1
|
Zazubovich V, Jankowiak R. High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes. Int J Mol Sci 2024; 25:3850. [PMID: 38612659 PMCID: PMC11011720 DOI: 10.3390/ijms25073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Zhang X, Taniguchi R, Nagao R, Tomo T, Noguchi T, Ye S, Shibata Y. Access to the Antenna System of Photosystem I via Single-Molecule Excitation-Emission Spectroscopy. J Phys Chem B 2024; 128:2664-2674. [PMID: 38456814 DOI: 10.1021/acs.jpcb.3c07789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In the development of single-molecule spectroscopy, the simultaneous detection of the excitation and emission spectra has been limited. The fluorescence excitation spectrum based on background-free signals is compatible with the fluorescence-emission-based detection of single molecules and can provide insight into the variations in the input energy of the different terminal emitters. Here, we implement single-molecule excitation-emission spectroscopy (SMEES) for photosystem I (PSI) via a cryogenic optical microscope. To this end, we extended our line-focus-based excitation-spectral microscope system to the cryogenic temperature-compatible version. PSI is one of the two photosystems embedded in the thylakoid membrane in oxygen-free photosynthetic organisms. PSI plays an essential role in electron transfer in the photosynthesis reaction. PSIs of many organisms contain a few red-shifted chlorophylls (Chls) with much lower excitation energies than ordinary antenna Chls. The fluorescence emission spectrum originates primarily from the red-shifted Chls, whereas the excitation spectrum is sensitive to the antenna Chls that are upstream of red-shifted Chls. Using SMEES, we obtained the inclining two-dimensional excitation-emission matrix (2D-EEM) of PSI particles isolated from a cyanobacterium, Thermosynechococcus vestitus (equivalent to elongatus), at about 80 K. Interestingly, by decomposing the inclining 2D-EEMs within time course observation, we found prominent variations in the excitation spectra of the red-shifted Chl pools with different emission wavelengths, strongly indicating the variable excitation energy transfer (EET) pathway from the antenna to the terminal emitting pools. SMEES helps us to directly gain information about the antenna system, which is fundamental to depicting the EET within pigment-protein complexes.
Collapse
Affiliation(s)
- Xianjun Zhang
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
- Division for Interdisciplinary Advanced Research and Education, Tohoku University, Sendai 980-8578, Japan
| | - Rin Taniguchi
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Sciences, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Takumi Noguchi
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Russo M, Casazza AP, Cerullo G, Santabarbara S, Maiuri M. Ultrafast excited state dynamics in the monomeric and trimeric photosystem I core complex of Spirulina platensis probed by two-dimensional electronic spectroscopy. J Chem Phys 2022; 156:164202. [PMID: 35490013 DOI: 10.1063/5.0078911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Photosystem I (PSI), a naturally occurring supercomplex composed of a core part and a light-harvesting antenna, plays an essential role in the photosynthetic electron transfer chain. Evolutionary adaptation dictates a large variability in the type, number, arrangement, and absorption of the Chlorophylls (Chls) responsible for the early steps of light-harvesting and charge separation. For example, the specific location of long-wavelength Chls (referred to as red forms) in the cyanobacterial core has been intensively investigated, but the assignment of the chromophores involved is still controversial. The most red-shifted Chl a form has been observed in the trimer of the PSI core of the cyanobacterium Spirulina platensis, with an absorption centered at ∼740 nm. Here, we apply two-dimensional electronic spectroscopy to study photoexcitation dynamics in isolated trimers and monomers of the PSI core of S. platensis. By means of global analysis, we resolve and compare direct downhill and uphill excitation energy transfer (EET) processes between the bulk Chls and the red forms, observing significant differences between the monomer (lacking the most far red Chl form at 740 nm) and the trimer, with the ultrafast EET component accelerated by five times, from 500 to 100 fs, in the latter. Our findings highlight the complexity of EET dynamics occurring over a broad range of time constants and their sensitivity to energy distribution and arrangement of the cofactors involved. The comparison of monomeric and trimeric forms, differing both in the antenna dimension and in the extent of red forms, enables us to extract significant information regarding PSI functionality.
