. To understand the role of various possible conformations of the CaMn4O5-cluster in this process, the temperature dependence of the S1 → S2 and S2 → S3 state transitions, induced by saturating laser flashes, was studied in spinach photosystem II membrane preparations under different conditions. The S1 → S2 transition temperature dependence was shown to be much dependent on the type of the cryoprotectant and presence of 3.5% methanol, resulting in the variation of transition half-inhibition temperature by 50 K. No similar effect was observed for the S2 → S3 state transition, for which we also show that both the low spin g = 2.0 multiline and high spin g = 4.1 EPR configurations of the S2 state advance with similar efficiency to the S3 state, both showing a transition half-inhibition temperature of 240 K. This was further confirmed by following the appearance of the Split S3 EPR signal. The results are discussed in relevance to the functional and structural heterogeneity of the water oxidizing complex intermediates in photosystem II.
Collapse
Affiliation(s)
- Andrea Pavlou
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
2
|
Rummel F, O’Malley PJ. How Nature Makes O 2: an Electronic Level Mechanism for Water Oxidation in Photosynthesis. J Phys Chem B 2022; 126:8214-8221. [PMID: 36206029 PMCID: PMC9589598 DOI: 10.1021/acs.jpcb.2c06374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this paper, we combine broken symmetry density functional calculations and electron paramagnetic resonance analysis to obtain the electronic structure of the penultimate S3 state of nature's water-oxidizing complex and determine the electronic pathway of O-O bond formation. Analysis of the electronic structure changes along the reaction path shows that two spin crossovers, facilitated by the geometry and magnetism of the water-oxidizing complex, are used to provide a unique low-energy pathway. The pathway is facilitated via the formation and stabilization of the [O2]3- ion. This ion is formed between ligated deprotonated substrate waters, O5 and O6, and is stabilized by antiferromagnetic interaction with the Mn ions of the complex. Combining the computational, crystallographic, and spectroscopic data, we show that an equilibrium exists between the O5 oxo and O6 hydroxo forms with an S = 3 spin state and a deprotonated O6 form containing a two-center one-electron bond in [O5O6]3- which we identify as the form detected using crystallography. This form corresponds to an S = 6 spin state which we demonstrate gives rise to a low-intensity EPR spectrum compared with the accompanying S = 3 state, making its detection via EPR difficult and overshadowed by the S = 3 form. Simulations using 70% of the S = 6 component give rise to a superior fit to the experimental W-band EPR spectral envelope compared with an S = 3 only form. Analyses of the most recent X-ray emission spectroscopy first moment changes for solution and time-resolved crystal data are also shown to support the model. The computational, crystallographic, and spectroscopic data are shown to coalesce to the same picture of a predominant S = 6 species containing the first one-electron oxidation product of two water molecules, that is, [O5O6]3-. Progression of this form to the two-electron-oxidized peroxo and three-electron-oxidized superoxo forms, leading eventually to the evolution of triplet O2, is proposed to be the pathway nature adopts to oxidize water. The study reveals the key electronic, magnetic, and structural design features of nature's catalyst which facilitates water oxidation to O2 under ambient conditions.
Collapse
|
3
|
Kalendra V, Reiss KM, Banerjee G, Ghosh I, Baldansuren A, Batista VS, Brudvig GW, Lakshmi KV. Binding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria. Faraday Discuss 2022; 234:195-213. [PMID: 35147155 DOI: 10.1039/d1fd00094b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction is catalyzed at the Mn4Ca-oxo cluster in the oxygen-evolving complex (OEC), which cycles through five light-driven S-state intermediates (S0-S4). A detailed mechanism of the reaction remains elusive as it requires knowledge of the delivery and binding of substrate water in the higher S-state intermediates. In this study, we use two-dimensional (2D) hyperfine sublevel correlation spectroscopy, in conjunction with quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT), to probe the binding of the substrate analog, methanol, in the S2 state of the D1-N87A variant of PSII from Synechocystis sp. PCC 6803. The results indicate that the size and specificity of the "narrow" channel is altered in D1-N87A PSII, allowing for the binding of deprotonated 13C-labeled methanol at the Mn4(IV) ion of the catalytic cluster in the S2 state. This has important implications on the mechanistic models for water oxidation in PSII.
Collapse
Affiliation(s)
- Vidmantas Kalendra
- Department of Chemistry and Chemical Biology, The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA.
