1
|
Basuri P, Safferthal M, Kovacevic B, Schorr P, Riedel J, Pagel K, Volmer DA. Characterization of Anticancer Drug Protomers Using Electrospray Ionization and Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39355976 DOI: 10.1021/jasms.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
We used electrospray ionization and ion mobility spectrometry-mass spectrometry to detect and characterize the three anticancer drugs palbociclib, copanlisib, and olaparib. Ion mobility-mass spectrometry and density functional theory revealed that these compounds generate isomers during ionization (protomers) due to the presence of multiple protonation sites within their chemical structures. Our work has implications for understanding the solution- and gas-phase chemistry of these molecules during spray-based ionization processes.
Collapse
Affiliation(s)
- Pallab Basuri
- Institute of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Marc Safferthal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Borislav Kovacevic
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Pascal Schorr
- Institute of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jerome Riedel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dietrich A Volmer
- Institute of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
2
|
Persson LJ, Sahin C, Landreh M, Marklund EG. High-Performance Molecular Dynamics Simulations for Native Mass Spectrometry of Large Protein Complexes with the Fast Multipole Method. Anal Chem 2024; 96:15023-15030. [PMID: 39231152 PMCID: PMC11411496 DOI: 10.1021/acs.analchem.4c03272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Native mass spectrometry (MS) is widely employed to study the structures and assemblies of proteins ranging from small monomers to megadalton complexes. Molecular dynamics (MD) simulation is a useful complement as it provides the spatial detail that native MS cannot offer. However, MD simulations performed in the gas phase have suffered from rapidly increasing computational costs with the system size. The primary bottleneck is the calculation of electrostatic forces, which are effective over long distances and must be explicitly computed for each atom pair, precluding efficient use of methods traditionally used to accelerate condensed-phase simulations. As a result, MD simulations have been unable to match the capacity of MS in probing large multimeric protein complexes. Here, we apply the fast multipole method (FMM) for computing the electrostatic forces, recently implemented by Kohnke et al. (J. Chem. Theory Comput., 2020, 16, 6938-6949), showing that it significantly enhances the performance of gas-phase simulations of large proteins. We assess how to achieve adequate accuracy and optimal performance with FMM, finding that it expands the accessible size range and time scales dramatically. Additionally, we simulate a 460 kDa ferritin complex over microsecond time scales, alongside complementary ion mobility (IM)-MS experiments, uncovering conformational changes that are not apparent from the IM-MS data alone.
Collapse
Affiliation(s)
- Louise J Persson
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165 Solna, Sweden
- Department of Biology, Structural Biology and NMR Laboratory and the Linderstro̷m-Lang Centre for Protein Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165 Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
3
|
Brodmerkel MN, Thiede L, De Santis E, Uetrecht C, Caleman C, Marklund EG. Collision induced unfolding and molecular dynamics simulations of norovirus capsid dimers reveal strain-specific stability profiles. Phys Chem Chem Phys 2024; 26:13094-13105. [PMID: 38628116 DOI: 10.1039/d3cp06344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Collision induced unfolding (CIU) is a method used with ion mobility mass spectrometry to examine protein structures and their stability. Such experiments yield information about higher order protein structures, yet are unable to provide details about the underlying processes. That information can however be provided using molecular dynamics simulations. Here, we investigate the gas-phase unfolding of norovirus capsid dimers from the Norwalk and Kawasaki strains by employing molecular dynamics simulations over a range of temperatures, representing different levels of activation, together with CIU experiments. The dimers have highly similar structures, but their CIU reveals different stability that can be explained by the different dynamics that arises in response to the activation seen in the simulations, including a part of the sequence with previously observed strain-specific dynamics in solution. Our findings show how similar protein variants can be examined using mass spectrometric techniques in conjunction with atomistic molecular dynamics simulations to reveal differences in stability as well as differences in how and where unfolding takes place upon activation.
Collapse
Affiliation(s)
- Maxim N Brodmerkel
- Department of Chemistry - BMC, Uppsala University, 75123 Uppsala, Sweden.
| | - Lars Thiede
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Leibniz Institute of Virology (LIV), Notkestrasse 85, 22607 Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Emiliano De Santis
- Department of Chemistry - BMC, Uppsala University, 75123 Uppsala, Sweden.
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Leibniz Institute of Virology (LIV), Notkestrasse 85, 22607 Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
4
|
Esser TK, Böhning J, Önür A, Chinthapalli DK, Eriksson L, Grabarics M, Fremdling P, Konijnenberg A, Makarov A, Botman A, Peter C, Benesch JLP, Robinson CV, Gault J, Baker L, Bharat TAM, Rauschenbach S. Cryo-EM of soft-landed β-galactosidase: Gas-phase and native structures are remarkably similar. SCIENCE ADVANCES 2024; 10:eadl4628. [PMID: 38354247 PMCID: PMC10866560 DOI: 10.1126/sciadv.adl4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of β-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.
Collapse
Affiliation(s)
- Tim K. Esser
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
- Thermo Fisher Scientific, 1 Boundary Park, Hemel Hempstead, Hertfordshire HP2 7GE, UK
| | - Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alpcan Önür
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Dinesh K. Chinthapalli
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Lukas Eriksson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Marko Grabarics
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Paul Fremdling
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Aurelien Botman
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Justin L. P. Benesch
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Lindsay Baker
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephan Rauschenbach
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| |
Collapse
|
5
|
Mikhailovskii O, Izmailov SA, Xue Y, Case DA, Skrynnikov NR. X-ray Crystallography Module in MD Simulation Program Amber 2023. Refining the Models of Protein Crystals. J Chem Inf Model 2024; 64:18-25. [PMID: 38147516 DOI: 10.1021/acs.jcim.3c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The MD simulation package Amber offers an attractive platform to refine crystallographic structures of proteins: (i) state-of-the-art force fields help to regularize protein coordinates and reconstruct the poorly diffracting elements of the structure, such as flexible loops; (ii) MD simulations restrained by the experimental diffraction data provide an effective strategy to optimize structural models of protein crystals, including explicitly modeled interstitial solvent as well as crystal contacts. Here, we present the new crystallography module xray, released as a part of the Amber 2023 package. This module contains functions to calculate and scale structure factors (including the contributions from bulk solvent), evaluate the maximum-likelihood-type crystallographic potential, and compute its derivative forces. The X-ray functionality of Amber no longer relies on external dependencies so that the full advantage of GPU acceleration can be taken. This makes it possible to refine in a short time hundreds of crystal models, including supercell models comprised of multiple unit cells. The new automated Amber-based refinement procedure leads to an appreciable improvement in Rfree (in some cases, by as much as 0.067) as well as MolProbity scores.
