1
|
Gillespie KP, Pirnie R, Mesaros C, Blair IA. Cisplatin Dependent Secretion of Immunomodulatory High Mobility Group Box 1 (HMGB1) Protein from Lung Cancer Cells. Biomolecules 2023; 13:1335. [PMID: 37759736 PMCID: PMC10526420 DOI: 10.3390/biom13091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
High mobility group box 1 (HMGB1) is secreted from activated immune cells, necrotic cells, and certain cancers. Previous studies have reported that different patterns of post-translational modification, particularly acetylation and oxidation, mediate HMGB1 release and confer distinct extracellular HMGB1 signaling activity. Here we report that cisplatin but not carboplatin induces secretion of HMGB1 from human A549 non-small cell lung cancer (NSCLC) cells. Cisplatin-mediated HMGB1 secretion was dose-dependent and was regulated by nuclear exportin 1 (XPO1) also known as chromosomal maintenance 1 (CRM1) rather than adenosine diphosphate (ADP)-ribosylation, acetylation, or oxidation. HMGB1, as well as lysine acetylation and cysteine disulfide oxidation of secreted HMGB1, were monitored by sensitive and specific assays using immunoprecipitation, stable isotope dilution, differential alkylation, and nano liquid chromatography parallel reaction monitoring/high-resolution mass spectrometry (nano-LC-PRM/HRMS). A major fraction of the HMGB1 secreted by low-dose cisplatin treatment of A549 NSCLC cells was found to be in the fully reduced form. In contrast, mainly oxidized forms of HMGB1 were secreted by dimethyl sulfoxide (DMSO)-mediated apoptosis. These findings suggest that inhibition of XPO1 could potentiate the anti-tumor activity of cisplatin by increasing the nuclear accumulation of HMGB1 protein, an inhibitor of cisplatin DNA-adduct repair. Furthermore, low-dose cisplatin therapy could modulate the immune response in NSCLC through the established chemokine activity of extracellular reduced HMGB1. This could potentially enhance the efficacy of subsequent immunotherapy treatment.
Collapse
Affiliation(s)
| | | | | | - Ian A. Blair
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Influence of DNA Type on the Physicochemical and Biological Properties of Polyplexes Based on Star Polymers Bearing Different Amino Functionalities. Polymers (Basel) 2023; 15:polym15040894. [PMID: 36850178 PMCID: PMC9966362 DOI: 10.3390/polym15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The interactions of two star polymers based on poly (2-(dimethylamino)ethyl methacrylate) with different types of nucleic acids are investigated. The star polymers differ only in their functionality to bear protonable amino or permanently charged quaternary ammonium groups, while DNAs of different molar masses, lengths and topologies are used. The main physicochemical parameters of the resulting polyplexes are determined. The influence of the polymer' functionality and length and topology of the DNA on the structure and properties of the polyelectrolyte complexes is established. The quaternized polymer is characterized by a high binding affinity to DNA and formed strongly positively charged, compact and tight polyplexes. The parent, non-quaternized polymer exhibits an enhanced buffering capacity and weakened polymer/DNA interactions, particularly upon the addition of NaCl, resulting in the formation of less compact and tight polyplexes. The cytotoxic evaluation of the systems indicates that they are sparing with respect to the cell lines studied including osteosarcoma, osteoblast and human adipose-derived mesenchymal stem cells and exhibit good biocompatibility. Transfection experiments reveal that the non-quaternized polymer is effective at transferring DNA into cells, which is attributed to its high buffering capacity, facilitating the endo-lysosomal escape of the polyplex, the loose structure of the latter one and weakened polymer/DNA interactions, benefitting the DNA release.
