1
|
Yang L, Zhu Y, Meng J, Zhang W, Mu W. Recent progress in fucosylated derivatives of lacto- N-tetraose and lacto- N-neotetraose. Crit Rev Food Sci Nutr 2023; 64:10384-10396. [PMID: 37341681 DOI: 10.1080/10408398.2023.2224431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention owing to their unique physiological functions. Two important tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), are core structures of HMOs. Their safety has been evaluated and they can be added to infant formula as functional ingredients. The fucosylated derivatives of LNT and LNnT, mainly lacto-N-fucopentaose (LNFP) I, LNFP II, LNFP III, and lacto-N-difucohexaose I, exhibit prominent physiological characteristics, including modificating the intestinal microbiota, immunomodulation, anti-bacterial activities, and antiviral infection. However, they have received lesser attention than 2'-fucosyllactose. As precursors, LNT and LNnT are connected to one or two fucosyl units through α1,2/3/4 glycosidic bonds, forming a series of compounds with complex structures. These complex fucosylated oligosaccharides can be biologically synthesized using enzymatic and cell factory approaches. This review summarizes the occurrence, physiological effects, and biosynthesis of fucosylated LNT and LNnT derivatives and their future development.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
3
|
Mechanistic insight into the synthesis of fucooligosaccharides by α-L-fucosidase from Thermotoga maritima belonging to the GH29 family: in silico study. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Shishiuchi R, Kang H, Tagami T, Ueda Y, Lang W, Kimura A, Okuyama M. Discovery of α-l-Glucosidase Raises the Possibility of α-l-Glucosides in Nature. ACS OMEGA 2022; 7:47411-47423. [PMID: 36570207 PMCID: PMC9774334 DOI: 10.1021/acsomega.2c06991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Glucose, a common monosaccharide in nature, is dominated by the d-enantiomer. Meanwhile, the discovery of l-glucose-utilizing bacteria and the elucidation of their metabolic pathways 10 years ago suggests that l-glucose exists naturally. Most carbohydrates exist as glycosides rather than monosaccharides; therefore, we expected that nature also contains l-glucosides. Sequence analysis within glycoside hydrolase family 29 led us to identify two α-l-glucosidases, ClAgl29A and ClAgl29B, derived from Cecembia lonarensis LW9. ClAgl29A and ClAgl29B exhibited higher K m, k cat, and k cat/K m values for p-nitrophenyl α-l-glucoside than that for p-nitrophenyl α-l-fucoside. Structural analysis of ClAgl29B in complex with l-glucose showed that these enzymes have an active-site pocket that preferentially binds α-l-glucoside, but excludes α-l-fucoside. These results suggest that ClAgl29A and ClAgl29B evolved to hydrolyze α-l-glucoside, implying the existence of α-l-glucoside in nature. Furthermore, α-l-glucosidic linkages (α-l-Glc-(1 → 3)-l-Glc, α-l-Glc-(1 → 2)-l-Glc, and α-l-Glc-(1 → 6)-l-Glc) were synthesized by the transglucosylation activity of ClAgl29A and ClAgl29B. We believe that this study will lead to new research on α-l-glucosides, including determining the physiological effects on humans, and the discovery of novel α-l-glucoside-related enzymes.
Collapse
|
5
|
Improving the Transglycosylation Activity of α-Glucosidase from Xanthomonas campestris Through Semi-rational Design for the Synthesis of Ethyl Vanillin-α-Glucoside. Appl Biochem Biotechnol 2022; 194:3082-3096. [DOI: 10.1007/s12010-022-03908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
|
6
|
Zhou W, Jiang H, Liang X, Qiu Y, Wang L, Mao X. Discovery and characterization of a novel α-l-fucosidase from the marine-derived Flavobacterium algicola and its application in 2'-fucosyllactose production. Food Chem 2022; 369:130942. [PMID: 34479010 DOI: 10.1016/j.foodchem.2021.130942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
2'-Fucosyllactose (2'-FL) is one of the nutrient ingredients in human milk, which has various beneficial health effects. α-l-fucosidase is a biotechnological tool for 2'-FL preparation. Here, a novel and efficient α-l-fucosidase OUC-Jdch16 from the fucoidan-digesting strain Flavobacterium algicola 12076 was heterologously expressed and applied to produce 2'-FL in vitro. OUC-Jdch16 belongs to glycoside hydrolases (GH) family 29 and exhibits the highest 4-nitrophenyl-α-l-fucopyranoside-hydrolyzing activity at 25 °C and pH 6.0. OUC-Jdch16 could catalyze the synthesis of 2'-FL via transferring the fucosyl residue from pNP-α-fucose to lactose. Under the optimal transfucosylation conditions, the yield of the transfucosylation product reached 84.82% and 92.15% (mol/mol) from pNP-α-fucose within 48 h and 120 h, respectively. Moreover, OUC-Jdch16 was capable of transferring the fucosyl residue to other glycosyl receptors with the generation of novel fucosylated compounds. This study demonstrated that OUC-Jdch16 could be a promising tool to prepare 2'-FL and other novel glycosides.