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Ipsita Ghosh
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology, The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA.
| |
Collapse
|
4
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
5
|
Corry TA, O'Malley PJ. Proton Isomers Rationalize the High- and Low-Spin Forms of the S 2 State Intermediate in the Water-Oxidizing Reaction of Photosystem II. J Phys Chem Lett 2019; 10:5226-5230. [PMID: 31429574 DOI: 10.1021/acs.jpclett.9b01372] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new paradigm for the high- and low-spin forms of the S2 state of nature's water-oxidizing complex in Photosystem II is found. Broken symmetry density functional theory calculations combined with Heisenberg-Dirac-van Vleck spin ladder calculations show that an open cubane form of the water-oxidizing complex changes from a low-spin, S = 1/2, to a high-spin, S = 5/2, form on protonation of the bridging O4 oxo. We show that such models are fully compatible with structural determinations of the S2 state by X-ray free-electron laser crystallography and extended X-ray absorption fine structure and provide a clear rationale for the effect of various treatments on the relative populations of each form observed experimentally in electron paramagnetic resonance studies.
Collapse
Affiliation(s)
- Thomas A Corry
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Patrick J O'Malley
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Beal NJ, Corry TA, O'Malley PJ. A Comparison of Experimental and Broken Symmetry Density Functional Theory (BS-DFT) Calculated Electron Paramagnetic Resonance (EPR) Parameters for Intermediates Involved in the S 2 to S 3 State Transition of Nature's Oxygen Evolving Complex. J Phys Chem B 2018; 122:1394-1407. [PMID: 29300480 DOI: 10.1021/acs.jpcb.7b10843] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A broken symmetry density functional theory (BS-DFT) magnetic analysis of the S2, S2YZ•, and S3 states of Nature's oxygen evolving complex is performed for both the native Ca and Sr substituted forms. Good agreement with experiment is observed between the tyrosyl calculated g-tensor and 1H hyperfine couplings for the native Ca form. Changes in the hydrogen bonding environment of the tyrosyl radical in S2YZ• caused by Sr substitution lead to notable changes in the calculated g-tensor of the tyrosyl radical. Comparison of calculated and experimental 55Mn hyperfine couplings for the S3 state presently favors an open cubane form of the complex with an additional OH ligand coordinating to MnD. In Ca models, this additional ligation can arise by closed-cubane form deprotonation of the Ca ligand W3 in the S2YZ• state accompanied by spontaneous movement to the vacant Mn coordination site or by addition of an external OH group. For the Sr form, no spontaneous movement of W3 to the vacant Mn coordination site is observed in contrast to the native Ca form, a difference which may lead to the reduced catalytic activity of the Sr substituted form. BS-DFT studies on peroxo models of S3 as indicated by a recent X-ray free electron laser (XFEL) crystallography study give rise to a structural model compatible with experimental data and an S = 3 ground state compatible with EPR studies.
Collapse
Affiliation(s)
- Nathan J Beal
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Thomas A Corry
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Patrick J O'Malley
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| |
Collapse
|
8
|
Nagashima H, Mino H. Location of Methanol on the S 2 State Mn Cluster in Photosystem II Studied by Proton Matrix Electron Nuclear Double Resonance. J Phys Chem Lett 2017; 8:621-625. [PMID: 28099021 DOI: 10.1021/acs.jpclett.7b00110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Proton matrix electron nuclear double resonance (ENDOR) spectroscopy was performed to specify the location of the methanol molecule near the manganese cluster in photosystem II. Comparison of the ENDOR spectra in the presence of CH3OH and CD3OH revealed two pairs of hyperfine couplings, 1.2 MHz for A⊥ and 2.5 MHz for A//, arising from the methyl group in methanol. On the basis of the crystal structure, the possible location of methanol close to the manganese cluster was discussed.