Collapse
|
3
|
Kishi S, Nishiguchi Y, Honoki K, Mori S, Fujiwara-Tani R, Sasaki T, Fujii K, Kawahara I, Goto K, Nakashima C, Kido A, Tanaka Y, Luo Y, Kuniyasu H. Role of Glycated High Mobility Group Box-1 in Gastric Cancer. Int J Mol Sci 2021; 22:5185. [PMID: 34068442 PMCID: PMC8153607 DOI: 10.3390/ijms22105185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs) are produced in response to a high-glucose environment and oxidative stress and exacerbate various diseases. Nε-(Carboxymethyl)lysine (CML) is an AGE that is produced by the glycation of lysine residues of proteins. There are a few reports on alterations in protein function due to CML modification; however, its association with cancer is not clear. We investigated the significance of CML modification in high mobility group box protein-1 (HMGB1), a cytokine that is significantly associated with cancer progression. Treatment of the gastric cancer cell lines TMK1 and MKN74 with glyoxal or glucose resulted in increased CML modification compared to untreated cells. CML-HMGB1 was modified via oxidation and more pronouncedly activated the receptor for AGE and downstream AKT and NF-κB compared to naïve HMGB1 and oxidized HMGB1. CML-HMGB1 bound with reduced affinity to DNA and histone H3, resulting in enhanced extranuclear translocation and extracellular secretion. Treatment of gastric cancer cells with CML-HMGB1 enhanced cell proliferation and invasion, sphere formation, and protection from thapsigargin-induced apoptosis, and decreased 5-FU sensitivity in comparison to HMGB1. Further, CML-HMGB1 was detected at various levels in all the 10 gastric cancer tumor specimens. HMGB1 levels correlated with primary tumor progression and distant metastasis, whereas CML-HMGB1 levels were associated with primary tumor progression, lymph node metastasis, distant metastasis, and stage. In addition, CML-HMGB1 levels correlated with oxidative stress in cancer tissues and resistance to neoadjuvant therapy. Therefore, CML modification of HMGB1 enhanced the cancer-promoting effect of HMGB1. In this study, CML-HMGB1 has been highlighted as a new therapeutic target, and analysis of the molecular structure of CML-HMGB1 is desired in the future.
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kanya Honoki
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| | - Akira Kido
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Yasuhito Tanaka
- Department of Orthopedics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.H.); (A.K.); (Y.T.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (S.K.); (Y.N.); (S.M.); (R.F.-T.); (T.S.); (K.F.); (I.K.); (K.G.); (C.N.)
| |
Collapse
|
4
|
Haladjova E, Dimitrov I, Davydova N, Todorova J, Ugrinova I, Forys A, Trzebicka B, Rangelov S. Cationic (Co)polymers Based on N-Substituted Polyacrylamides as Carriers of Bio-macromolecules: Polyplexes, Micelleplexes, and Spherical Nucleic Acidlike Structures. Biomacromolecules 2020; 22:971-983. [PMID: 33371665 DOI: 10.1021/acs.biomac.0c01666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel N-substituted polyacrylamides bearing a cycle with two tertiary amines, poly(4-methyl-piperazin-1-yl)-propenone (PMPP) and its block copolymers with polylactide (PMPP-b-PLA), are synthesized and characterized. The homopolymers are water-soluble, whereas the block copolymers self-assemble in aqueous solution into a small size (Rh around 30 nm), are narrowly distributed, and exhibit core-shell micelles with good colloidal stability. Both the homopolymers and copolymer micelles are positively charged (ζ-potentials in the 13.8-17.6 mV range), which are employed for formation of electrostatic complexes with oppositely charged DNA. Complexes (polyplexes, micelleplexes, and spherical nucleic acidlike structures) in a wide range of N/P (amino to phosphate groups) ratios are prepared with short (115 bp) and long (2000 bp) DNA. The behavior and physicochemical properties of the resulting nanocarriers of DNA are strongly dependent on the polymer/polymer micelles' characteristics and the DNA chain length. All systems exhibit low cytotoxicity and good cellular uptake ability and show promise for gene delivery and regulation.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nadejda Davydova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119991, Russia
| | - Jordana Todorova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
5
|
Lv WL, Arnesano F, Carloni P, Natile G, Rossetti G. Effect of in vivo post-translational modifications of the HMGB1 protein upon binding to platinated DNA: a molecular simulation study. Nucleic Acids Res 2019; 46:11687-11697. [PMID: 30407547 PMCID: PMC6294504 DOI: 10.1093/nar/gky1082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs. Its efficiency is unfortunately severely hampered by resistance. The High Mobility Group Box (HMGB) proteins may sensitize tumor cells to cisplatin by specifically binding to platinated DNA (PtDNA) lesions. In vivo, the HMGB/PtDNA binding is regulated by multisite post-translational modifications (PTMs). The impact of PTMs on the HMGB/PtDNA complex at atomistic level is here investigated by enhanced sampling molecular simulations. The PTMs turn out to affect the structure of the complex, the mobility of several regions (including the platinated site), and the nature of the protein/PtDNA non-covalent interactions. Overall, the multisite PTMs increase significantly the apparent synchrony of all the contacts between the protein and PtDNA. Consequently, the hydrophobic anchoring of the side chain of F37 between the two cross-linked guanines at the platinated site-a key element of the complexes formation - is more stable than in the complex without PTM. These differences can account for the experimentally measured greater affinity for PtDNA of the protein isoforms with PTMs. The collective behavior of multisite PTMs, as revealed here by the synchrony of contacts, may have a general significance for the modulation of intermolecular recognitions occurring in vivo.