Collapse
Affiliation(s)
- Wenting Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingxing Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanjun Qiu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lili Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Agrawal A, Bandi CK, Burgin T, Woo Y, Mayes HB, Chundawat SPS. Click-Chemistry-Based Free Azide versus Azido Sugar Detection Enables Rapid In Vivo Screening of Glycosynthase Activity. ACS Chem Biol 2021; 16:2490-2501. [PMID: 34499469 DOI: 10.1021/acschembio.1c00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering of carbohydrate-active enzymes such as glycosynthases to enable chemoenzymatic synthesis of bespoke oligosaccharides has been limited by the lack of suitable ultrahigh-throughput screening methods capable of robustly detecting either starting substrates or end-products of the glycosidic bond formation reaction. Currently, there are limited screening methods available for rapid and highly sensitive single-cell-based screening of glycosynthase enzymes employing azido sugars as activated donor glycosyl substrates. Here, we report a fluorescence-based approach employing click-chemistry for the selective detection of glycosyl azides as substrates versus free inorganic azides as reaction products that facilitated an ultrahigh-throughput in vivo single-cell-based assay of glycosynthase activity. This assay was developed based on the distinct differences observed in relative fluorescence intensity of the triazole-containing fluorophore product formed during the click-chemistry reaction of organic glycosyl azides versus inorganic azides. This discovery formed the basis for proof of concept validation of a directed evolution methodology for screening and sorting glycosynthase mutants capable of synthesis of targeted fucosylated oligosaccharides. Our screening approach facilitated fluorescence-activated cell sorting of an error-prone polymerase chain reaction-based mutant library of fucosynthases expressed in Escherichia coli to identify several novel mutants that showed increased activity for β-fucosyl azide-activated donor sugars toward desired acceptor sugars (e.g., pNP-xylose and lactose). Finally, we discuss avenues for improving this proof of concept in vivo assay method to identify better glycosynthase mutants and further demonstrate the broader applicability of this screening methodology for synthesis of bespoke glycans.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Chemical & Biochemical Engineering, Rutgers The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Chandra Kanth Bandi
- Department of Chemical & Biochemical Engineering, Rutgers The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Tucker Burgin
- Department of Chemical Engineering, University of Michigan Ann Arbor, 2800 Plymouth Avenue, Ann Arbor, Michigan 48105, United States
| | - Youngwoo Woo
- Department of Chemical Engineering, University of Michigan Ann Arbor, 2800 Plymouth Avenue, Ann Arbor, Michigan 48105, United States
| | - Heather B. Mayes
- Department of Chemical Engineering, University of Michigan Ann Arbor, 2800 Plymouth Avenue, Ann Arbor, Michigan 48105, United States
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Shishir P. S. Chundawat
- Department of Chemical & Biochemical Engineering, Rutgers The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 51:107820. [PMID: 34462167 DOI: 10.1016/j.biotechadv.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
9
|
Cabezas-Pérusse Y, Daligault F, Ferrières V, Tasseau O, Tranchimand S. Modulation of the Activity and Regioselectivity of a Glycosidase: Development of a Convenient Tool for the Synthesis of Specific Disaccharides. Molecules 2021; 26:5445. [PMID: 34576917 PMCID: PMC8468180 DOI: 10.3390/molecules26185445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
The synthesis of disaccharides, particularly those containing hexofuranoside rings, requires a large number of steps by classical chemical means. The use of glycosidases can be an alternative to limit the number of steps, as they catalyze the formation of controlled glycosidic bonds starting from simple and easy to access building blocks; the main drawbacks are the yields, due to the balance between the hydrolysis and transglycosylation of these enzymes, and the enzyme-dependent regioselectivity. To improve the yield of the synthesis of β-d-galactofuranosyl-(1→X)-d-mannopyranosides catalyzed by an arabinofuranosidase, in this study we developed a strategy to mutate, then screen the catalyst, followed by a tailored molecular modeling methodology to rationalize the effects of the identified mutations. Two mutants with a 2.3 to 3.8-fold increase in transglycosylation yield were obtained, and in addition their accumulated regioisomer kinetic profiles were very different from the wild-type enzyme. Those differences were studied in silico by docking and molecular dynamics, and the methodology revealed a good predictive quality in regards with the regioisomer profiles, which is in good agreement with the experimental transglycosylation kinetics. So, by engineering CtAraf51, new biocatalysts were enabled to obtain the attractive central motif from the Leishmania lipophosphoglycan core with a higher yield and regioselectivity.
Collapse
Affiliation(s)
- Yari Cabezas-Pérusse
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, F-35000 Rennes, France; (Y.C.-P.); (V.F.); (O.T.)
| | - Franck Daligault
- CNRS, UFIP (Unité de Fonctionnalité et Ingénierie des Protéines)—UMR 6286, Université de Nantes, F-44000 Nantes, France;
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, F-35000 Rennes, France; (Y.C.-P.); (V.F.); (O.T.)
| | - Olivier Tasseau
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, F-35000 Rennes, France; (Y.C.-P.); (V.F.); (O.T.)
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, F-35000 Rennes, France; (Y.C.-P.); (V.F.); (O.T.)
| |
Collapse
|
10
|
Teze D, Zhao J, Wiemann M, Kazi ZGA, Lupo R, Zeuner B, Vuillemin M, Rønne ME, Carlström G, Duus JØ, Sanejouand YH, O'Donohue MJ, Nordberg Karlsson E, Fauré R, Stålbrand H, Svensson B. Rational Enzyme Design without Structural Knowledge: A Sequence-Based Approach for Efficient Generation of Transglycosylases. Chemistry 2021; 27:10323-10334. [PMID: 33914359 DOI: 10.1002/chem.202100110] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Glycobiology is dogged by the relative scarcity of synthetic, defined oligosaccharides. Enzyme-catalysed glycosylation using glycoside hydrolases is feasible but is hampered by the innate hydrolytic activity of these enzymes. Protein engineering is useful to remedy this, but it usually requires prior structural knowledge of the target enzyme, and/or relies on extensive, time-consuming screening and analysis. Here, a straightforward strategy that involves rational rapid in silico analysis of protein sequences is described. The method pinpoints 6-12 single-mutant candidates to improve transglycosylation yields. Requiring very little prior knowledge of the target enzyme other than its sequence, the method is generic and procures catalysts for the formation of glycosidic bonds involving various d/l-, α/β-pyranosides or furanosides, and exo or endo action. Moreover, mutations validated in one enzyme can be transposed to others, even distantly related enzymes.