Collapse
Affiliation(s)
- Oleg Mikhailovskii
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yi Xue
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - David A Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Brodmerkel MN, De Santis E, Caleman C, Marklund EG. Rehydration Post-orientation: Investigating Field-Induced Structural Changes via Computational Rehydration. Protein J 2023:10.1007/s10930-023-10110-y. [PMID: 37031302 DOI: 10.1007/s10930-023-10110-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Proteins can be oriented in the gas phase using strong electric fields, which brings advantages for structure determination using X-ray free electron lasers. Both the vacuum conditions and the electric-field exposure risk damaging the protein structures. Here, we employ molecular dynamics simulations to rehydrate and relax vacuum and electric-field exposed proteins in aqueous solution, which simulates a refinement of structure models derived from oriented gas-phase proteins. We find that the impact of the strong electric fields on the protein structures is of minor importance after rehydration, compared to that of vacuum exposure and ionization in electrospraying. The structures did not fully relax back to their native structure in solution on the simulated timescales of 200 ns, but they recover several features, including native-like intra-protein contacts, which suggests that the structures remain in a state from which the fully native structure is accessible. Our findings imply that the electric fields used in native mass spectrometry are well below a destructive level, and suggest that structures inferred from X-ray diffraction from gas-phase proteins are relevant for solution and in vivo conditions, at least after in silico rehydration.
Collapse
Affiliation(s)
- Maxim N Brodmerkel
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Emiliano De Santis
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
- Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden.
| |
Collapse
|
7
|
Brodmerkel MN, De Santis E, Uetrecht C, Caleman C, Marklund EG. Stability and conformational memory of electrosprayed and rehydrated bacteriophage MS2 virus coat proteins. Curr Res Struct Biol 2022; 4:338-348. [PMID: 36440379 PMCID: PMC9685359 DOI: 10.1016/j.crstbi.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Proteins are innately dynamic, which is important for their functions, but which also poses significant challenges when studying their structures. Gas-phase techniques can utilise separation and a range of sample manipulations to transcend some of the limitations of conventional techniques for structural biology in crystalline or solution phase, and isolate different states for separate interrogation. However, the transfer from solution to the gas phase risks affecting the structures, and it is unclear to what extent different conformations remain distinct in the gas phase, and if resolution in silico can recover the native conformations and their differences. Here, we use extensive molecular dynamics simulations to study the two distinct conformations of dimeric capsid protein of the MS2 bacteriophage. The protein undergoes notable restructuring of its peripheral parts in the gas phase, but subsequent simulation in solvent largely recovers the native structure. Our results suggest that despite some structural loss due to the experimental conditions, gas-phase structural biology techniques provide meaningful data that inform not only about the structures but also conformational dynamics of proteins.
Collapse
Affiliation(s)
- Maxim N. Brodmerkel
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, 75123, Sweden
| | - Emiliano De Santis
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, 75123, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, 75120, Sweden
| | - Charlotte Uetrecht
- Leibniz Institute of Virology (LIV), Hamburg, 20251, Germany
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, Hamburg, 22607, Germany
- School of Life Sciences, University of Siegen, Siegen, Germany
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, 75120, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg, 22607, Germany
| | - Erik G. Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, 75123, Sweden
| |
Collapse
|
8
|
Esser TK, Böhning J, Fremdling P, Agasid MT, Costin A, Fort K, Konijnenberg A, Gilbert JD, Bahm A, Makarov A, Robinson CV, Benesch JLP, Baker L, Bharat TAM, Gault J, Rauschenbach S. Mass-selective and ice-free electron cryomicroscopy protein sample preparation via native electrospray ion-beam deposition. PNAS NEXUS 2022; 1:pgac153. [PMID: 36714824 PMCID: PMC9802471 DOI: 10.1093/pnasnexus/pgac153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Despite tremendous advances in sample preparation and classification algorithms for electron cryomicroscopy (cryo-EM) and single-particle analysis (SPA), sample heterogeneity remains a major challenge and can prevent access to high-resolution structures. In addition, optimization of preparation conditions for a given sample can be time-consuming. In the current work, it is demonstrated that native electrospray ion-beam deposition (native ES-IBD) is an alternative, reliable approach for the preparation of extremely high-purity samples, based on mass selection in vacuum. Folded protein ions are generated by native electrospray ionization, separated from other proteins, contaminants, aggregates, and fragments, gently deposited on cryo-EM grids, frozen in liquid nitrogen, and subsequently imaged by cryo-EM. We demonstrate homogeneous coverage of ice-free cryo-EM grids with mass-selected protein complexes. SPA reveals that the complexes remain folded and assembled, but variations in secondary and tertiary structures are currently limiting information in 2D classes and 3D EM density maps. We identify and discuss challenges that need to be addressed to obtain a resolution comparable to that of the established cryo-EM workflow. Our results show the potential of native ES-IBD to increase the scope and throughput of cryo-EM for protein structure determination and provide an essential link between gas-phase and solution-phase protein structures.
Collapse
Affiliation(s)
- Tim K Esser
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul Fremdling
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Adam Costin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kyle Fort
- Thermo Fisher Scientific, Hanna-Kunath-Straße 11, 28199 Bremen, Germany
| | - Albert Konijnenberg
- Thermo Fisher Scientific, Zwaanstraat 31G/H, 5651 CA Eindhoven, The Netherlands
| | - Joshua D Gilbert
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
| | - Alan Bahm
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
| | - Alexander Makarov
- Thermo Fisher Scientific, Hanna-Kunath-Straße 11, 28199 Bremen, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Lindsay Baker
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Stephan Rauschenbach
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| |
Collapse
|
9
|
Zviagin A, Kopysov V, Nagornova NS, Boyarkin OV. Tracking local and global structural changes in a protein by cold ion spectroscopy. Phys Chem Chem Phys 2022; 24:8158-8165. [PMID: 35332911 DOI: 10.1039/d2cp00217e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Characterization of native structures of proteins in the gas phase remains challenging due to the unpredictable conformational changes the molecules undergo during desolvation and ionization. We spectroscopically studied cryogenically cooled protonated protein ubiquitin and its microhydrated complexes prepared in the gas phase in a range of charge states under different ionization conditions. The UV spectra appear vibrationally resolved for the unfolded protein, but become redshifted and smooth for the native-like structures of ubiquitin. This spectroscopic change results from the H-bonding of the hydroxyl of Tyr to the amide group of Glu-51 in the compact structures; the minimum length of this bond was estimated to be ∼1.7 Å. IR spectroscopy reflects the global structural change by observing redshifts of free NH/OH-stretch vibrational transitions. Evaporative cooling of microhydrated complexes of ubiquitin keeps the protein chilly during ionization, enabling native-like conformers with up to eight protons to survive in the gas phase.