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Division of Material Science, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Retegan M, Pantazis DA. Interaction of methanol with the oxygen-evolving complex: atomistic models, channel identification, species dependence, and mechanistic implications. Chem Sci 2016; 7:6463-6476. [PMID: 28451104 PMCID: PMC5355959 DOI: 10.1039/c6sc02340a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Methanol has long being used as a substrate analogue to probe access pathways and investigate water delivery at the oxygen-evolving complex (OEC) of photosystem-II. In this contribution we study the interaction of methanol with the OEC by assembling available spectroscopic data into a quantum mechanical treatment that takes into account the local channel architecture of the active site. The effect on the magnetic energy levels of the Mn4Ca cluster in the S2 state of the catalytic cycle can be explained equally well by two models that involve either methanol binding to the calcium ion of the cluster, or a second-sphere interaction in the vicinity of the "dangler" Mn4 ion. However, consideration of the latest 13C hyperfine interaction data shows that only one model is fully consistent with experiment. In contrast to previous hypotheses, methanol is not a direct ligand to the OEC, but is situated at the end-point of a water channel associated with the O4 bridge. Its effect on magnetic properties of plant PS-II results from disruption of hydrogen bonding between O4 and proximal channel water molecules, thus enhancing superexchange (antiferromagnetic coupling) between the Mn3 and Mn4 ions. The same interaction mode applies to the dark-stable S1 state and possibly to all other states of the complex. Comparison of protein sequences from cyanobacteria and plants reveals a channel-altering substitution (D1-Asn87 versus D1-Ala87) in the proximity of the methanol binding pocket, explaining the species-dependence of the methanol effect. The water channel established as the methanol access pathway is the same that delivers ammonia to the Mn4 ion, supporting the notion that this is the only directly solvent-accessible manganese site of the OEC. The results support the pivot mechanism for water binding at a component of the S3 state and would be consistent with partial inhibition of water delivery by methanol. Mechanistic implications for enzymatic regulation and catalytic progression are discussed.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
10
|
Retegan M, Cox N, Lubitz W, Neese F, Pantazis DA. The first tyrosyl radical intermediate formed in the S2-S3 transition of photosystem II. Phys Chem Chem Phys 2015; 16:11901-10. [PMID: 24760184 DOI: 10.1039/c4cp00696h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EPR "split signals" represent key intermediates of the S-state cycle where the redox active D1-Tyr161 (YZ) has been oxidized by the reaction center of the photosystem II enzyme to its tyrosyl radical form, but the successive oxidation of the Mn4CaO5 cluster has not yet occurred (SiYZ˙). Here we focus on the S2YZ˙ state, which is formed en route to the final metastable state of the catalyst, the S3 state, the state which immediately precedes O-O bond formation. Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster. The two forms are expected to lie close in energy and retain the electronic structure and magnetic topology of the corresponding S2 state of the inorganic core. As expected, tyrosine oxidation results in a proton shift towards His190. Analysis of the electronic rearrangements that occur upon formation of the tyrosyl radical suggests that a likely next step in the catalytic cycle is the deprotonation of a terminal water ligand (W1) of the Mn4CaO5 cluster. Diamagnetic metal ion substitution is used in our calculations to obtain the molecular g-tensor of YZ˙. It is known that the gx value is a sensitive probe not only of the extent of the proton shift between the tyrosine-histidine pair, but also of the polarization environment of the tyrosine, especially about the phenolic oxygen. It is shown for PSII that this environment is determined by the Ca(2+) ion, which locates two water molecules about the phenoxyl oxygen, indirectly modulating the oxidation potential of YZ.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
11
|
Oyala PH, Stich TA, Stull JA, Yu F, Pecoraro VL, Britt RD. Pulse electron paramagnetic resonance studies of the interaction of methanol with the S2 state of the Mn4O5Ca cluster of photosystem II. Biochemistry 2014; 53:7914-28. [PMID: 25441091 DOI: 10.1021/bi501323h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The binding of the substrate analogue methanol to the catalytic Mn4CaO5 cluster of the water-oxidizing enzyme photosystem II is known to alter the electronic structure properties of the oxygen-evolving complex without retarding O2-evolution under steady-state illumination conditions. We report the binding mode of (13)C-labeled methanol determined using 9.4 GHz (X-band) hyperfine sublevel-correlation (HYSCORE) and 34 GHz (Q-band) electron spin-echo electron nuclear double resonance (ESE-ENDOR) spectroscopies. These results are compared to analogous experiments on a mixed-valence Mn(III)Mn(IV) complex (2-OH-3,5-Cl2-salpn)2Mn(III)Mn(IV) (salpn = N,N'-bis(3,5-dichlorosalicylidene)-1,3-diamino-2-hydroxypropane) in which methanol ligates to the Mn(III) ion ( Larson et al. (1992) J. Am. Chem. Soc. , 114 , 6263 ). In the mixed-valence Mn(III,IV) complex, the hyperfine coupling to the (13)C of the bound methanol (Aiso = 0.65 MHz, T = 1.25 MHz) is appreciably larger than that observed for (13)C methanol associated with the Mn4CaO5 cluster poised in the S2 state, where only a weak dipolar hyperfine interaction (Aiso = 0.05 MHz, T = 0.27 MHz) is observed. An evaluation of the (13)C hyperfine interaction using the X-ray structure coordinates of the Mn4CaO5 cluster indicates that methanol does not bind as a terminal ligand to any of the manganese ions in the oxygen-evolving complex. We favor methanol binding in place of a water ligand to the Ca(2+) in the Mn4CaO5 cluster or in place of one of the waters that form hydrogen bonds with the oxygen bridges of the cluster.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California-Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