Collapse
Affiliation(s)
- David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Jiao Zhao
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077, Toulouse CEDEX 04, France
| | - Mathias Wiemann
- Department of Biochemistry and Structural Biology, Lund University, 221 00, Lund, Sweden
| | - Zubaida G A Kazi
- Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden
| | - Rossana Lupo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Birgitte Zeuner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Marlène Vuillemin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Mette E Rønne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| | - Göran Carlström
- Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden
| | - Jens Ø Duus
- Department of Chemistry, Technical University of Denmark, Kemitorvet, bulding 207, DK-2800, Kongens Lyngby, Denmark
| | - Yves-Henri Sanejouand
- UFIP, UMR 6286, Université de Nantes, CNRS, 2, chemin de la Houssiniere, Nantes, France
| | - Michael J O'Donohue
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077, Toulouse CEDEX 04, France
| | | | - Régis Fauré
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077, Toulouse CEDEX 04, France
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, 221 00, Lund, Sweden
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, building 224, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Synthesis of fucosylated oligosaccharides with α-L-fucosidase from Thermotoga maritima immobilized on Eupergit ® CM. Extremophiles 2021; 25:311-317. [PMID: 33938983 DOI: 10.1007/s00792-021-01230-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
Fucosylated oligosaccharides present in human milk perform various biological functions that benefit infants' health. These compounds can be also obtained by enzymatic synthesis. In this work, the effect of the immobilization of α-L-fucosidase from Thermotoga maritima on the synthesis of fucosylated oligosaccharides was studied, using lactose and 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as acceptor and donor substrates, respectively, and Eupergit® CM as an immobilization support. The enzyme was immobilized with 90% efficiency at pH 8 and ionic strength of 1.5 M. Immobilization decreased enzyme affinity for the donor substrate as shown by a 1.5-times higher KM value and a 22-times decrease of the kcat/KM ratio in comparison to the unbound enzyme. In contrast, no effect was observed on the synthesis/hydrolysis ratio (rs/rh) when α-L-fucosidase was immobilized. Also, the effect of initial concentration of substrates was studied. An increase of the acceptor concentration improved the yields of fucosylated oligosaccharides regardless enzyme immobilization. The synthesis yields of 38.9 and 40.6% were obtained using Eupergit® CM-bound or unbound enzyme, respectively, and 3.5 mM pNP-Fuc and 146 mM lactose. In conclusion, α-L-fucosidase from Thermotoga maritima was efficiently immobilized on Eupergit® CM support without affecting the synthesis of fucosylated oligosaccharides.
Collapse
|
12
|
Fernandez-Poza S, Padros A, Thompson R, Butler L, Islam M, Mosely JA, Scrivens JH, F Rehman M, Akram MS. Tailor-made recombinant prokaryotic lectins for characterisation of glycoproteins. Anal Chim Acta 2021; 1155:338352. [PMID: 33766322 DOI: 10.1016/j.aca.2021.338352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Development of biosimilars is costly, where glycan analysis is a significant constraint on time and money. This paper provides an in-depth characterisation of several novel recombinant prokaryotic lectins (RPLs), developed through directed evolution, displaying specific binding activities to α-mannose, β-galactose, fucose and sialic acid residues, tested against major biosimilar targets. The binding characterisation of all lectins was performed employing the principles of bio-layer interferometry (BLI), with help of the streptavidin-coated sensor with the biotinylated lectins. The binding activity of the RPLs and the specificity to a broad range of glycoproteins and glycoconjugates were evaluated and compared to those of equivalent plant-derived lectins. While exhibiting better or similar specificity, RPLs displayed significantly better binding in all cases. The binding mechanisms are explained with particular focus on the role hydrogen bonding plays in the change of specificity for a galactose specific lectin. Furthermore, different sets of RPLs and their plant equivalents were assayed against the different glycoprotein targets to evaluate the analytical parameters of the lectin-glycoprotein interaction. The obtained LoDs reached by the RPLs were lower than those of their plant counterparts apart from one, exhibiting RPL:PL LoD ratios of 0.8, 2.5, 14.2 and 380 for the sets of lectins specific to fucose, α-mannose, β-galactose and sialic acid, respectively. Such enhancement in analytical parameters of RPLs shows their applicability in protein purification and as bioanalytical tools for glycan analysis and biosensor development.
Collapse
Affiliation(s)
- S Fernandez-Poza
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, UK; Glycoselect Ltd., South Tees Institute for Learning, Research and Innovation, the James Cook University Hospital, Middlesbrough, TS4 3BW, UK
| | - A Padros
- Glycoselect Ltd., South Tees Institute for Learning, Research and Innovation, the James Cook University Hospital, Middlesbrough, TS4 3BW, UK
| | - R Thompson
- Glycoselect Ltd., South Tees Institute for Learning, Research and Innovation, the James Cook University Hospital, Middlesbrough, TS4 3BW, UK
| | - Lucy Butler
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, UK
| | - Meez Islam
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, UK
| | - J A Mosely
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, UK
| | - James H Scrivens
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, UK
| | - Muhammad F Rehman
- Department of Chemistry, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, UK.