Collapse
Affiliation(s)
- Andrei Zviagin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Vladimir Kopysov
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Natalia S Nagornova
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Mikhailovskii O, Xue Y, Skrynnikov NR. Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform Amber. IUCRJ 2022; 9:114-133. [PMID: 35059216 PMCID: PMC8733891 DOI: 10.1107/s2052252521011891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
A procedure has been developed for the refinement of crystallographic protein structures based on the biomolecular simulation program Amber. The procedure constructs a model representing a crystal unit cell, which generally contains multiple protein molecules and is fully hydrated with TIP3P water. Periodic boundary conditions are applied to the cell in order to emulate the crystal lattice. The refinement is conducted in the form of a specially designed short molecular-dynamics run controlled by the Amber ff14SB force field and the maximum-likelihood potential that encodes the structure-factor-based restraints. The new Amber-based refinement procedure has been tested on a set of 84 protein structures. In most cases, the new procedure led to appreciably lower R free values compared with those reported in the original PDB depositions or obtained by means of the industry-standard phenix.refine program. In particular, the new method has the edge in refining low-accuracy scrambled models. It has also been successful in refining a number of molecular-replacement models, including one with an r.m.s.d. of 2.15 Å. In addition, Amber-refined structures consistently show superior MolProbity scores. The new approach offers a highly realistic representation of protein-protein interactions in the crystal, as well as of protein-water interactions. It also offers a realistic representation of protein crystal dynamics (akin to ensemble-refinement schemes). Importantly, the method fully utilizes the information from the available diffraction data, while relying on state-of-the-art molecular-dynamics modeling to assist with those elements of the structure that do not diffract well (for example mobile loops or side chains). Finally, it should be noted that the protocol employs no tunable parameters, and the calculations can be conducted in a matter of several hours on desktop computers equipped with graphical processing units or using a designated web service.
Collapse
Affiliation(s)
- Oleg Mikhailovskii
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Xue
- School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, People’s Republic of China
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Sinelnikova A, Mandl T, Agelii H, Grånäs O, Marklund EG, Caleman C, De Santis E. Protein orientation in time-dependent electric fields: orientation before destruction. Biophys J 2021; 120:3709-3717. [PMID: 34303701 PMCID: PMC8456286 DOI: 10.1016/j.bpj.2021.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins often have nonzero electric dipole moments, making them interact with external electric fields and offering a means for controlling their orientation. One application that is known to benefit from orientation control is single-particle imaging with x-ray free-electron lasers, in which diffraction is recorded from proteins in the gas phase to determine their structures. To this point, theoretical investigations into this phenomenon have assumed that the field experienced by the proteins is constant or a perfect step function, whereas any real-world pulse will be smooth. Here, we explore the possibility of orienting gas-phase proteins using time-dependent electric fields. We performed ab initio simulations to estimate the field strength required to break protein bonds, with 45 V/nm as a breaking point value. We then simulated ubiquitin in time-dependent electric fields using classical molecular dynamics. The minimal field strength required for orientation within 10 ns was on the order of 0.5 V/nm. Although high fields can be destructive for the structure, the structures in our simulations were preserved until orientation was achieved regardless of field strength, a principle we denote “orientation before destruction.”
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Thomas Mandl
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; University of Applied Sciences Technikum Wien, Wien, Austria
| | - Harald Agelii
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Erik G Marklund
- Department of Chemistry BMC, Uppsala University, Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - Emiliano De Santis
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; Department of Chemistry BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Spoel D, Zhang J, Zhang H. Quantitative predictions from molecular simulations using explicit or implicit interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
| | - Jin Zhang
- Department of Chemistry Southern University of Science and Technology Shenzhen China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
13
|
Hammerschmid D, van Dyck JF, Sobott F, Calabrese AN. Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. Methods Mol Biol 2021; 2168:233-261. [PMID: 33582995 DOI: 10.1007/978-1-0716-0724-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.,Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium.,Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
Martin LM, Konermann L. Sulfolane-Induced Supercharging of Electrosprayed Salt Clusters: An Experimental/Computational Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:486-496. [PMID: 33334096 DOI: 10.1021/jasms.0c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is well-known that supercharging agents (SCAs) such as sulfolane enhance the electrospray ionization (ESI) charge states of proteins, although the mechanistic origins of this effect remain contentious. Only very few studies have explored SCA effects on analytes other than proteins or peptides. This work examines how sulfolane affects electrosprayed NaI salt clusters. Such alkali metal halide clusters have played a key role for earlier ESI mechanistic studies, making them interesting targets for supercharging investigations. ESI of aqueous NaI solutions predominantly generated singly charged [NanI(n-1)]+ clusters. The addition of sulfolane resulted in abundant doubly charged [NanI(n-2)Sulfolanes]2+ species. These experimental data for the first time demonstrate that electrosprayed salt clusters can undergo supercharging. Molecular dynamics (MD) simulations of aqueous ESI nanodroplets containing Na+/I- with and without sulfolane were conducted to obtain atomistic insights into the supercharging mechanism. The simulations produced [NanIi]z+ and [NanIiSulfolanes]z+ clusters similar to those observed experimentally. The MD trajectories demonstrated that these clusters were released into the gas phase upon droplet evaporation to dryness, in line with the charged residue model. Sulfolane was found to evaporate much more slowly than water. This slow evaporation, in conjunction with the large dipole moment of sulfolane, resulted in electrostatic stabilization of the shrinking ESI droplets and the final clusters. Hence, charge-dipole stabilization causes the sulfolane-containing droplets and clusters to retain more charge, thereby providing the mechanistic foundation of salt cluster supercharging.
Collapse
Affiliation(s)
- Leanne M Martin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
15
|
Bellamy‐Carter J, O'Grady L, Passmore M, Jenner M, Oldham NJ. Decoding Protein Gas‐Phase Stability with Alanine Scanning and Collision‐Induced Unfolding Ion Mobility Mass Spectrometry. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/anse.202000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Louisa O'Grady
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Munro Passmore
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Matthew Jenner
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Neil J. Oldham
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
16
|
Sinelnikova A, Mandl T, Östlin C, Grånäs O, Brodmerkel MN, Marklund EG, Caleman C. Reproducibility in the unfolding process of protein induced by an external electric field. Chem Sci 2020; 12:2030-2038. [PMID: 34163965 PMCID: PMC8179335 DOI: 10.1039/d0sc06008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The dynamics of proteins are crucial for their function. However, commonly used techniques for studying protein structures are limited in monitoring time-resolved dynamics at high resolution. Combining electric fields with existing techniques to study gas-phase proteins, such as single particle imaging using free-electron lasers and gas-phase small angle X-ray scattering, has the potential to open up a new era in time-resolved studies of gas-phase protein dynamics. Using molecular dynamics simulations, we identify well-defined unfolding pathways of a protein, induced by experimentally achievable external electric fields. Our simulations show that strong electric fields in conjunction with short-pulsed X-ray sources such as free-electron lasers can be a new path for imaging dynamics of gas-phase proteins at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Thomas Mandl
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden .,University of Applied Sciences Technikum Wien Höchstädtplatz 6 A-1200 Wien Austria
| | - Christofer Östlin
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Maxim N Brodmerkel
- Department of Chemistry - BMC, Uppsala University Box 576 SE-751 23 Uppsala Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University Box 576 SE-751 23 Uppsala Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden .,Center for Free-Electron Laser Science, DESY Notkestrasse 85 DE-22607 Hamburg Germany
| |
Collapse
|
17
|
Mandl T, Östlin C, Dawod IE, Brodmerkel MN, Marklund EG, Martin AV, Timneanu N, Caleman C. Structural Heterogeneity in Single Particle Imaging Using X-ray Lasers. J Phys Chem Lett 2020; 11:6077-6083. [PMID: 32578996 PMCID: PMC7416308 DOI: 10.1021/acs.jpclett.0c01144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 05/09/2023]
Abstract
One of the challenges facing single particle imaging with ultrafast X-ray pulses is the structural heterogeneity of the sample to be imaged. For the method to succeed with weakly scattering samples, the diffracted images from a large number of individual proteins need to be averaged. The more the individual proteins differ in structure, the lower the achievable resolution in the final reconstructed image. We use molecular dynamics to simulate two globular proteins in vacuum, fully desolvated as well as with two different solvation layers, at various temperatures. We calculate the diffraction patterns based on the simulations and evaluate the noise in the averaged patterns arising from the structural differences and the surrounding water. Our simulations show that the presence of a minimal water coverage with an average 3 Å thickness will stabilize the protein, reducing the noise associated with structural heterogeneity, whereas additional water will generate more background noise.