12
|
Sjöholm J, Chen G, Ho F, Mamedov F, Styring S. Split electron paramagnetic resonance signal induction in Photosystem II suggests two binding sites in the S2 state for the substrate analogue methanol. Biochemistry 2013; 52:3669-77. [PMID: 23621812 DOI: 10.1021/bi400144e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Illuminating a photosystem II sample at low temperatures (here 5-10 K) yields so-called split signals detectable with continuous wave-electron paramagnetic resonance (CW-EPR). These signals reflect the oxidized, deprotonated radical of D1-Tyr161 (YZ(•)) in a magnetic interaction with the CaMn4 cluster in a particular S state. The intensity of the split EPR signals are affected by the addition of the water substrate analogue methanol. This was previously shown by the induction of split EPR signals from the S1, S3, and S0 states [Su, J.-H. et al. (2006) Biochemistry 45, 7617-7627.]. Here, we use two split EPR signals induced from photosystem II trapped in the S2 state to further probe the binding of methanol in an S state dependent manner. The signals are induced with either visible or near-infrared light illumination provided at 5-10 K where methanol cannot bind or unbind from its site. The results imply that the binding of methanol not only changes the magnetic properties of the CaMn4 cluster but also the hydrogen bond network in the oxygen evolving complex (OEC), thereby affecting the relative charge of the S2 state. The induction mechanisms for the two split EPR signals are different resulting in two different redox states, S2YZ(•) and S1YZ(•) respectively. The two states show different methanol dependence for their induction. This indicates the existence of two binding sites for methanol in the CaMn4 cluster. It is proposed that methanol binds to MnA with high affinity and to MnD with lower affinity. The molecular nature and S-state dependence of the methanol binding to each respective site are discussed.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University , P. O. Box 523, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
13
|
Su JH, Cox N, Ames W, Pantazis DA, Rapatskiy L, Lohmiller T, Kulik LV, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. The electronic structures of the S(2) states of the oxygen-evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:829-40. [PMID: 21406177 DOI: 10.1016/j.bbabio.2011.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 01/25/2023]
Abstract
The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen-evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-μ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Ji-Hu Su
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen G, Allahverdiyeva Y, Aro EM, Styring S, Mamedov F. Electron paramagnetic resonance study of the electron transfer reactions in photosystem II membrane preparations from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:205-15. [DOI: 10.1016/j.bbabio.2010.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
15
|
Najafpour MM, Govindjee. Oxygen evolving complex in Photosystem II: Better than excellent. Dalton Trans 2011; 40:9076-84. [DOI: 10.1039/c1dt10746a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Low-temperature electron transfer suggests two types of QA in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:339-46. [DOI: 10.1016/j.bbabio.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
17
|
Sjöholm J, Havelius KGV, Mamedov F, Styring S. The S0 State of the Water Oxidizing Complex in Photosystem II: pH Dependence of the EPR Split Signal Induction and Mechanistic Implications. Biochemistry 2009; 48:9393-404. [DOI: 10.1021/bi901177w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Kajsa G. V. Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| |
Collapse
|
18
|
Cox N, Ho FM, Pewnim N, Steffen R, Smith PJ, Havelius KG, Hughes JL, Debono L, Styring S, Krausz E, Pace RJ. The S1 split signal of photosystem II; a tyrosine–manganese coupled interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:882-9. [DOI: 10.1016/j.bbabio.2009.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
|
19
|