| |
Collapse
|
13
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 49:107733. [PMID: 33781890 DOI: 10.1016/j.biotechadv.2021.107733] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
14
|
Klontz EH, Li C, Kihn K, Fields JK, Beckett D, Snyder GA, Wintrode PL, Deredge D, Wang LX, Sundberg EJ. Structure and dynamics of an α-fucosidase reveal a mechanism for highly efficient IgG transfucosylation. Nat Commun 2020; 11:6204. [PMID: 33277506 PMCID: PMC7718225 DOI: 10.1038/s41467-020-20044-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2020] [Indexed: 11/26/2022] Open
Abstract
Fucosylation is important for the function of many proteins with biotechnical and medical applications. Alpha-fucosidases comprise a large enzyme family that recognizes fucosylated substrates with diverse α-linkages on these proteins. Lactobacillus casei produces an α-fucosidase, called AlfC, with specificity towards α(1,6)-fucose, the only linkage found in human N-glycan core fucosylation. AlfC and certain point mutants thereof have been used to add and remove fucose from monoclonal antibody N-glycans, with significant impacts on their effector functions. Despite the potential uses for AlfC, little is known about its mechanism. Here, we present crystal structures of AlfC, combined with mutational and kinetic analyses, hydrogen–deuterium exchange mass spectrometry, molecular dynamic simulations, and transfucosylation experiments to define the molecular mechanisms of the activities of AlfC and its transfucosidase mutants. Our results indicate that AlfC creates an aromatic subsite adjacent to the active site that specifically accommodates GlcNAc in α(1,6)-linkages, suggest that enzymatic activity is controlled by distinct open and closed conformations of an active-site loop, with certain mutations shifting the equilibrium towards open conformations to promote transfucosylation over hydrolysis, and provide a potentially generalizable framework for the rational creation of AlfC transfucosidase mutants. AlfC transfucosidase is used to modulate fucosylation of glycans decorating monoclonal antibodies. Herein, structural and biophysical characterization reveals the enzymatic mechanism of AlfC and a blueprint for the design of AlfC mutants with novel specificities and functions.
Collapse
Affiliation(s)
- Erik H Klontz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Kyle Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, College Park, MD, 21201, USA
| | - James K Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Molecular Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Greg A Snyder
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, College Park, MD, 21201, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, College Park, MD, 21201, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Improved Transglycosylation by a Xyloglucan-Active α-l-Fucosidase from Fusarium graminearum. J Fungi (Basel) 2020; 6:jof6040295. [PMID: 33217923 PMCID: PMC7711723 DOI: 10.3390/jof6040295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Fusarium graminearum produces an α-l-fucosidase, FgFCO1, which so far appears to be the only known fungal GH29 α-l-fucosidase that catalyzes the release of fucose from fucosylated xyloglucan. In our quest to synthesize bioactive glycans by enzymatic catalysis, we observed that FgFCO1 is able to catalyze a transglycosylation reaction involving transfer of fucose from citrus peel xyloglucan to lactose to produce 2′-fucosyllactose, an important human milk oligosaccharide. In addition to achieving maximal yields, control of the regioselectivity is an important issue in exploiting such a transglycosylation ability successfully for glycan synthesis. In the present study, we aimed to improve the transglycosylation efficiency of FgFCO1 through protein engineering by transferring successful mutations from other GH29 α-l-fucosidases. We investigated several such mutation transfers by structural alignment, and report that transfer of the mutation F34I from BiAfcB originating from Bifidobacterium longum subsp. infantis to Y32I in FgFCO1 and mutation of D286, near the catalytic acid/base residue in FgFCO1, especially a D286M mutation, have a positive effect on FgFCO1 transfucosylation regioselectivity. We also found that enzymatic depolymerization of the xyloglucan substrate increases substrate accessibility and in turn transglycosylation (i.e., transfucosylation) efficiency. The data include analysis of the active site amino acids and the active site topology of FgFCO1 and show that transfer of point mutations across GH29 subfamilies is a rational strategy for targeted protein engineering of a xyloglucan-active fungal α-l-fucosidase.
Collapse
|
16
|
Zeuner B, Meyer AS. Enzymatic transfucosylation for synthesis of human milk oligosaccharides. Carbohydr Res 2020; 493:108029. [DOI: 10.1016/j.carres.2020.108029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022]
|
17
|
Wan L, Zhu Y, Zhang W, Mu W. α-l-Fucosidases and their applications for the production of fucosylated human milk oligosaccharides. Appl Microbiol Biotechnol 2020; 104:5619-5631. [DOI: 10.1007/s00253-020-10635-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
|
18
|
Chen X, Jin L, Jiang X, Guo L, Gu G, Xu L, Lu L, Wang F, Xiao M. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis. Appl Microbiol Biotechnol 2019; 104:661-673. [PMID: 31822984 DOI: 10.1007/s00253-019-10253-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
We have recently derived a β-N-acetylhexosaminidase, BbhI, from Bifidobacterium bifidum JCM 1254, which could regioselectively synthesize GlcNAcβ1-3Galβ1-4Glc with a yield of 44.9%. Here, directed evolution of BbhI by domain-targeted mutagenesis was carried out. Firstly, the GH20 domain was selected for random mutagenesis using MEGAWHOP method and a small library of 1300 clones was created. A total of 734 colonies with reduced hydrolytic activity were isolated, and three mutants with elevated transglycosylation yields, GlcNAcβ1-3Galβ1-4Glc yields of 68.5%, 74.7%, and 81.1%, respectively, were obtained. Subsequently, nineteen independent mutants were constructed according to all the mutation sites in these three mutants. After transglycosylation analysis, Asp714 and Trp773 were identified as key residues for improvement in transglycosylation ability and were chosen for the second round of directed evolution by site-saturation mutagenesis. Two most efficient mutants D714T and W773R that acted as trans-β-N-acetylhexosaminidase were finally achieved. D714T with the substitution at the putative nucleophile assistant residue Asp714 by threonine showed high yield of 84.7% with unobserved hydrolysis towards transglycosylation product. W773R with arginine substitution at Trp773 residue locating at the entrance of catalytic cavity led to the yield up to 81.8%. The kcat/Km values of D714T and W773R for hydrolysis of pNP-β-GlcNAc displayed drastic decreases. NMR investigation of protein-substrate interaction revealed an invariable mode of the catalytic cavity of D714T, W773R, and WT BbhI. The collective motions of protein model showed the mutations Thr714 and Arg773 exerted little effect on the dynamics of the inside but a large effect on the dynamics of the outside of catalytic cavity.