Collapse
Affiliation(s)
- Thomas Mandl
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- University
of Applied Sciences Technikum Wien, Höchstädtplatz 6, A-1200 Wien, Austria
| | - Christofer Östlin
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Ibrahim E. Dawod
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- European
XFEL GmbH, Holzkoppel
4, DE-22869 Schenefeld, Germany
| | - Maxim N. Brodmerkel
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Erik G. Marklund
- Department
of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Andrew V. Martin
- School
of Science, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre
of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Nicusor Timneanu
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center
for Free-Electron Laser Science, Deutsches
Elektronen-Synchrotron, Notkestraße 85, DE-22607 Hamburg, Germany
| |
Collapse
|
18
|
Aliyari E, Konermann L. Formation of Gaseous Proteins via the Ion Evaporation Model (IEM) in Electrospray Mass Spectrometry. Anal Chem 2020; 92:10807-10814. [DOI: 10.1021/acs.analchem.0c02290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
19
|
Martin LM, Konermann L. Enhancing Protein Electrospray Charge States by Multivalent Metal Ions: Mechanistic Insights from MD Simulations and Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:25-33. [PMID: 32881517 DOI: 10.1021/jasms.9b00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structure and reactivity of electrosprayed protein ions is governed by their net charge. Native proteins in non-denaturing aqueous solutions produce low charge states. More highly charged ions are formed when electrospraying proteins that are unfolded and/or exposed to organic supercharging agents. Numerous studies have explored the electrospray process under these various conditions. One phenomenon that has received surprisingly little attention is the charge enhancement caused by multivalent metal ions such as La3+ when electrospraying proteins out of non-denaturing solutions. Here, we conducted mass spectrometry and ion mobility spectrometry experiments, in combination with molecular dynamics (MD) simulations, to uncover the mechanistic basis of this charge enhancement. MD simulations of aqueous ESI droplets reproduced the experimental observation that La3+ boosts protein charge states relative to monovalent metals (e.g., Na+). The simulations showed that gaseous proteins were released by solvent evaporation to dryness, consistent with the charged residue model. Metal ion ejection kept the shrinking droplets close to the Rayleigh limit until ∼99% of the solvent had left. For droplets charged with Na+, metal adduction during the final stage of solvent evaporation produced low protein charge states. Droplets containing La3+ showed a very different behavior. The trivalent nature of La3+ favored adduction to the protein at a very early stage, when most of the solvent had not evaporated yet. This irreversible binding via multidentate contacts suppressed La3+ ejection from the vanishing droplets, such that the resulting gaseous proteins carried significantly more charge. Our results illustrate that MD simulations are suitable for uncovering intricate aspects of electrospray mechanisms, paving the way toward an atomistic understanding of mass spectrometry based analytical workflows.
Collapse
Affiliation(s)
- Leanne M Martin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
20
|
Östlin C, Timneanu N, Caleman C, Martin AV. Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers? STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044103. [PMID: 31463335 PMCID: PMC6701976 DOI: 10.1063/1.5098309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/31/2019] [Indexed: 05/24/2023]
Abstract
The prospect of single particle imaging with atomic resolution is one of the scientific drivers for the development of X-ray free-electron lasers. The assumption since the beginning has been that damage to the sample caused by intense X-ray pulses is one of the limiting factors for achieving subnanometer X-ray imaging of single particles and that X-ray pulses need to be as short as possible. Based on the molecular dynamics simulations of proteins in X-ray fields of various durations (5 fs, 25 fs, and 50 fs), we show that the noise in the diffracted signal caused by radiation damage is less than what can be expected from other sources, such as sample inhomogeneity and X-ray shot-to-shot variations. These findings show a different aspect of the feasibility of high-resolution single particle imaging using free-electron lasers, where employing X-ray pulses of longer durations could still provide a useful diffraction signal above the noise due to the Coulomb explosion.