Collapse
Affiliation(s)
- Wenping Lyu Lv
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University, 52056 Aachen, Germany.,Computation-Based Science and Technology Research Center, Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giovanni Natile
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52062 Aachen, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018; 2:1005-1020. [PMID: 30202816 PMCID: PMC6128227 DOI: 10.1002/hep4.1223] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
High‐mobility group box‐1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA‐binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage‐associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll‐like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug‐induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine University of Illinois at Chicago Chicago IL
| |
Collapse
|
7
|
Ugrinova I, Pasheva E. HMGB1 Protein: A Therapeutic Target Inside and Outside the Cell. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:37-76. [PMID: 28215228 DOI: 10.1016/bs.apcsb.2016.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-mobility group box 1 protein (HMGB1) is a nonhistone chromosomal protein discovered more than 30 years ago. It is an abundant nuclear protein that has a dual function-in the nucleus, it binds DNA and participates in practically all DNA-dependent processes serving as an architectural factor. Outside the cell, HMGB1 plays a different role-it acts as an alarmine that activates a large number of HMGB1-"competent" cells and mediates a broad range of physiological and pathological responses. This universality makes it an attractive target for innovative therapeutic strategies in the treatment of various diseases. Here we present an overview of the major nuclear and extracellular properties of HMGB1 and describe its interaction with different molecular partners as specific receptors or inhibitors, which are important for its role as a target in multiple diseases. We highlight its pivotal role as a target for cancer treatment at two aspects: first in terms of its substantial impact on the repair capacity of cancer cells, thus affecting the effectiveness of chemotherapy with the antitumor drug cis-platinum and, second, the possibility to be targeted by microRNAs influencing different pathways of human diseases, thus making it a promising candidate for a new strategy for therapeutic interventions against various pathological conditions but mainly cancer.
Collapse
Affiliation(s)
- I Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - E Pasheva
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
8
|
Thapar R. Structure-specific nucleic acid recognition by L-motifs and their diverse roles in expression and regulation of the genome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:677-87. [PMID: 25748361 DOI: 10.1016/j.bbagrm.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 01/08/2023]
Abstract
The high-mobility group (HMG) domain containing proteins regulate transcription, DNA replication and recombination. They adopt L-shaped folds and are structure-specific DNA binding motifs. Here, I define the L-motif super-family that consists of DNA-binding HMG-box proteins and the L-motif of the histone mRNA binding domain of stem-loop binding protein (SLBP). The SLBP L-motif and HMG-box domains adopt similar L-shaped folds with three α-helices and two or three small hydrophobic cores that stabilize the overall fold, but have very different and distinct modes of nucleic acid recognition. A comparison of the structure, dynamics, protein-protein and nucleic acid interactions, and regulation by PTMs of the SLBP and the HMG-box L-motifs reveals the versatile and diverse modes by which L-motifs utilize their surfaces for structure-specific recognition of nucleic acids to regulate gene expression.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences at Rice-Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA.
| |
Collapse
|
9
|
Analyses of nuclear proteins and nucleic acid structures using atomic force microscopy. Methods Mol Biol 2015; 1262:119-53. [PMID: 25555579 DOI: 10.1007/978-1-4939-2253-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Since the inception of atomic force microscopy (AFM) in 1986, the value of this technology for exploring the structure and biophysical properties of a variety of biological samples has been increasingly recognized. AFM provides the opportunity to both image samples at nanometer resolution and also measure the forces on the surface of the sample. Here, we describe a variety of methods for studying nuclear samples including single nucleic acid molecules, higher-order chromatin structures, the nucleolus, and the nucleus. Protocols to prepare nucleic acids, nucleic acid-protein complexes, reconstituted chromatin, the cell nucleus, and the nucleolus are included, as well as protocols describing how to prepare the AFM substrate and the AFM tip. Finally, we describe how to perform conventional imaging, high-speed imaging, recognition imaging, force spectroscopy, and nanoindentation experiments.