Collapse
Affiliation(s)
- Xiaodi Chen
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.,School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Lan Jin
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xukai Jiang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Longcheng Guo
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Guofeng Gu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Li Xu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
19
|
Production and characterization of Aspergillus niger GH29 family α-fucosidase and production of a novel non-reducing 1-fucosyllactose. Glycoconj J 2019; 37:221-229. [PMID: 31792892 PMCID: PMC7083800 DOI: 10.1007/s10719-019-09896-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
Abstract
Fucosylated oligosaccharides are interesting molecules due to their bioactive properties. In particular, their application as active ingredient in milk powders is attractive for dairy industries. The objective of this study was to characterize the glycosyl hydrolase family 29 α-fucosidase produced by Aspergillus niger and test its ability to transfucosylate lactose with a view towards potential industrial applications such as the valorization of the lactose side stream produced by dairy industry. In order to reduce costs and toxicity the use of free fucose instead of environmentally questionable fucose derivatives was studied. In contrast to earlier studies, a recombinantly produced A. niger α-fucosidase was utilized. Using pNP-fucose as substrate, the optimal pH for hydrolytic activity was determined to be 3.8. The optimal temperature for a 30-min reaction was 60 °C, and considering temperature stability, the optimal temperature for a 24-h reaction was defined as 45 °C For the same hydrolysis reaction, the kinetic values were calculated to be 0.385 mM for the KM and 2.8 mmol/(mg*h) for the Vmax. Transfucosylation of lactose occurred at high substrate concentrations when reaction time was elongated to several days. The structure of the product trisaccharide was defined as 1-fucosyllactose, where fucose is α-linked to the anomeric carbon of the β-glucose moiety of lactose. Furthermore, the enzyme was able to hydrolyze its own transfucosylation product and 2′-fucosyllactose but only poorly 3-fucosyllactose. As a conclusion, α-fucosidase from A. niger can transfucosylate lactose using free fucose as substrate producing a novel non-reducing 1-fucosyllactose.
Collapse
|
20
|
Qin Z, Li S, Huang X, Kong W, Yang X, Zhang S, Cao L, Liu Y. Improving Galactooligosaccharide Synthesis Efficiency of β-Galactosidase Bgal1-3 by Reshaping the Active Site with an Intelligent Hydrophobic Amino Acid Scanning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11158-11166. [PMID: 31537069 DOI: 10.1021/acs.jafc.9b04774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There are ongoing interests in improving the galactooligosaccharide (GOS) synthesis efficiency of β-galactosidase by protein engineering. In this study, an intelligent double-hydrophobic amino acid scanning strategy was proposed and employed to target nine residues forming the glycon-binding site (-1 subsite) of β-galactosidase Bgal1-3. Two mutants C510V and H512I with significantly improved GOS synthesis efficiency were obtained. When 40% (w/v) lactose was used as a substrate, Bgal1-3 reached a maximum GOS yield of 45.3% at 16 h, while the mutants reached higher yields in a much shorter time (59.1% at 10 h for C510V, 51.5% at 2 h for H512I). When skim milk was treated with these enzymes, more GOS was produced (19.9 g/L for C510V, 12.7 g/L for H512I) than that for Bgal1-3 (10.3 g/L) at a lactose conversion of 90%. These results validated hydrophobicity scanning as an efficient method to engineer β-galactosidases into promising catalysts for the preparation of GOS and GOS-enriched milk.
Collapse
Affiliation(s)
- Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xiangpeng Yang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Sufang Zhang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
21
|
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules 2019; 24:E2033. [PMID: 31141914 PMCID: PMC6600218 DOI: 10.3390/molecules24112033] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - David Teze
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Jan Muschiol
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
22
|
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019; 9:20180069. [PMID: 30842872 DOI: 10.1098/rsfs.2018.0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Régis Fauré
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Magali Remaud-Siméon
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Claire Moulis
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Isabelle André
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| |
Collapse
|
23
|
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A. Employment of fucosidases for the synthesis of fucosylated oligosaccharides with biological potential. Biotechnol Appl Biochem 2018; 66:172-191. [PMID: 30508310 DOI: 10.1002/bab.1714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023]
Abstract
Fucosylated oligosaccharides play important physiological roles in humans, including in the immune response, transduction of signals, early embryogenesis and development, growth regulation, apoptosis, pathogen adhesion, and so on. Efforts have been made to synthesize fucosylated oligosaccharides, as it is difficult to purify them from their natural sources, such as human milk, epithelial tissue, blood, and so on. Within the strategies for its in vitro synthesis, it is remarkable the employment of fucosidases, enzymes that normally cleave the fucosyl residue from the non-reducing end of fucosylated compounds, as these enzymes are also capable of synthesizing them by means of a transfucosylation reaction. This review summarizes the progress in the use of fucosidases for the synthesis of compounds that have potential for industrial and commercial applications.