Collapse
Affiliation(s)
- C Östlin
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - N Timneanu
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - C Caleman
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - A V Martin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
21
|
Hu J, Lei W, Wang J, Chen HY, Xu JJ. Preservation of Protein Zwitterionic States in the Transition from Solution to Gas Phase Revealed by Sodium Adduction Mass Spectrometry. Anal Chem 2019; 91:7858-7863. [PMID: 31134800 DOI: 10.1021/acs.analchem.9b01602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural characterization of proteins and their interaction network mapping in the gas phase highlights the need to preserve their most nativelike conformers in the transition from the solution to gas phase. Zwitterionic interactions in a protein are weak bonds between oppositely charged residues, which make an important contribution to protein stability. However, it is still not clear whether the native zwitterionic states of proteins can be retained or not when it is transferred from the solution to gas phase. Using the nonspecific Na+ adduction as a novel signature, here we show that the zwitterionic states of proteins can be preserved when a moderated droplet desolvation condition (temperature <30 °C) is used in native electrospray ionization mass spectrometry. The very low-level nonspecific metal adduction to proteins under such conditions also enables rapid and direct determination of the binding states of metal-binding proteins and sensitive detection of proteins from solutions containing highly concentrated involatile salts (e.g., 50 mM NaCl). We believe that our findings can be instructive for performing mass spectrometric analysis of proteins and useful for protein ions desalting which simply involves altering the temperature and flow rate of drying gas in the desolvation region.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Wen Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jiang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
22
|
Ozdemir A, Gulfen M, Lin JL, Chen CH. A Comparative Study for Sonic Spray and Electrospray Ionization Methods to Determine Noncovalent Protein–Ligand Interactions. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1622558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abdil Ozdemir
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Esentepe, Sakarya, Turkey
| | - Mustafa Gulfen
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Esentepe, Sakarya, Turkey
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
23
|
Liu X, Zhan J, Jing X, Zhou S, Lovley DR. A pilin chaperone required for the expression of electrically conductive
Geobacter sulfurreducens
pili. Environ Microbiol 2019; 21:2511-2522. [DOI: 10.1111/1462-2920.14638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Ji Zhan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Xianyue Jing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Derek R. Lovley
- Department of MicrobiologyUniversity of Massachusetts Amherst Amherst MA USA
| |
Collapse
|
24
|
Butcher D, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F. The effects of solution additives and gas-phase modifiers on the molecular environment and conformational space of common heme proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:399-404. [PMID: 30421840 DOI: 10.1002/rcm.8347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE The molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas-phase modifiers on biomolecules characterized using ion mobility techniques. METHODS The effect of solution additives and gas-phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100-500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time-of-flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. RESULTS Changes in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas-phase modifiers (i.e., N2 doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas-modifier mass and size and changes in the relative abundances and number of IMS bands are observed. CONCLUSIONS We attribute the observed changes in the mobility profiles in the presence of gas-phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | | | | | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
25
|
Beveridge R, Migas LG, Das RK, Pappu RV, Kriwacki RW, Barran PE. Ion Mobility Mass Spectrometry Uncovers the Impact of the Patterning of Oppositely Charged Residues on the Conformational Distributions of Intrinsically Disordered Proteins. J Am Chem Soc 2019; 141:4908-4918. [PMID: 30823702 PMCID: PMC6488185 DOI: 10.1021/jacs.8b13483] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
global dimensions and amplitudes of conformational fluctuations
of intrinsically disordered proteins are governed, in part, by the
linear segregation versus clustering of oppositely charged residues
within the primary sequence. Ion mobility-mass spectrometry (IM-MS)
affords unique advantages for probing the conformational consequences
of the linear patterning of oppositely charged residues because it
measures and separates proteins electrosprayed from solution on the
basis of charge and shape. Here, we use IM-MS to measure the conformational
consequences of charge patterning on the C-terminal intrinsically
disordered region (p27 IDR) of the cell cycle inhibitory protein p27Kip1. We report the range of charge states and accompanying
collisional cross section distributions for wild-type p27 IDR and
two variants with identical amino acid compositions, κ14 and
κ56, distinguished by the extent of linear mixing versus segregation
of oppositely charged residues. Wild-type p27 IDR (κ31) and
κ14, where the oppositely charged residues are more evenly distributed,
exhibit a broad distribution of charge states. This is concordant
with high degrees of conformational heterogeneity in solution. By
contrast, κ56 with linear segregation of oppositely charged
residues leads to limited conformational heterogeneity and a narrow
distribution of charged states. Gas-phase molecular dynamics simulations
demonstrate that the interplay between chain solvation and intrachain
interactions (self-solvation) leads to conformational distributions
that are modulated by salt concentration, with the wild-type sequence
showing the most sensitivity to changes in salt concentration. These
results suggest that the charge patterning within the wild-type p27
IDR may be optimized to sample both highly solvated and self-solvated
conformational states.
Collapse
Affiliation(s)
- Rebecca Beveridge
- The Michael Barber Centre for Collaborative Mass Spectrometry, The School of Chemistry, Manchester Institute for Biotechnology , University of Manchester , Manchester M13 9PL , U.K
| | - Lukasz G Migas
- The Michael Barber Centre for Collaborative Mass Spectrometry, The School of Chemistry, Manchester Institute for Biotechnology , University of Manchester , Manchester M13 9PL , U.K
| | - Rahul K Das
- Department of Biomedical Engineering and Center for Biological Systems Engineering , Washington University in St. Louis , Campus Box 1097, One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering , Washington University in St. Louis , Campus Box 1097, One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Richard W Kriwacki
- Structural Biology, MS 311, Room D1024F , St. Jude Children's Research Hospital , 262 Danny Thomas Place , Memphis , Tennessee 38105-3678 , United States
| | - Perdita E Barran
- The Michael Barber Centre for Collaborative Mass Spectrometry, The School of Chemistry, Manchester Institute for Biotechnology , University of Manchester , Manchester M13 9PL , U.K
| |
Collapse
|
26
|
Konermann L, Metwally H, Duez Q, Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 2019; 144:6157-6171. [DOI: 10.1039/c9an01201j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular dynamics simulations have uncovered mechanistic details of the protein ESI process under various experimental conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Haidy Metwally
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Quentin Duez
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Insa Peters
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
27
|
Östlin C, Tîmneanu N, Jönsson HO, Ekeberg T, Martin AV, Caleman C. Reproducibility of single protein explosions induced by X-ray lasers. Phys Chem Chem Phys 2018; 20:12381-12389. [PMID: 29488514 DOI: 10.1039/c7cp07267h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single particle imaging (SPI) using X-ray pulses has become increasingly attainable with the advent of high-intensity free electron lasers. Eliminating the need for crystallized samples enables structural studies of molecules previously inaccessible by conventional crystallography. While this emerging technique already demonstrates substantial promise, some obstacles need to be overcome before SPI can reach its full potential. One such problem is determining the spatial orientation of the sample at the time of X-ray interaction. Existing solutions rely on diffraction data and are computationally demanding and sensitive to noise. In this in silico study, we explore the possibility of aiding these methods by mapping the ion distribution as the sample undergoes a Coulomb explosion following the intense ionization. By detecting the ions ejected from the fragmented sample, the orientation of the original sample should be possible to determine. Knowledge of the orientation has been shown earlier to be of substantial advantage in the reconstruction of the original structure. 150 explosions of each of twelve separate systems - four polypeptides with different amounts of surface bound water - were simulated with molecular dynamics (MD) and the average angular distribution of carbon and sulfur ions was investigated independently. The results show that the explosion maps are reproducible in both cases, supporting the idea that orientation information is preserved. Additional water seems to restrict the carbon ion trajectories further through a shielding mechanism, making the maps more distinct. For sulfurs, water has no significant impact on the trajectories, likely due to their higher mass and greater ionization cross section, indicating that they could be of particular interest. Based on these findings, we conclude that explosion data can aid spatial orientation in SPI experiments and could substantially improve the capabilities of the novel technique.