Collapse
|
10
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
11
|
The chaperone like function of the nonhistone protein HMGB1. Biochem Biophys Res Commun 2013; 432:231-5. [PMID: 23402754 DOI: 10.1016/j.bbrc.2013.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/21/2022]
Abstract
Almost all essential nuclear processes as replication, repair, transcription and recombination require the chromatin template to be correctly unwound and than repackaged. The major strategy that the cell uses to overcome the nucleosome barrier is the proper removal of the histone octamer and subsequent deposition onto DNA. Important factors in this multi step phenomenon are the histone chaperones that can assemble nucleosome arrays in vitro in the absence of ATP. The nonhistone protein HMGB1 is a good candidate for a chaperone as its molecule consists of two DNA binding motives, Box's A and B, and a long nonstructured C tail highly negatively charged. HMGB1 protein is known as a nuclear "architectural" factor for its property to bind preferentially to distorted DNA structures and was reported to kink the double helix. Our experiments show that in the classical stepwise dialysis method for nucleosome assembly the addition of HMGB1 protein stimulates more than two times the formation of middle-positioned nucleosomes. The stimulation effect persists in dialysis free experiment when the reconstitution is possible only in the presence of a chaperone. The addition of HMGB1 protein strongly enhanced the formation of a nucleosome in a dose dependant manner. Our results show that the target of HMGB1 action as a chaperone is the DNA fragment not the histone octamer. One possible explanation for the stimulating effect of HMGB1 is the "architectural" property of the protein to associate with the middle of the DNA fragment and to kink it. The acquired V shaped DNA structure is probably conformationals more favorable to wrap around the prefolded histone octamer. We tested also the role of the post-synthetic acetylation for the chaperone function of HMGB1 protein. The presence of an acetyl groups at Lys 2 decreases strongly the stimulating effect of the protein in the stepwise salt dialysis experiment and the same tendency persisted in the dialysis free experiment.
Collapse
|
12
|
Lysine acetylation: elucidating the components of an emerging global signaling pathway in trypanosomes. J Biomed Biotechnol 2012; 2012:452934. [PMID: 23093844 PMCID: PMC3470893 DOI: 10.1155/2012/452934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
In the past ten years the number of acetylated proteins reported in literature grew exponentially. Several authors have proposed that acetylation might be a key component in most eukaryotic signaling pathways, as important as phosphorylation. The enzymes involved in this process are starting to emerge; acetyltransferases and deacetylases are found inside and outside the nuclear compartment and have different regulatory functions. In trypanosomatids several of these enzymes have been described and are postulated to be novel antiparasitic targets for the rational design of drugs. In this paper we overview the most important known acetylated proteins and the advances made in the identification of new acetylated proteins using high-resolution mass spectrometry. Also, we summarize what is known so far about the acetyltransferases and deacetylases in eukaryotes, focusing on trypanosomes and their potential use as chemotherapeutic targets.
Collapse
|
13
|
The effect of PKC phosphorylation on the "architectural" properties of HMGB1 protein. Mol Biol Rep 2012; 39:9947-53. [PMID: 22740141 DOI: 10.1007/s11033-012-1863-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
High mobility group box (HMGB)1 protein acts as an architectural element, promoting the assembly of active nucleoprotein complexes due to its ability to bend DNA and to bind preferentially to distorted DNA structures. The behavior of HMGB1 as an "architect" of chromatin defines it as an important factor in many cellular processes such as repair, replication and remodeling. It was shown that the post-synthetic acetylation of HMGB1 at Lys2 modulated its essential properties as a structure-specific nuclear protein. We studied the role of PKC phosphorylation on the "architectural" properties of HMGB1, (i) the effect for the formation of a stable complex with DNA damaged by the anti-tumour drug cis-platinum and (ii) the influence on the ability of HMGB1 protein to bend short DNA fragments. PKC-phosphorylated recombinant HMGB1 increased about an order of magnitude its affinity to cis-platinated DNA, a finding that has already been reported for in vivo acetylated protein. Regarding the effect on the protein's DNA bending ability, it was enhanced upon phosphorylation as demonstrated by the stimulation of DNA circularization. We showed also that PKC phosphorylated the recombinant protein in vitro simultaneously at two target sites. Our results demonstrate that the PKC phosphorylation of HMGB1 has a considerable effect on the fundamental properties of the protein; therefore this post-synthetic modification may serve as a modulator of the HMGB1 participation in different nuclear processes.