Ren Y, Zhang C, Bao H, Shen J, Zhao J. Probing tyrosine Z oxidation in Photosystem II core complex isolated from spinach by EPR at liquid helium temperatures. PHOTOSYNTHESIS RESEARCH 2009; 99:127-138. [PMID: 19214772 DOI: 10.1007/s11120-009-9410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Tyrosine Z (Tyr(Z)) oxidation observed at liquid helium temperatures provides new insights into the structure and function of Tyr(Z) in active Photosystem II (PSII). However, it has not been reported in PSII core complex from higher plants. Here, we report Tyr(Z) oxidation in the S(1) and S(2) states in PSII core complex from spinach for the first time. Moreover, we identified a 500 G-wide symmetric EPR signal (peak position g = 2.18, trough position g = 1.85) together with the g = 2.03 signal induced by visible light at 10 K in the S(1) state in the PSII core complex. These two signals decay with a similar rate in the dark and both disappear in the presence of 6% methanol. We tentatively assign this new feature to the hyperfine structure of the S(1)Tyr(Z)(*) EPR signal. Furthermore, EPR signals of the S(2) state of the Mn-cluster, the oxidation of the non-heme iron, and the S(1)Tyr(Z)(*) in PSII core complexes and PSII-enriched membranes from spinach are compared, which clearly indicate that both the donor and acceptor sides of the reaction center are undisturbed after the removal of LHCII. These results suggest that the new spinach PSII core complex is suitable for the electron transfer study of PSII at cryogenic temperatures.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
20
|
Direct quantification of the four individual S states in Photosystem II using EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:496-503. [DOI: 10.1016/j.bbabio.2008.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/18/2022]
|
21
|
Ioannidis N, Zahariou G, Petrouleas V. The EPR spectrum of tyrosine Z* and its decay kinetics in O2-evolving photosystem II preparations. Biochemistry 2008; 47:6292-300. [PMID: 18494501 DOI: 10.1021/bi800390r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The O2-evolving complex of photosystem II, Mn 4Ca, cycles through five oxidation states, S0,..., S4, during its catalytic function, which involves the gradual abstraction of four electrons and four protons from two bound water molecules. The direct oxidant of the complex is the tyrosine neutral radical, YZ(*), which is transiently produced by the highly oxidizing power of the photoexcited chlorophyll species P680. EPR characterization of YZ(*) has been limited, until recently, to inhibited (non-oxygen-evolving) preparations. A number of relatively recent papers have demonstrated the trapping of YZ(*) in O2-evolving preparations at liquid helium temperatures as an intermediate of the S0 to S1, S1 to S2, and S2 to S3 transitions. The respective EPR spectra are broadened and split at g approximately 2 by the magnetic interaction with the Mn cluster, but this interaction collapses at temperatures higher than about 100K [Zahariou et al. (2007) Biochemistry 46, 14335 -14341]. We have conducted a study of the Tyr Z(*) transient in the temperature range 77-240 K by employing rapid or slow EPR scans. The results reveal for the first time high-resolution X-band spectra of Tyr Z(*) in the functional system and at temperatures close to the onset of the S-state transitions. We have simulated the S 2Y Z(*) spectrum using the simulation algorithm of Svistunenko and Cooper [(2004) Biophys. J. 87, 582 -595]. The small g(x) = 2.00689 value inferred from the analysis suggests either a H-bonding of Tyr Z (*) (presumably with His190) that is stronger than what has been assumed from studies of Tyr D(*) or Tyr Z(*) in Mn-depleted preparations or a more electropositive environment around Tyr Z(*). The study has also yielded for the first time direct information on the temperature variation of the YZ(*)/QA(-) recombination reaction in the various S states. The reaction follows biphasic kinetics with the slow phase dominating at low temperatures and the fast phase dominating at high temperatures. It is tentatively proposed that the slow phase represents the action of the YZ(*)/YZ(-) redox couple while the fast phase represents that of the YZ(*)/YZH couple; it is inferred that Tyr Z at elevated temperatures is protonated at rest. It is also proposed that YZ(*)/YZH is the couple that oxidizes the Mn cluster during the S1-S2 and S2-S3 transitions. A simple mechanism ensuring a rapid (concerted) protonation of Tyr Z upon oxidation of the Mn cluster is discussed, and also, a structure-based molecular model suggesting the participation of His190 into two hydrogen bonds is proposed.
Collapse
Affiliation(s)
- Nikolaos Ioannidis
- Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Greece
| | | | | |
Collapse
|
22
|
Ho FM, Styring S. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:140-53. [DOI: 10.1016/j.bbabio.2007.08.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
|
23
|
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
24
|
Laser literature watch. Photomed Laser Surg 2006; 24:661-76. [PMID: 17069502 DOI: 10.1089/pho.2006.24.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|