Collapse
Affiliation(s)
- Christofer Östlin
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
28
|
Metwally H, Konermann L. Crown Ether Effects on the Location of Charge Carriers in Electrospray Droplets: Implications for the Mechanism of Protein Charging and Supercharging. Anal Chem 2018; 90:4126-4134. [DOI: 10.1021/acs.analchem.8b00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
29
|
Oh MI, Consta S. Charging and Release Mechanisms of Flexible Macromolecules in Droplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2262-2279. [PMID: 28801879 DOI: 10.1007/s13361-017-1754-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
We study systematically the charging and release mechanisms of a flexible macromolecule, modeled by poly(ethylene glycol) (PEG), in a droplet by using molecular dynamics simulations. We compare how PEG is solvated and charged by sodium Na+ ions in a droplet of water (H2O), acetonitrile (MeCN), and their mixtures. Initially, we examine the location and the conformation of the macromolecule in a droplet bearing no net charge. It is revealed that the presence of charge carriers do not affect the location of PEG in aqueous and MeCN droplets compared with that in the neutral droplets, but the location of the macromolecule and the droplet size do affect the PEG conformation. PEG is charged on the surface of a sodiated aqueous droplet that is found close to the Rayleigh limit. Its charging is coupled to the extrusion mechanism, where PEG segments leave the droplet once they coordinate a Na+ ion or in a correlated motion with Na+ ions. In contrast, as PEG resides in the interior of a MeCN droplet, it is sodiated inside the droplet. The compact macro-ion transitions through partially unwound states to an extended conformation, a process occurring during the final stage of desolvation and in the presence of only a handful of MeCN molecules. For charged H2O/MeCN droplets, the sodiation of PEG is determined by the H2O component, reflecting its slower evaporation and preference over MeCN for solvating Na+ ions. We use the simulation data to construct an analytical model that suggests that the droplet surface electric field may play a role in the macro-ion-droplet interactions that lead to the extrusion of the macro-ion. This study provides the first evidence of the effect of the surface electric field by using atomistic simulations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
30
|
Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C. Controlling Protein Orientation in Vacuum Using Electric Fields. J Phys Chem Lett 2017; 8:4540-4544. [PMID: 28862456 DOI: 10.1021/acs.jpclett.7b02005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-particle imaging using X-ray free-electron lasers is an emerging technique that could provide high-resolution structures of macromolecules in the gas phase. One of the largest difficulties in realizing this goal is the unknown orientation of the individual sample molecules at the time of exposure. Preorientation of the molecules has been identified as a possible solution to this problem. Using molecular dynamics simulations, we identify a range of electric field strengths where proteins become oriented without losing their structure. For a number of experimentally relevant cases we show that structure determination is possible only when orientation information is included in the orientation-recovery process. We conclude that nondestructive field orientation of intact proteins is feasible and that it enables a range of new structural investigations with single-particle imaging.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford GB-OX1 3QZ, United Kingdom
| | - Tomas Ekeberg
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron , DE-22607 Hamburg, Germany
| | - Mathieu Moog
- Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| | - Justin L P Benesch
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford GB-OX1 3QZ, United Kingdom
| | - Carl Caleman
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron , DE-22607 Hamburg, Germany
- Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
31
|
Göth M, Badock V, Weiske J, Pagel K, Kuropka B. Critical Evaluation of Native Electrospray Ionization Mass Spectrometry for Fragment-Based Screening. ChemMedChem 2017; 12:1201-1211. [PMID: 28618179 DOI: 10.1002/cmdc.201700177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/19/2017] [Indexed: 12/24/2022]
Abstract
Fragment-based screening presents a promising alternative to high-throughput screening and has gained great attention in recent years. So far, only a few studies have discussed mass spectrometry as a screening technology for fragments. Herein, we report the application of native electrospray ionization mass spectrometry (MS) for screening defined sets of fragments against four different target proteins. Fragments were selected from a primary screening conducted with a thermal shift assay (TSA) and represented different binding categories. Our data indicated that, beside specific complex formation, many fragments show extensive multiple binding and also charge-state shifts. Both of these factors complicate automated data analysis and decrease the attractiveness of native MS as a primary screening tool for fragments. A comparison of the hits identified by native MS and TSA showed good agreement for two of the proteins. Furthermore, we discuss general challenges, including the determination of an optimal fragment concentration and the question of how to rank fragment hits according to their affinity. In conclusion, we consider native MS to be a highly valuable tool for the validation and deeper investigation of promising fragment hits rather than a method for primary screening.
Collapse
Affiliation(s)
- Melanie Göth
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany.,Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Volker Badock
- Protein Technologies, Lead Discovery Berlin, Bayer AG, Müllerstraße 178, 13353, Berlin, Germany
| | - Jörg Weiske
- Protein Technologies, Lead Discovery Berlin, Bayer AG, Müllerstraße 178, 13353, Berlin, Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany.,Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Protein Technologies, Lead Discovery Berlin, Bayer AG, Müllerstraße 178, 13353, Berlin, Germany
| |
Collapse
|
32
|
Li J, Lyu W, Rossetti G, Konijnenberg A, Natalello A, Ippoliti E, Orozco M, Sobott F, Grandori R, Carloni P. Proton Dynamics in Protein Mass Spectrometry. J Phys Chem Lett 2017; 8:1105-1112. [PMID: 28207277 DOI: 10.1021/acs.jpclett.7b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University , 350002 Fuzhou, China
| | - Wenping Lyu
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University , 52056 Aachen, Germany
- Computation-Based Science and Technology Research Center, Cyprus Institute , 2121 Aglantzia, Nicosia, Cyprus
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University , 52062 Aachen, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich , D-52425 Jülich, Germany
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Modesto Orozco
- Joint BSC-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona , Avgda Diagonal 647, Barcelona 08028, Spain
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- JARA-HPC, 52425 Jülich, Germany
| |
Collapse
|
33
|
Thirumuruganandham SP, Gómez EA, Lakshmanan S, Hamblin MR. Terahertz Frequency Spectroscopy to Determine Cold Shock Protein Stability upon Solvation and Evaporation - A Molecular Dynamics Study. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY 2017; 7:131-143. [PMID: 30881732 PMCID: PMC6419770 DOI: 10.1109/tthz.2016.2637380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Infrared (IR) and Terahertz (THz) spectroscopy simulations were carried out using CHARMM35b2 to determine protein stability. The stabilities of three bacterial cold shock proteins (Csps) originating from mesophiles, thermophiles and hyper- thermophiles respectively were investigated in this study. The three different Csps were investigated by Normal-Mode analysis and Molecular Dynamics simulation of THz spectra using the Hessian matrix for solvated systems, interpreted in the harmonic approximation at optimum near-melting temperatures of each homologue, by incorporating differences in the hydrous and anhydrous states of the Csps. The results show slight variations in the large scale protein motion. However, the IR spectra of Csps observed at the low frequency saddle surface region, clearly distinguishes the thermophilic and mesophilic proteins based on their stability. Further studies on protein stability employing low-frequency collective modes have the potential to reveal functionally important conformational changes that are biologically significant.