Collapse
Affiliation(s)
| | | | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | | | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Edo. de México, México
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| |
Collapse
|
24
|
Alatorre-Santamaría S, Escamilla-Lozano Y, Guzmán-Rodríguez F, García-Garibay M, Rodríguez-Serrano G, Gómez-Ruiz L, Cruz-Guerrero A. Synthesis of Fucose-Containing Disaccharides by Glycosylhydrolases from Various Origins. Appl Biochem Biotechnol 2018; 188:369-380. [DOI: 10.1007/s12010-018-2926-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
25
|
Loop engineering of an α-1,3/4-l-fucosidase for improved synthesis of human milk oligosaccharides. Enzyme Microb Technol 2018; 115:37-44. [DOI: 10.1016/j.enzmictec.2018.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 11/19/2022]
|
26
|
Jamek SB, Muschiol J, Holck J, Zeuner B, Busk PK, Mikkelsen JD, Meyer AS. Loop Protein Engineering for Improved Transglycosylation Activity of a β‐
N
‐Acetylhexosaminidase. Chembiochem 2018; 19:1858-1865. [DOI: 10.1002/cbic.201800181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Shariza B. Jamek
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
- Faculty of Chemical and Natural Resources EngineeringUniversity Malaysia Pahang Lebuhraya Tun Razak 26300 Gambang, Kuantan, Pahang Malaysia
| | - Jan Muschiol
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Jesper Holck
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Birgitte Zeuner
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Peter K. Busk
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Jørn D. Mikkelsen
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| | - Anne S. Meyer
- Center for Bioprocess EngineeringDepartment of Chemical and Biochemical EngineeringTechnical University of Denmark Søltofts Plads Building 229 2800 Kongens Lyngby Denmark
| |
Collapse
|
27
|
Kwan DH. Structure-Guided Directed Evolution of Glycosidases: A Case Study in Engineering a Blood Group Antigen-Cleaving Enzyme. Methods Enzymol 2018; 597:25-53. [PMID: 28935105 DOI: 10.1016/bs.mie.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Directed evolution is an incredibly powerful strategy for engineering enzyme function. Applying this approach to glycosidases offers enormous potential for the development of highly specialized tools in chemical glycobiology. Performing enzyme directed evolution requires the generation, by random mutagenesis, of mutant libraries from which large numbers of variant enzymes must be screened in high-throughput assays. A structure-guided "semirational" method for library creation allows researchers to target specific amino acid positions for mutagenesis, concentrating mutations where they might be most effective in order to produce mutant libraries of a manageable size, minimizing screening effort while maximizing the chances of finding improved mutants. Well-designed assays, which may use specially prepared substrates, enable efficient screening of these mutant libraries. This chapter will detail general methods in the structure-guided directed evolution of glycosidases, which have previously been employed in engineering a blood group antigen-cleaving enzyme.
Collapse
Affiliation(s)
- David H Kwan
- Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
28
|
Guzmán-Rodríguez F, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, García-Garibay M, Cruz-Guerrero A. Synthesis of a Fucosylated Trisaccharide Via Transglycosylation by α-L-Fucosidase from Thermotoga maritima. Appl Biochem Biotechnol 2018; 186:681-691. [PMID: 29717409 DOI: 10.1007/s12010-018-2771-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Fucosylated oligosaccharides, such as 2'-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-L-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).
Collapse
Affiliation(s)
- Francisco Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Sergio Alatorre-Santamaría
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Gabriela Rodríguez-Serrano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico
| | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico.,Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma. Av. Hidalgo Poniente 46, Col. La Estación, 52006, Lerma de Villada, Mexico State, Mexico
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Mexico City, Mexico.
| |
Collapse
|
29
|
Substrate specificity and transfucosylation activity of GH29 α-l-fucosidases for enzymatic production of human milk oligosaccharides. N Biotechnol 2018; 41:34-45. [DOI: 10.1016/j.nbt.2017.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
|
30
|
|
31
|
Shvetsova SV, Shabalin KA, Bobrov KS, Ivanen DR, Ustyuzhanina NE, Krylov VB, Nifantiev NE, Naryzhny SN, Zgoda VG, Eneyskaya EV, Kulminskaya AA. Characterization of a new α-l-fucosidase isolated from Fusarium proliferatum LE1 that is regioselective to α-(1 → 4)-l-fucosidic linkage in the hydrolysis of α-l-fucobiosides. Biochimie 2017; 132:54-65. [DOI: 10.1016/j.biochi.2016.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
32
|
Durand J, Biarnés X, Watterlot L, Bonzom C, Borsenberger V, Planas A, Bozonnet S, O’Donohue MJ, Fauré R. A Single Point Mutation Alters the Transglycosylation/Hydrolysis Partition, Significantly Enhancing the Synthetic Capability of an endo-Glycoceramidase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Durand
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Xevi Biarnés
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Laurie Watterlot
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Cyrielle Bonzom
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Régis Fauré
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
33
|
Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol 2016; 235:61-83. [DOI: 10.1016/j.jbiotec.2016.03.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
|
34
|
Lundemo P, Karlsson EN, Adlercreutz P. Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Appl Microbiol Biotechnol 2016; 101:1121-1131. [PMID: 27678115 PMCID: PMC5247548 DOI: 10.1007/s00253-016-7833-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 11/30/2022]
Abstract
Unveiling the determinants for transferase and hydrolase activity in glycoside hydrolases would allow using their vast diversity for creating novel transglycosylases, thereby unlocking an extensive toolbox for carbohydrate chemists. Three different amino acid substitutions at position 220 of a GH1 β-glucosidase from Thermotoga neapolitana caused an increase of the ratio of transglycosylation to hydrolysis (rs/rh) from 0.33 to 1.45–2.71. Further increase in rs/rh was achieved by modulation of pH of the reaction medium. The wild-type enzyme had a pH optimum for both hydrolysis and transglycosylation around 6 and reduced activity at higher pH. Interestingly, the mutants had constant transglycosylation activity over a broad pH range (5–10), while the hydrolytic activity was largely eliminated at pH 10. The results demonstrate that a combination of protein engineering and medium engineering can be used to eliminate the hydrolytic activity without affecting the transglycosylation activity of a glycoside hydrolase. The underlying factors for this success are pursued, and perturbations of the catalytic acid/base in combination with flexibility are shown to be important factors.
Collapse
Affiliation(s)
- Pontus Lundemo
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Eva Nordberg Karlsson
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Patrick Adlercreutz
- Department of Chemistry, Biotechnology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
35
|
Sugiyama Y, Gotoh A, Katoh T, Honda Y, Yoshida E, Kurihara S, Ashida H, Kumagai H, Yamamoto K, Kitaoka M, Katayama T. Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-l-fucosynthase. Glycobiology 2016; 26:1235-1247. [DOI: 10.1093/glycob/cww085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
|
36
|
Abstract
A robust platform for facile defined glycan synthesis does not exist. Yet the need for such technology has never been greater as researchers seek to understand the full scope of carbohydrate function, stretching beyond the classical roles of structure and energy storage to encompass highly nuanced cell signaling events. To comprehensively explore and exploit the full diversity of carbohydrate functions, we must first be able to synthesize them in a controlled manner. Toward this goal, traditional chemical syntheses are inefficient while nature's own synthetic enzymes, the glycosyl transferases, can be challenging to express and expensive to employ on scale. Glycoside hydrolases represent a pool of glycan processing enzymes that can be either used in a transglycosylation mode or, better, engineered to function as "glycosynthases," mutant enzymes capable of assembling glycosides. Glycosynthases grant access to valuable glycans that act as functional and structural probes or indeed as inhibitors and therapeutics in their own right. The remodelling of glycosylation patterns in therapeutic proteins via glycoside hydrolases and their mutants is an exciting frontier in both basic research and industrial scale processes.