Collapse
|
14
|
Davis K, Banerjee S, Friggeri A, Bell C, Abraham E, Zerfaoui M. Poly(ADP-ribosyl)ation of high mobility group box 1 (HMGB1) protein enhances inhibition of efferocytosis. Mol Med 2012; 18:359-69. [PMID: 22204001 DOI: 10.2119/molmed.2011.00203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/21/2011] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis of apoptotic cells by macrophages, known as efferocytosis, is a critical process in the resolution of inflammation. High mobility group box 1 (HMGB1) protein was first described as a nuclear nonhistone DNA-binding protein, but is now known to be secreted by activated cells during inflammatory processes, where it participates in diminishing efferocytosis. Although HMGB1 is known to undergo modification when secreted, the effect of such modifications on the inhibitory actions of HMGB1 during efferocytosis have not been reported. In the present studies, we found that HMGB1 secreted by Toll-like receptor 4 (TLR4) stimulated cells is highly poly(ADP-ribosyl)ated (PARylated). Gene deletion of poly(ADP)-ribose polymerase (PARP)-1 or pharmacological inhibition of PARP-1 decreased the release of HMGB1 from the nucleus to the extracellular milieu after TLR4 engagement. Preincubation of macrophages or apoptotic cells with HMGB1 diminished efferocytosis through mechanisms involving binding of HMGB1 to phosphatidylserine on apoptotic cells and to the receptor for advanced glycation end products (RAGE) on macrophages. Preincubation of either macrophages or apoptotic cells with PARylated HMGB1 inhibited efferocytosis to a greater degree than exposure to unmodified HMGB1, and PARylated HMGB1 demonstrated higher affinity for phosphatidylserine and RAGE than unmodified HMGB1. PARylated HMGB1 had a greater inhibitory effect on Ras-related C3 botulinum toxin substrate 1 (Rac-1) activation in macrophages during the uptake of apoptotic cells than unmodified HMGB1. The present results, showing that PARylation of HMGB1 enhances its ability to inhibit efferocytosis, provide a novel mechanism by which PARP-1 may promote inflammation.
Collapse
Affiliation(s)
- Kasey Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA
| | | | | | | | | | | |
Collapse
|
15
|
Numata M, Nagata K. Synergistic requirement of orphan nonamer-like elements and DNA bending enhanced by HMGB1 for RAG-mediated nicking at cryptic 12-RSS but not authentic 12-RSS. Genes Cells 2011; 16:879-95. [PMID: 21740486 DOI: 10.1111/j.1365-2443.2011.01534.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
V(D)J recombination is initiated by the specific binding of the recombination activating gene (RAG) complex to the heptamer and nonamer elements within recombination signal sequence (RSS). The break points associated with some chromosomal translocations contain cryptic RSSs, and mistargeting of RAG proteins to these less conserved elements could contribute to an aberrant V(D)J recombination. Recently, we found RAG-dependent recombination in the hotspots of TEL-AML1 t(12;21)(p13;q22) chromosomal translocation by an extrachromosomal recombination assay. Here, we describe using in vitro cleavage assays that RAG proteins directly bind to and introduce nicks into TEL and AML1 translocation regions, which contain several heptamer-like sequences. The cryptic nicking site within the TEL fragment was cleaved by RAG proteins essentially depending on a 12-RSS framework, and the nicking activity was enhanced synergistically by both HMGB1 and orphan nonamer-like (NL) sequences, which do not possess counterpart heptamers. In addition, we found that DNA bending stimulated by HMGB1 is indispensable for the HMGB1- and orphan NL element-dependent enhancement of RAG-mediated nicking at the cryptic 12-RSS. Collectively, we would propose the mechanism of HMGB1-dependent enhancement of RAG-mediated nicking at a cryptic RSS through enhanced DNA bending.