Collapse
Affiliation(s)
| | - Edgar A Gómez
- Programa de Física, Universidad del Quindío, Armenia, Colombia
| | - Shanmugamurthy Lakshmanan
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
34
|
Seddon GM, Bywater RP. The fate of proteins in outer space. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2017; 16:19-27. [PMID: 29515333 PMCID: PMC5837003 DOI: 10.1017/s1473550415000488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2023]
Abstract
It is well established that any properly conducted biophysical studies of proteins must take appropriate account of solvent. For water-soluble proteins it has been an article of faith that water is largely responsible for stabilizing the fold, a notion that has recently come under increasing scrutiny. Further, there are some instances when proteins are studied experimentally in the absence of solvent, as in matrix-assisted laser desorption/ionization or electrospray mass spectrometry, for example, or in organic solvents for protein engineering purposes. Apart from these considerations, there is considerable speculation as to whether there is life on planets other than Earth, where conditions including the presence of water (both in liquid or vapor form and indeed ice), temperature and pressure may be vastly different from those prevailing on Earth. Mars, for example, has only 0.6% of Earth's mean atmospheric pressure which presents profound problems to protein structures, as this paper and a large corpus of experimental work demonstrate. Similar objections will most likely apply in the case of most exoplanets and other bodies such as comets whose chemistry and climate are still largely unknown. This poses the question, how do proteins survive in these different environments? In order to cast some light on these issues we have conducted a series of molecular dynamics simulations on protein dehydration under a variety of conditions. We find that, while proteins undergoing dehydration can retain their integrity for a short duration they ultimately become disordered, and we further show that the disordering can be retarded if superficial water is kept in place on the surface. These findings are compared with other published results on protein solvation in an astrobiological and astrochemical setting. Inter alia, our results suggest that there are limits as to what to expect in terms of the existence of possible extraterrestrial forms as well to what can be achieved in experimental investigations on living systems despatched from Earth. This finding may appear to undermine currently held hopes that life will be found on nearby planets, but it is important to be aware that the presence of ice and water are by themselves not sufficient; there has to be an atmosphere which includes water vapor at a sufficiently high partial pressure for proteins to be active. A possible scenario in which there has been a history of adequate water vapor pressure which allowed organisms to prepare for a future dessicated state by forming suitable protective capsules cannot of course be ruled out.
Collapse
Affiliation(s)
| | - Robert P. Bywater
- Adelard Institute Manchester M29 7FZ UK
- Magdalen College Oxford OX1 4AU UK
| |
Collapse
|
35
|
Native Mass Spectrometry for the Characterization of Structure and Interactions of Membrane Proteins. Methods Mol Biol 2017; 1635:205-232. [PMID: 28755371 DOI: 10.1007/978-1-4939-7151-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past years, native mass spectrometry and ion mobility have grown into techniques that are widely applicable to the study of aspects of protein structure. More recently, it has become apparent that this approach provides a very promising avenue for the investigation of integral membrane proteins in lipid or detergent environments.In this chapter, we discuss applications of native mass spectrometry and ion mobility in membrane protein research-what is important to take into consideration when working with membrane proteins, and what the requirements are for sample preparation for native mass spectrometry. Furthermore, we will discuss the types of information provided by the measurements, including the oligomeric state, subunit composition and stoichiometry, interactions with detergents or lipids, conformational transitions, and the binding and structural effect of ligands and drugs.
Collapse
|
36
|
Kulik HJ, Seelam N, Mar BD, Martínez TJ. Adapting DFT+U for the Chemically Motivated Correction of Minimal Basis Set Incompleteness. J Phys Chem A 2016; 120:5939-49. [DOI: 10.1021/acs.jpca.6b04527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Natasha Seelam
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Brendan D. Mar
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Todd J. Martínez
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
37
|
Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Water Determines the Structure and Dynamics of Proteins. Chem Rev 2016; 116:7673-97. [PMID: 27186992 DOI: 10.1021/acs.chemrev.5b00664] [Citation(s) in RCA: 549] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.
Collapse
Affiliation(s)
| | - Ali Hassanali
- International Center for Theoretical Physics, Condensed Matter and Statistical Physics 34151 Trieste, Italy
| | - Martina Havenith
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Richard Henchman
- Manchester Institute of Biotechnology The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Pohl
- Johannes Kepler University , Gruberstrasse, 40 4020 Linz, Austria
| | - Fabio Sterpone
- Institut de Biologie Physico-Chimique Laboratoire de Biochimie Théorique 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University , 751 24 Uppsala, Sweden
| | - Yao Xu
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
38
|
Metwally H, McAllister RG, Popa V, Konermann L. Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process. Anal Chem 2016; 88:5345-54. [DOI: 10.1021/acs.analchem.6b00650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Robert G. McAllister
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vlad Popa
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
39
|
Calvo F, Bacchus-Montabonel MC, Clavaguéra C. Stepwise Hydration of 2-Aminooxazole: Theoretical Insight into the Structure, Finite Temperature Behavior and Proton-Induced Charge Transfer. J Phys Chem A 2016; 120:2380-9. [PMID: 27035034 DOI: 10.1021/acs.jpca.5b12392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It was recently suggested that 2-aminooxazole (AO) could contribute to the formation of RNA nucleotides on primitive earth. In this article we have considered by means of computational modeling the influence of microhydration on the structural and spectral properties of this potential prebiotic molecule. The stable structures of AO(H2O)n were obtained first by sampling the potential energy landscapes of clusters containing up to n = 20 water molecules, using a simple but reasonably accurate force field and replica-exchange molecular dynamics simulations. Through reoptimization using an explicit description of electronic structure at the level of density functional theory with the M06-2X functional, the formation energies, ionization energies and electron affinities were determined in the vertical and adiabatic treatments, as well as vibrational and optical spectra covering the far-IR, mid-IR, and lower part of the UV ranges. The results generally show a clear segregation between the aminooxazole solute and the water molecules, a water cluster being formed near the nitrogen and amino group side leaving the hydrocarbon side dry even at temperatures corresponding to the liquid state. The spectral signatures generally concur and show distinct contributions of the solute and solvent, spectral shifts to lower energies being in agreement with earlier calculations in bulk solvent. We have also investigated the importance of microhydration on the charge transfer cross section upon collision with a proton, thereby extending an earlier investigation on the bare AO molecule. The presence of water molecules generally reduces the propensity for charge transfer at small sizes, but the influence of the solvent steadily decreases in larger droplets.
