1
|
Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol Mol Biol Rev 2020; 84:84/2/e00090-19. [PMID: 32295819 DOI: 10.1128/mmbr.00090-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetylation is a conserved modification used to regulate a variety of cellular pathways, such as gene expression, protein synthesis, detoxification, and virulence. Acetyltransferase enzymes transfer an acetyl moiety, usually from acetyl coenzyme A (AcCoA), onto a target substrate, thereby modulating activity or stability. Members of the GCN5- N -acetyltransferase (GNAT) protein superfamily are found in all domains of life and are characterized by a core structural domain architecture. These enzymes can modify primary amines of small molecules or of lysyl residues of proteins. From the initial discovery of antibiotic acetylation, GNATs have been shown to modify a myriad of small-molecule substrates, including tRNAs, polyamines, cell wall components, and other toxins. This review focuses on the literature on small-molecule substrates of GNATs in bacteria, including structural examples, to understand ligand binding and catalysis. Understanding the plethora and versatility of substrates helps frame the role of acetylation within the larger context of bacterial cellular physiology.
Collapse
|
2
|
Nadar VS, Chen J, Dheeman DS, Galván AE, Yoshinaga-Sakurai K, Kandavelu P, Sankaran B, Kuramata M, Ishikawa S, Rosen BP, Yoshinaga M. Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic. Commun Biol 2019; 2:131. [PMID: 30993215 PMCID: PMC6465285 DOI: 10.1038/s42003-019-0365-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich's salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits glutamine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the pervasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors.
Collapse
Affiliation(s)
- Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Dharmendra S. Dheeman
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Present Address: Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Adriana Emilce Galván
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, T4001MVB Argentina
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Palani Kandavelu
- SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA
| | - Masato Kuramata
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Satoru Ishikawa
- Division of Hazardous Chemicals, National Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604 Japan
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199 USA
| |
Collapse
|
3
|
Neuwald AF, Altschul SF. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations. PLoS Comput Biol 2016; 12:e1005294. [PMID: 28002465 PMCID: PMC5225019 DOI: 10.1371/journal.pcbi.1005294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/10/2017] [Accepted: 12/08/2016] [Indexed: 11/25/2022] Open
Abstract
Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes’ theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu). Protein sequence data, when gathered in great quantity, contain important but implicit biological information manifest as statistical correlations. Here we describe an approach to access this information by comprehensively modeling and characterizing the distribution of sequences belonging to a major protein superfamily. This approach takes as input a large set of unaligned sequences belonging to the superfamily. By applying the minimum description length principle, it seeks the statistical model that best explains the sequences while avoiding over-fitting the data. It concurrently aligns the sequences and, to model evolutionary divergence, partitions them into subgroups that are hierarchically-arranged based upon correlated residue patterns. Auxiliary routines create PyMOL scripts to visualize the locations of correlated residues within available structures. Because these correlations likely arise from structural and biochemical constraints, they can help elucidate protein properties important for functional specificity. Comparing and contrasting sequence and structural features in this way may therefore suggest, in the light of published studies, plausible biological hypotheses for experimental investigation. We illustrate this approach with N-acetyltransferases.
Collapse
Affiliation(s)
- Andrew F. Neuwald
- Institute for Genome Sciences and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, BioPark II, Room 617, Baltimore, MD, United States of America
- * E-mail:
| | - Stephen F. Altschul
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
4
|
Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses. Appl Environ Microbiol 2016; 82:7041-7051. [PMID: 27694229 DOI: 10.1128/aem.02604-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/20/2022] Open
Abstract
Acetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals. Streptomyces species utilize a Gcn5 N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin, phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA from Salmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases. S. enterica was used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO. In vitro and in vivo analyses identified substrates acetylated by putative PPT acetyltransferases from Deinococcus radiodurans (DR_1057 and DR_1182) and Geobacillus kaustophilus (GK0593 and GK2920). In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results of in vitro studies were consistent with the in vivo results. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases in Burkholderia xenovorans, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baylyi, and Escherichia coli IMPORTANCE: The work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role of Gcn5 N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination of in vivo, in vitro, and bioinformatics approaches reported here identified GNATs that can acetylate and detoxify phosphinothricin.
Collapse
|
5
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
6
|
Hentchel KL, Escalante-Semerena JC. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Microbiol Mol Biol Rev 2015; 79:321-46. [PMID: 26179745 PMCID: PMC4503791 DOI: 10.1128/mmbr.00020-15] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acylation of biomolecules (e.g., proteins and small molecules) is a process that occurs in cells of all domains of life and has emerged as a critical mechanism for the control of many aspects of cellular physiology, including chromatin maintenance, transcriptional regulation, primary metabolism, cell structure, and likely other cellular processes. Although this review focuses on the use of acetyl moieties to modify a protein or small molecule, it is clear that cells can use many weak organic acids (e.g., short-, medium-, and long-chain mono- and dicarboxylic aliphatics and aromatics) to modify a large suite of targets. Acetylation of biomolecules has been studied for decades within the context of histone-dependent regulation of gene expression and antibiotic resistance. It was not until the early 2000s that the connection between metabolism, physiology, and protein acetylation was reported. This was the first instance of a metabolic enzyme (acetyl coenzyme A [acetyl-CoA] synthetase) whose activity was controlled by acetylation via a regulatory system responsive to physiological cues. The above-mentioned system was comprised of an acyltransferase and a partner deacylase. Given the reversibility of the acylation process, this system is also referred to as reversible lysine acylation (RLA). A wealth of information has been obtained since the discovery of RLA in prokaryotes, and we are just beginning to visualize the extent of the impact that this regulatory system has on cell function.