Collapse
Affiliation(s)
- Masashi Numata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | |
Collapse
|
16
|
Elenkov I, Pelovsky P, Ugrinova I, Takahashi M, Pasheva E. The DNA binding and bending activities of truncated tail-less HMGB1 protein are differentially affected by Lys-2 and Lys-81 residues and their acetylation. Int J Biol Sci 2011; 7:691-9. [PMID: 21647302 PMCID: PMC3107488 DOI: 10.7150/ijbs.7.691] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/24/2011] [Indexed: 11/24/2022] Open
Abstract
The role of lysines 2 and 81 as target sites for acetylation in full-length HMGB1 and truncated tail-less protein, respectively, has been studied by mutation analysis for the abilities of these proteins to bind and bend DNA. The DNA bending ability of truncated tail-less HMGB1 containing Lys-2 mutated to alanine does not differ from that of the wild-type protein, while the same mutation of Lys-81 reduced the bending capacity of the mutant protein. These data demonstrate that Lys-81 is critical for the DNA bending ability of truncated HMGB1. Such a conclusion is further confirmed by the experiments carried out with CBP-acetylated proteins: acetylation of Lys-2 in mutant protein K81/A81 alleviated DNA bending and induced DNA end-joining. On the contrary, the acetylation of Lys-81 in the mutant K2/A2 enhanced the bending potential of HMGB1∆C. Regarding the ability of HMGB1 to specifically bind bent DNA, the individual mutations of either K2 or K81 as well as the double mutation of both residues to alanine were found to completely abolish binding of truncated tail-less HMGB1 to cisplatin-modified DNA. We conclude that unlike the case with the bending ability of truncated HMGB1, where Lys-81 has a primary function, Lys-2 and Lys-81 are both critical for the protein's binding to cisplatin-modified DNA. The mutation K2/A2 in full-length HMGB1 and acidic tail removal induce the same conformational changes. Any further substitutions at the acetylable lysines in the truncated form of HMGB1 do not have an additional effect.
Collapse
Affiliation(s)
- Ivan Elenkov
- Institute of Moleculat Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
17
|
Ugrinova I, Pashev IG, Pasheva EA. Cyclin-dependent kinase 5 phosphorylates mammalian HMGB1 protein only if acetylated. J Biochem 2011; 149:563-8. [PMID: 21257610 DOI: 10.1093/jb/mvr005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High mobility group box 1 (HMGB1) protein is the most abundant chromatin-associated non-histone protein expressed in all nucleated eukaryotic cells. We examined the phosphorylation of mammalian HMGB1 by testing the ability of the cyclin-dependent kinase 5 (Cdk5) to use as substrates native protein, either unmodified or in vivo acetylated and recombinant HMGB1. It turned out that Cdk5 was active on the in vivo acetylated HMGB1 only. We studied the effect of the phosphorylation on the 'architectural' properties of the acetylated HMGB1. The treatment with Cdk5 of the acetylated HMGB1 inhibited its capacity to induce DNA end-joining but had no effect on its ability to recognize distorted DNA structures.
Collapse
Affiliation(s)
- Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | | | | |
Collapse
|
18
|
Xiao L, Williams AM, Grove A. The C-terminal domain of yeast high mobility group protein HMO1 mediates lateral protein accretion and in-phase DNA bending. Biochemistry 2010; 49:4051-9. [PMID: 20402481 DOI: 10.1021/bi1003603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Saccharomyces cerevisiae high mobility group protein HMO1 has two DNA binding domains, box A and box B, and a lysine-rich C-terminal extension. Among other functions, HMO1 has been implicated as a component of the RNA polymerase I transcription machinery. We report here that HMO1 promotes DNA apposition as evidenced by its stimulation of end-joining in the presence of T4 DNA ligase. Analysis of truncated HMO1 variants shows that enhanced DNA end-joining requires the C-terminal domain but that box A is dispensable. The efficiency of joining DNA ends with different nucleotide content parallels that of DNA ligase, and optimal ligation efficiency is attained when DNA is effectively saturated with protein, implying that HMO1 binds internal sites in preference to DNA ends. Removal of the C-terminal tail does not attenuate the self-association characteristic of HMO1 but alters the stoichiometry of binding and prevents intramolecular DNA cyclization. This suggests that the C-terminal domain mediates an accretion of HMO1 on DNA that causes in-phase DNA bending and that binding of HMO1 lacking the C-terminal domain results in out-of-phase bending. Taken together, our results show that HMO1 shares with mammalian HMGB proteins the ability to promote DNA association. Notably, the C-terminal domain mediates both DNA end-joining and an accretion of multiple HMO1 protomers on duplex DNA that produces in-phase DNA bending. This mode of binding is reminiscent of that proposed for the mammalian RNA polymerase I transcription factor UBF.