Collapse
Affiliation(s)
- F Calvo
- LiPhy, Université Grenoble Alpes and CNRS UMR 5588 , 140 Avenue de la Physique, 38402 St Martin d'Hères, France
| | - M-C Bacchus-Montabonel
- ILM, Université Lyon I and CNRS UMR 5306, Université de Lyon , 43 Bd du 11 Novembre 1918, F69622 Villeurbanne Cedex, France
| | - C Clavaguéra
- LCM, CNRS, Ecole Polytechnique, Université Paris Saclay , 91128 Palaiseau, France
| |
Collapse
|
40
|
Li J, Santambrogio C, Brocca S, Rossetti G, Carloni P, Grandori R. Conformational effects in protein electrospray-ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:111-22. [PMID: 25952139 DOI: 10.1002/mas.21465] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/14/2015] [Indexed: 05/11/2023]
Abstract
Electrospray-ionization mass spectrometry (ESI-MS) is a key tool of structural biology, complementing the information delivered by conventional biochemical and biophysical methods. Yet, the mechanism behind the conformational effects in protein ESI-MS is an object of debate. Two parameters-solvent-accessible surface area (As) and apparent gas-phase basicity (GBapp)-are thought to play a role in controlling the extent of protein ionization during ESI-MS experiments. This review focuses on recent experimental and theoretical investigations concerning the influence of these parameters on ESI-MS results and the structural information that can be derived. The available evidence supports a unified model for the ionization mechanism of folded and unfolded proteins. These data indicate that charge-state distribution (CSD) analysis can provide valuable structural information on normally folded, as well as disordered structures.
Collapse
Affiliation(s)
- Jinyu Li
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057 Aachen, Germany
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
41
|
Borysik AJ, Kovacs D, Guharoy M, Tompa P. Ensemble Methods Enable a New Definition for the Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins. J Am Chem Soc 2015; 137:13807-17. [DOI: 10.1021/jacs.5b06027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antoni J. Borysik
- King’s College London, Department of Chemistry,
Britannia House, 7 Trinity
Street, London SE1 1DB, U.K
| | - Denes Kovacs
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Mainak Guharoy
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Peter Tompa
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences of
the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
42
|
Jacobs AD, Chang FMJ, Morrison L, Dilger JM, Wysocki VH, Clemmer DE, Giedroc DP. Resolution of Stepwise Cooperativities of Copper Binding by the Homotetrameric Copper-Sensitive Operon Repressor (CsoR): Impact on Structure and Stability. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
McAllister RG, Metwally H, Sun Y, Konermann L. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations. J Am Chem Soc 2015; 137:12667-76. [DOI: 10.1021/jacs.5b07913] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert G. McAllister
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yu Sun
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
44
|
Jacobs AD, Chang FMJ, Morrison L, Dilger JM, Wysocki VH, Clemmer DE, Giedroc DP. Resolution of Stepwise Cooperativities of Copper Binding by the Homotetrameric Copper-Sensitive Operon Repressor (CsoR): Impact on Structure and Stability. Angew Chem Int Ed Engl 2015; 54:12795-9. [PMID: 26332992 DOI: 10.1002/anie.201506349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/06/2015] [Indexed: 12/11/2022]
Abstract
The cooperativity of ligand binding is central to biological regulation and new approaches are needed to quantify these allosteric relationships. Herein, we exploit a suite of mass spectrometry (MS) experiments to provide novel insights into homotropic Cu-binding cooperativity, gas-phase stabilities and conformational ensembles of the D2 -symmetric, homotetrameric copper-sensitive operon repressor (CsoR) as a function of Cu(I) ligation state. Cu(I) binding is overall positively cooperative, but is characterized by distinct ligation state-specific cooperativities. Structural transitions occur upon binding the first and fourth Cu(I) , with the latter occurring with significantly higher cooperativity than previous steps; this results in the formation of a holo-tetramer that is markedly more resistant than apo-, and partially ligated CsoR tetramers toward surface-induced dissociation (SID).
Collapse
Affiliation(s)
- Alexander D Jacobs
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA)
| | | | - Lindsay Morrison
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Jonathan M Dilger
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA)
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA)
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102 (USA).
| |
Collapse
|
45
|
Konijnenberg A, van Dyck JF, Kailing LL, Sobott F. Extending native mass spectrometry approaches to integral membrane proteins. Biol Chem 2015; 396:991-1002. [DOI: 10.1515/hsz-2015-0136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022]
Abstract
Abstract
Recent developments in native mass spectrometry and ion mobility have made it possible to analyze the composition and structure of membrane protein complexes in the gas-phase. In this short review we discuss the experimental strategies that allow to elucidate aspects of the dynamic structure of these important drug targets, such as the structural effects of lipid binding or detection of co-populated conformational and assembly states during gating on an ion channel. As native mass spectrometry relies on nano-electrospray of natively reconstituted proteins, a number of commonly used lipid- and detergent-based reconstitution systems have been evaluated for their compatibility with this approach, and parameters for the release of intact, native-like folded membrane proteins studied in the gas-phase. The strategy thus developed can be employed for the investigation of the subunit composition and stoichiometry, oligomeric state, conformational changes, and lipid and drug binding of integral membrane proteins.
Collapse
|
46
|
May JC, McLean JA. A uniform field ion mobility study of melittin and implications of low-field mobility for resolving fine cross-sectional detail in peptide and protein experiments. Proteomics 2015; 15:2862-71. [DOI: 10.1002/pmic.201400551] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jody C. May
- Department of Chemistry, Center for Innovative Technology; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt Institute of Chemical Biology; Vanderbilt University; Nashville TN USA
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt Institute of Chemical Biology; Vanderbilt University; Nashville TN USA
| |
Collapse
|
47
|
D'Atri V, Porrini M, Rosu F, Gabelica V. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:711-26. [PMID: 26259654 PMCID: PMC4440389 DOI: 10.1002/jms.3590] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 05/13/2023]
Abstract
Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section Ω(EXP). Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting Ω(CALC) are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with Ω(EXP) determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial.
Collapse
Affiliation(s)
- Valentina D'Atri
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | - Massimiliano Porrini
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | | | - Valérie Gabelica
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| |
Collapse
|
48
|
Bechara C, Robinson CV. Different Modes of Lipid Binding to Membrane Proteins Probed by Mass Spectrometry. J Am Chem Soc 2015; 137:5240-7. [DOI: 10.1021/jacs.5b00420] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chérine Bechara
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
49
|
Going CC, Williams ER. Supercharging with m-Nitrobenzyl Alcohol and Propylene Carbonate: Forming Highly Charged Ions with Extended, Near-Linear Conformations. Anal Chem 2015; 87:3973-80. [DOI: 10.1021/acs.analchem.5b00071] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Catherine C. Going
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Evan R. Williams
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
50
|
Harvey SR, Porrini M, Konijnenberg A, Clarke DJ, Tyler RC, Langridge-Smith PRR, MacPhee CE, Volkman BF, Barran PE. Dissecting the Dynamic Conformations of the Metamorphic Protein Lymphotactin. J Phys Chem B 2014; 118:12348-59. [DOI: 10.1021/jp504997k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Massimiliano Porrini
- Institut Européen de Chimie et Biologie (IECB), CNRS UMR 5248 Chimie et Biologie des Membranes et des Nano-objets (CBMN), 33607 Pessac Cedex, France
| | | | | | - Robert C. Tyler
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | | | - Brian F. Volkman
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Perdita E. Barran
- School
of Chemistry,
Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|