Collapse
Affiliation(s)
- Kristy L Hentchel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
7
|
Páez-Espino AD, Chavarría M, de Lorenzo V. The two paralogue phoN (phosphinothricin acetyl transferase) genes of Pseudomonas putida encode functionally different proteins. Environ Microbiol 2015; 17:3330-40. [PMID: 25684119 DOI: 10.1111/1462-2920.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/19/2015] [Accepted: 01/31/2015] [Indexed: 11/30/2022]
Abstract
Phosphinothricin (PPT) is a non-specific inhibitor of glutamine synthetase that has been employed as herbicide for selection of transgenic plants expressing cognate resistance genes. While the soil bacterium Pseudomonas putida KT2440 has been generally considered PPT-sensitive, inspection of its genome sequence reveals the presence of two highly similar open reading frames (PP_1924 and PP_4846) encoding acetylases with a potential to cause tolerance to the herbicide. To explore this possibility, each of these genes (named phoN1 and phoN2) was separately cloned and their activities examined in vivo and in vitro. Genetic and biochemical evidence indicated that phoN1 encodes a bona fide PPT-acetyl transferase, the expression of which suffices to make P. putida tolerant to high concentrations of the herbicide. In contrast, PhoN2 does not act on PPT but displays instead activity against methionine sulfoximine (MetSox), another glutamine synthetase inhibitor. When the geometry of the substrate-binding site of PhoN1 was grafted with the equivalent residues of the predicted PhoN2 structure, the resulting protein increased significantly MetSox resistance of the expression host concomitantly with the loss of activity on PPT. These observations uncover intricate biochemical and genetic interactions among soil microorganisms and how they can be perturbed by exposure to generic herbicides in soil.
Collapse
Affiliation(s)
- A David Páez-Espino
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco, Madrid, 28049, Spain
| | - Max Chavarría
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco, Madrid, 28049, Spain.,Escuela de Química, Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
8
|
In Salmonella enterica, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects. J Bacteriol 2014; 197:314-25. [PMID: 25368301 DOI: 10.1128/jb.02311-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein and small-molecule acylation reactions are widespread in nature. Many of the enzymes catalyzing acylation reactions belong to the Gcn5-related N-acetyltransferase (GNAT; PF00583) family, named after the yeast Gcn5 protein. The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 GNATs, 11 of which have no known physiological role. Here, we provide in vivo and in vitro evidence for the role of the MddA (methionine derivative detoxifier; formerly YncA) GNAT in the detoxification of oxidized forms of methionine, including methionine sulfoximine (MSX) and methionine sulfone (MSO). MSX and MSO inhibited the growth of an S. enterica ΔmddA strain unless glutamine or methionine was present in the medium. We used an in vitro spectrophotometric assay and mass spectrometry to show that MddA acetylated MSX and MSO. An mddA(+) strain displayed biphasic growth kinetics in the presence of MSX and glutamine. Deletion of two amino acid transporters (GlnHPQ and MetNIQ) in a ΔmddA strain restored growth in the presence of MSX. Notably, MSO was transported by GlnHPQ but not by MetNIQ. In summary, MddA is the mechanism used by S. enterica to respond to oxidized forms of methionine, which MddA detoxifies by acetyl coenzyme A-dependent acetylation.
Collapse
|
9
|
Wu G, Yuan M, Wei L, Zhang Y, Lin Y, Zhang L, Liu Z. Characterization of a novel cold-adapted phosphinothricin N-acetyltransferase from the marine bacterium Rhodococcus sp. strain YM12. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Spitzer R, Cleves AE, Varela R, Jain AN. Protein function annotation by local binding site surface similarity. Proteins 2013; 82:679-94. [PMID: 24166661 DOI: 10.1002/prot.24450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 11/06/2022]
Abstract
Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.
Collapse
Affiliation(s)
- Russell Spitzer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | | | | | | |
Collapse
|
11
|
Ahuja M, Punekar NS. Phosphinothricin resistance in Aspergillus niger and its utility as a selectable transformation marker. Fungal Genet Biol 2008; 45:1103-10. [PMID: 18479949 DOI: 10.1016/j.fgb.2008.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Aspergillus niger is moderately susceptible to inhibition by phosphinothricin (PPT)-a potent inhibitor of glutamine synthetase. This growth inhibition was relieved by L-glutamine. PPT inhibited A. niger glutamine synthetase in vitro (K(I), 54 microM) and the inhibition was competitive with L-glutamate. The bar gene, imparting resistance to PPT, was successfully exploited as a dominant marker to transform this fungus. Very high PPT concentrations were required in the overlay for selection. Apart from bar transformants, colonies spontaneously resistant to PPT were frequently encountered on selection media. Reasons for such spontaneous resistance, albeit of moderate growth phenotype, were sought using one such isolate (SRPPT). The SRPPT isolate showed a 2-3-fold decrease in its glutamate uptake rate. Elevated external glutamate levels further suppressed the PPT-induced growth inhibition. Cellular entry of PPT could be through the L-glutamate uptake system thereby accounting for the observed spontaneous resistant phenotype. These results were useful in the fine-tuning of bar-selection in A. niger.
Collapse
Affiliation(s)
- Manmeet Ahuja
- Biotechnology Group, School of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|