Collapse
Affiliation(s)
- Lijuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
19
|
Modern Atomic Force Microscopy and Its Application to the Study of Genome Architecture. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2010. [DOI: 10.1007/978-3-642-03535-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Ray S, Grove A. The yeast high mobility group protein HMO2, a subunit of the chromatin-remodeling complex INO80, binds DNA ends. Nucleic Acids Res 2009; 37:6389-99. [PMID: 19726587 PMCID: PMC2770664 DOI: 10.1093/nar/gkp695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA damage is a common hazard that all cells have to combat. Saccharomyces cerevisiae HMO2 is a high mobility group protein (HMGB) that is a component of the chromatin-remodeling complex INO80, which is involved in double strand break (DSB) repair. We show here using DNA end-joining and exonuclease protection assays that HMO2 binds preferentially to DNA ends. While HMO2 binds DNA with both blunt and cohesive ends, the sequence of a single stranded overhang significantly affects binding, supporting the conclusion that HMO2 recognizes features at DNA ends. Analysis of the effect of duplex length on the ability of HMO2 to protect DNA from exonucleolytic cleavage suggests that more than one HMO2 must assemble at each DNA end. HMO2 binds supercoiled DNA with higher affinity than linear DNA and has a preference for DNA with lesions such as pairs of tandem mismatches; however, comparison of DNA constructs of increasing length suggests that HMO2 may not bind stably as a monomer to distorted DNA. The remarkable ability of HMO2 to protect DNA from exonucleolytic cleavage, combined with reports that HMO2 arrives early at DNA DSBs, suggests that HMO2 may play a role in DSB repair beyond INO80 recruitment.
Collapse
Affiliation(s)
- Sreerupa Ray
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
21
|
Ugrinova I, Pashev IG, Pasheva EA. Nucleosome binding properties and Co-remodeling activities of native and in vivo acetylated HMGB-1 and HMGB-2 proteins. Biochemistry 2009; 48:6502-7. [PMID: 19522541 DOI: 10.1021/bi9004304] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The participation of HMGB-1 and -2 proteins in chromatin remodeling is investigated. Here, the ability of these proteins and their posttranslationally acetylated forms to affect SWI/SNF and RSC-dependent nucleosome mobilization was studied. Both proteins assisted nucleosome sliding induced by the two remodelers. Following acetylation, these proteins acquire the ability to bind to core particles, a property that has not yet been documented with parental proteins. We further report that compared to the nonmodified proteins, acetylated HMGB-1 and -2 exhibited both stronger binding to linker DNA-containing nucleosomes and a higher co-remodeling activity. Acetylation of HMGB-1 and -2 proteins enhanced binding of SWI/SNF to the nucleosome but did not affect its ATPase activity.
Collapse
Affiliation(s)
- Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
22
|
Pelovsky P, Pashev IG, Pasheva E. Interplay between in vitro acetylation and phosphorylation of tailless HMGB1 protein. Biochem Biophys Res Commun 2009; 380:138-42. [DOI: 10.1016/j.bbrc.2009.01.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/13/2009] [Indexed: 12/01/2022]
|
23
|
Gaillard C, Borde C, Gozlan J, Maréchal V, Strauss F. A high-sensitivity method for detection and measurement of HMGB1 protein concentration by high-affinity binding to DNA hemicatenanes. PLoS One 2008; 3:e2855. [PMID: 18682735 PMCID: PMC2478715 DOI: 10.1371/journal.pone.0002855] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/10/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Protein HMGB1, an abundant nuclear non-histone protein that interacts with DNA and has an architectural function in chromatin, was strikingly shown some years ago to also possess an extracellular function as an alarmin and a mediator of inflammation. This extracellular function has since been actively studied, both from a fundamental point of view and in relation to the involvement of HMGB1 in inflammatory diseases. A prerequisite for such studies is the ability to detect HMGB1 in blood or other biological fluids and to accurately measure its concentration. METHODOLOGY/PRINCIPAL FINDINGS In addition to classical techniques (western blot, ELISA) that make use of specific anti-HMGB1 antibodies, we present here a new, extremely sensitive technique that is based on the fact that hemicatenated DNA loops (hcDNA) bind HMGB1 with extremely high affinity, higher than the affinity of specific antibodies, similar in that respect to DNA aptamers. DNA-protein complexes formed between HMGB1 and radiolabeled hcDNA are analyzed by electrophoresis on nondenaturing polyacrylamide gels using the band-shift assay method. In addition, using a simple and fast protocol to purify HMGB1 on the basis of its solubility in perchloric acid allowed us to increase the sensitivity by suppressing any nonspecific background. The technique can reliably detect HMGB1 at a concentration of 1 pg per microliter in complex fluids such as serum, and at much lower concentrations in less complex samples. It compares favorably with ELISA in terms of sensitivity and background, and is less prone to interference from masking proteins in serum. CONCLUSION The new technique, which illustrates the potential of DNA nanoobjects and aptamers to form high-affinity complexes with selected proteins, should provide a valuable tool to further investigate the extracellular functions of HMGB1 and its involvement in inflammatory pathologies.