Collapse
Affiliation(s)
- Phillip M. Danby
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity. PLoS One 2016; 11:e0158434. [PMID: 27367145 PMCID: PMC4930215 DOI: 10.1371/journal.pone.0158434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022] Open
Abstract
Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T. cruzi trans-sialidase infers trans-sialidase activity. On this basis, four enzymes with putative trans-sialidase activity were identified through an iterative alignment from 2909 native sialidases available in GenBank, which were cloned and expressed in Escherichia coli. Of these, one enzyme, SialH, derived from Haemophilus parasuis had an aromatic sandwich structure on the protein surface facing the end of the catalytic site (Phe168; Trp366), and was indeed found to exhibit trans-sialidase activity. SialH catalyzed production of the human milk oligosaccharide 3’-sialyllactose as well as the novel trans-sialylation product 3-sialyllactose using casein glycomacropeptide as sialyl donor and lactose as acceptor. The findings corroborated that Tyr119 and Trp312 in the T. cruzi trans-sialidase are part of an aromatic sandwich structure that confers trans-sialylation activity for lactose sialylation. The in silico identification of trans-glycosidase activity by rational active site topology alignment thus proved to be a quick tool for selecting putative trans-sialidases amongst a large group of glycosyl hydrolases. The approach moreover provided data that help understand structure-function relations of trans-sialidases.
Collapse
|
38
|
Liu S, Kulinich A, Cai ZP, Ma HY, Du YM, Lv YM, Liu L, Voglmeir J. The fucosidase-pool ofEmticicia oligotrophica: Biochemical characterization and transfucosylation potential. Glycobiology 2016; 26:871-879. [DOI: 10.1093/glycob/cww030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/29/2016] [Indexed: 11/14/2022] Open
|
39
|
Raich L, Borodkin V, Fang W, Castro-López J, van Aalten DMF, Hurtado-Guerrero R, Rovira C. A Trapped Covalent Intermediate of a Glycoside Hydrolase on the Pathway to Transglycosylation. Insights from Experiments and Quantum Mechanics/Molecular Mechanics Simulations. J Am Chem Soc 2016; 138:3325-32. [DOI: 10.1021/jacs.5b10092] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lluís Raich
- Departament
de Química Inorgànica i Orgànica and Institut
de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | | | | | - Jorge Castro-López
- Institute
of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio
Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | | | - Ramón Hurtado-Guerrero
- Fundación ARAID, Edificio CEEI
Aragón, 50018 Zaragoza, Spain
- Institute
of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio
Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica and Institut
de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08020 Barcelona, Spain
| |
Collapse
|
40
|
Novel α-L-Fucosidases from a Soil Metagenome for Production of Fucosylated Human Milk Oligosaccharides. PLoS One 2016; 11:e0147438. [PMID: 26800369 PMCID: PMC4723247 DOI: 10.1371/journal.pone.0147438] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/03/2016] [Indexed: 12/16/2022] Open
Abstract
This paper describes the discovery of novel α-L-fucosidases and evaluation of their potential to catalyse the transglycosylation reaction leading to production of fucosylated human milk oligosaccharides. Seven novel α-L-fucosidase-encoding genes were identified by functional screening of a soil-derived metagenome library and expressed in E. coli as recombinant 6xHis-tagged proteins. All seven fucosidases belong to glycosyl hydrolase family 29 (GH 29). Six of the seven α-L-fucosidases were substrate-inhibited, moderately thermostable and most hydrolytically active in the pH range 6-7, when tested with para-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as the substrate. In contrast, one fucosidase (Mfuc6) exhibited a high pH optimum and an unusual sigmoidal kinetics towards pNP-Fuc substrate. When tested for trans-fucosylation activity using pNP-Fuc as donor, most of the enzymes were able to transfer fucose to pNP-Fuc (self-condensation) or to lactose. With the α-L-fucosidase from Thermotoga maritima and the metagenome-derived Mfuc5, different fucosyllactose variants including the principal fucosylated HMO 2'-fucosyllactose were synthesised in yields of up to ~6.4%. Mfuc5 was able to release fucose from xyloglucan and could also use it as a fucosyl-donor for synthesis of fucosyllactose. This is the first study describing the use of glycosyl hydrolases for the synthesis of genuine fucosylated human milk oligosaccharides.
Collapse
|
41
|
Saumonneau A, Champion E, Peltier-Pain P, Molnar-Gabor D, Hendrickx J, Tran V, Hederos M, Dekany G, Tellier C. Design of an α-l-transfucosidase for the synthesis of fucosylated HMOs. Glycobiology 2015; 26:261-9. [DOI: 10.1093/glycob/cwv099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
|
42
|
Trincone A. Uncommon Glycosidases for the Enzymatic Preparation of Glycosides. Biomolecules 2015; 5:2160-83. [PMID: 26404386 PMCID: PMC4693232 DOI: 10.3390/biom5042160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
Most of the reports in literature dedicated to the use of glycosyl hydrolases for the preparation of glycosides are about gluco- (α- and β-form) and galacto-sidase (β-form), reflecting the high-availability of both anomers of glucosides and of β-galactosides and their wide-ranging applications. Hence, the idea of this review was to analyze the literature focusing on hardly-mentioned natural and engineered glycosyl hydrolases. Their performances in the synthetic mode and natural hydrolytic potential are examined. Both the choice of articles and their discussion are from a biomolecular and a biotechnological perspective of the biocatalytic process, shedding light on new applicative ideas and on the assortment of biomolecular diversity. The hope is to elicit new interest for the development of biocatalysis and to gather attention of biocatalyst practitioners for glycosynthesis.