Collapse
Affiliation(s)
- Claire Gaillard
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris Descartes, INSERM, Paris, France
| | - Chloé Borde
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris Descartes, INSERM, Paris, France
| | - Joël Gozlan
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris Descartes, INSERM, Paris, France
| | - Vincent Maréchal
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris Descartes, INSERM, Paris, France
| | - François Strauss
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris Descartes, INSERM, Paris, France
| |
Collapse
|
24
|
Post-synthetic acetylation of HMGB1 protein modulates its interactions with supercoiled DNA. Mol Biol Rep 2008; 36:1399-404. [PMID: 18670905 DOI: 10.1007/s11033-008-9327-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
High mobility group box (HMGB) proteins 1 and 2 are abundant non-histone nuclear proteins that regulate chromatin structure because of their structure-specific binding to DNA. Here, we have investigated how the post-synthetic acetylation of HMGB1 affects its interaction with negatively supercoiled DNA by employing monoacetylated at Lys2 protein, isolated from butyrate-treated cells. Our data reveal that this modification enhances three reaction parameters: binding affinity, supercoiling activity and capacity to protect the supercoiled DNA from relaxation by topoisomerase I. We show that monoacetylation at Lys2 mimics the effect of acidic tail removal but to a lesser extent thus demonstrating that in vivo acetylated HMGB1 is capable of modulating its interaction with negatively supercoiled DNA.
Collapse
|
25
|
A critical role in structure-specific DNA binding for the acetylatable lysine residues in HMGB1. Biochem J 2008; 411:553-61. [PMID: 18241198 DOI: 10.1042/bj20071613] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structure-specific DNA-binding protein HMGB1 (high-mobility group protein B1) which comprises two tandem HMG boxes (A and B) and an acidic C-terminal tail, is acetylated in vivo at Lys(2) and Lys(11) in the A box. Mutation to alanine of both residues in the isolated A domain, which has a strong preference for pre-bent DNA, abolishes binding to four-way junctions and 88 bp DNA minicircles. The same mutations in full-length HMGB1 also abolish its binding to four-way junctions, and binding to minicircles is substantially impaired. In contrast, when the acidic tail is absent (AB di-domain) there is little effect of the double mutation on four-way junction binding, although binding to minicircles is reduced approximately 15-fold. Therefore it appears that in AB the B domain is able to substitute for the non-functional A domain, whereas in full-length HMGB1 the B domain is masked by the acidic tail. In no case does single substitution of Lys(2) or Lys(11) abolish DNA binding. The double mutation does not significantly perturb the structure of the A domain. We conclude that Lys(2) and Lys(11) are critical for binding of the isolated A domain and HMGB1 to distorted DNA substrates.
Collapse
|
26
|
Topalova D, Ugrinova I, Pashev IG, Pasheva EA. HMGB1 protein inhibits DNA replication in vitro: a role of the acetylation and the acidic tail. Int J Biochem Cell Biol 2007; 40:1536-42. [PMID: 18191612 DOI: 10.1016/j.biocel.2007.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The high mobility group box (HMGB) 1 protein is a very abundant and conserved protein that is implicated in many key cellular events but its functions within the nucleus remain elusive. The role of this protein in replication of closed circular DNA containing a eukaryotic origin of replication has been studied in vitro by using native and recombinant HMGB1 as well as various modified HMGB1 preparations such as truncated protein, lacking its C-terminal tail, in vivo acetylated protein, and recombinant HMGB1 phosphorylated in vitro by protein kinase C (PKC). Native HMGB1 extracted from tumour cells inhibits replication and this effect is reduced upon acetylation and completely abolished upon removal of the acidic C-terminal tail. Recombinant HMGB1, however, fails to inhibit replication but it acquires such a property following in vitro phosphorylation by PKC.
Collapse
Affiliation(s)
- Dessislava Topalova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|