Collapse
Affiliation(s)
- Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, Pozzuoli 80078, Naples, Italy.
| |
Collapse
|
43
|
Bissaro B, Durand J, Biarnés X, Planas A, Monsan P, O’Donohue MJ, Fauré R. Molecular Design of Non-Leloir Furanose-Transferring Enzymes from an α-l-Arabinofuranosidase: A Rationale for the Engineering of Evolved Transglycosylases. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00949] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bastien Bissaro
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Julien Durand
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Xevi Biarnés
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 08017 Barcelona, Spain
| | - Pierre Monsan
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Toulouse White
Biotechnology, UMS INRA/INSA 1337, UMS CNRS/INSA 3582, 3 Rue des Satellites, 31400 Toulouse, France
| | - Michael J. O’Donohue
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| | - Régis Fauré
- Université
de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792,
Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|
44
|
Zhang L, Lu L, Fan S, Jin L, Gu G, Xu L, Xiao M. One-step synthesis of α-Gal epitope and globotriose derivatives by an engineered α-galactosidase. RSC Adv 2015. [DOI: 10.1039/c4ra16917d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel method for synthesis of α-Gal epitope and globotriose derivatives by an engineered α-galactosidase through a one-enzyme one-step reaction.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Lab of Microbial Technology and School of Life Sciences
- Shandong University
- Jinan 250100
- PR China
| | - Lili Lu
- National Glycoengineering Research Center
- Shandong University
- Jinan 250100
- PR China
| | - Shuquan Fan
- State Key Lab of Microbial Technology and School of Life Sciences
- Shandong University
- Jinan 250100
- PR China
| | - Lan Jin
- National Glycoengineering Research Center
- Shandong University
- Jinan 250100
- PR China
| | - Guofeng Gu
- National Glycoengineering Research Center
- Shandong University
- Jinan 250100
- PR China
| | - Li Xu
- National Glycoengineering Research Center
- Shandong University
- Jinan 250100
- PR China
| | - Min Xiao
- State Key Lab of Microbial Technology and School of Life Sciences
- Shandong University
- Jinan 250100
- PR China
- National Glycoengineering Research Center
| |
Collapse
|
45
|
Arab-Jaziri F, Bissaro B, Tellier C, Dion M, Fauré R, O’Donohue MJ. Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-l-arabinofuranosidase. Carbohydr Res 2015; 401:64-72. [DOI: 10.1016/j.carres.2014.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023]
|
46
|
Teze D, Daligault F, Ferrières V, Sanejouand YH, Tellier C. Semi-rational approach for converting a GH36 α-glycosidase into an α-transglycosidase. Glycobiology 2014; 25:420-7. [DOI: 10.1093/glycob/cwu124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
De novo design of a trans- -N-acetylglucosaminidase activity from a GH1 -glycosidase by mechanism engineering. Glycobiology 2014; 25:394-402. [DOI: 10.1093/glycob/cwu121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
48
|
Zeuner B, Jers C, Mikkelsen JD, Meyer AS. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9615-31. [PMID: 25208138 DOI: 10.1021/jf502619p] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter optimization to promote "reverse" catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches and data available concerning optimization of enzymatic trans-glycosylation for novel synthesis of complex bioactive carbohydrates using sialidases, α-l-fucosidases, and β-galactosidases as examples. The use of an adequately high acceptor/donor ratio, reaction time control, continuous product removal, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity to trans-sialidase action has been established. However, the protein engineering route currently requires significant research efforts in each case because the structure-function relationship of the enzymes is presently poorly understood.
Collapse
Affiliation(s)
- Birgitte Zeuner
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark , Building 229, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
49
|
Guillotin L, Lafite P, Daniellou R. Unraveling the substrate recognition mechanism and specificity of the unusual glycosyl hydrolase family 29 BT2192 from Bacteroides thetaiotaomicron. Biochemistry 2014; 53:1447-55. [PMID: 24527659 DOI: 10.1021/bi400951q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosyl hydrolase (GH) family 29 (CAZy database) consists of retaining α-l-fucosidases. We have identified BT2192, a protein from Bacteroides thetaiotaomicron, as the first GH29 representative exhibiting both weak α-l-fucosidase and β-d-galactosidase activities. Determination and analysis of X-ray structures of BT2192 in complex with β-d-galactoside competitive inhibitors showed a new binding mode different from that of known GH29 enzymes. Three point mutations, specific to BT2192, prevent the canonical GH29 substrate α-l-fucose from binding efficiently to the fucosidase-like active site relative to other GH29 enzymes. β-d-Galactoside analogues bind and interact in a second pocket, which is not visible in other reported GH29 structures. Molecular simulations helped in the assessment of the flexibility of both substrates in their respective pocket. Hydrolysis of the fucosyl moiety from the putative natural substrates like 3-fucosyllactose or Lewis(X) antigen would be mainly due to the efficient interactions with the galactosyl moiety, in the second binding site, located more than 6-7 Å apart.
Collapse
Affiliation(s)
- Laure Guillotin
- Université Orléans, CNRS, ICOA, UMR 7311 , F-45067 Orleans, France
| | | | | |
Collapse
|
50
|
Teze D, Hendrickx J, Czjzek M, Ropartz D, Sanejouand YH, Tran V, Tellier C, Dion M. Semi-rational approach for converting a GH1 -glycosidase into a -transglycosidase. Protein Eng Des Sel 2013; 27:13-9. [DOI: 10.1093/protein/gzt057] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|