Collapse
Affiliation(s)
- Mattia Russo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
4
|
Kondo T, Shibata Y. Recent advances in single-molecule spectroscopy studies on light-harvesting processes in oxygenic photosynthesis. Biophys Physicobiol 2022. [PMCID: PMC9173860 DOI: 10.2142/biophysico.bppb-v19.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Photosynthetic light-harvesting complexes (LHCs) play a crucial role in concentrating the photon energy from the sun that otherwise excites a typical pigment molecule, such as chlorophyll-a, only several times a second. Densely packed pigments in the complexes ensure efficient energy transfer to the reaction center. At the same time, LHCs have the ability to switch to an energy-quenching state and thus play a photoprotective role under excessive light conditions. Photoprotection is especially important for oxygenic photosynthetic organisms because toxic reactive oxygen species can be generated through photochemistry under aerobic conditions. Because of the extreme complexity of the systems in which various types of pigment molecules strongly interact with each other and with the surrounding protein matrixes, there has been long-standing difficulty in understanding the molecular mechanisms underlying the flexible switching between the light-harvesting and quenching states. Single-molecule spectroscopy studies are suitable to reveal the conformational dynamics of LHCs reflected in the fluorescence properties that are obscured in ordinary ensemble measurements. Recent advanced single-molecule spectroscopy studies have revealed the dynamical fluctuations of LHCs in their fluorescence peak position, intensity, and lifetime. The observed dynamics seem relevant to the conformational plasticity required for the flexible activations of photoprotective energy quenching. In this review, we survey recent advances in the single-molecule spectroscopy study of the light-harvesting systems of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|
5
|
Kumar K, Hiller J, Bender M, Nosrati S, Liu Q, Edelmann M, Maier S, Rammler T, Wackenhut F, Meixner AJ, Braun K, Bunz UHF, Scheele M. Periodic Fluorescence Variations of CdSe Quantum Dots Coupled to Aryleneethynylenes with Aggregation-Induced Emission. ACS NANO 2021; 15:480-488. [PMID: 33438432 DOI: 10.1021/acsnano.0c05121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
CdSe nanocrystals and aggregates of an aryleneethynylene derivative are assembled into a hybrid thin film with dual fluorescence from both fluorophores. Under continuous excitation, the nanocrystals and the molecules exhibit anticorrelated fluorescence intensity variations, which become periodic at low temperature. We attribute this to a structure-dependent aggregation-induced emission of the aryleneethynylene derivative, which impacts the rate of excitation energy transfer between the molecules and nanocrystals. This work highlights that combining semiconductor nanocrystals with molecular aggregates, which exhibit aggregation-induced emission, can result in emerging optical properties.
Collapse
Affiliation(s)
- Krishan Kumar
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Jonas Hiller
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Markus Bender
- Organisch-Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Saeed Nosrati
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Quan Liu
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Charles Delaunay Institute, CNRS Light, Nanomaterials, Nanotechnologies (L2n, former "LNIO"), University of Technology of Troyes, 12 rue Marie Curie - CS 42060, 10004 Troyes Cedex, France
| | - Marc Edelmann
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Steffen Maier
- Organisch-Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Tim Rammler
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Frank Wackenhut
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Alfred J Meixner
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Kai Braun
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Marcus Scheele
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
6
|
The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nat Commun 2020; 11:5279. [PMID: 33077842 PMCID: PMC7573975 DOI: 10.1038/s41467-020-18884-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Photosystem I coordinates more than 90 chlorophylls in its core antenna while achieving near perfect quantum efficiency. Low energy chlorophylls (also known as red chlorophylls) residing in the antenna are important for energy transfer dynamics and yield, however, their precise location remained elusive. Here, we construct a chimeric Photosystem I complex in Synechocystis PCC 6803 that shows enhanced absorption in the red spectral region. We combine Cryo-EM and spectroscopy to determine the structure−function relationship in this red-shifted Photosystem I complex. Determining the structure of this complex reveals the precise architecture of the low energy site as well as large scale structural heterogeneity which is probably universal to all trimeric Photosystem I complexes. Identifying the structural elements that constitute red sites can expand the absorption spectrum of oxygenic photosynthetic and potentially modulate light harvesting efficiency. Cyanobacterial photosystem I has a highly conserved core antenna consisting of eleven subunits and more than 90 chlorophylls. Here via CryoEM and spectroscopy, the authors determine the location of a red-shifted low-energy chlorophyll that allows harvesting of longer wavelengths of light.
Collapse
|
7
|
Khmelnitskiy A, Toporik H, Mazor Y, Jankowiak R. On the Red Antenna States of Photosystem I Mutants from Cyanobacteria Synechocystis PCC 6803. J Phys Chem B 2020; 124:8504-8515. [DOI: 10.1021/acs.jpcb.0c05201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Khmelnitskiy
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hila Toporik
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuval Mazor
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
8
|
Jana S, Du T, Nagao R, Noguchi T, Shibata Y. Redox-state dependent blinking of single photosystem I trimers at around liquid-nitrogen temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:30-40. [PMID: 30428304 DOI: 10.1016/j.bbabio.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
Efficient light harvesting in a photosynthetic antenna system is disturbed by a ragged and fluctuating energy landscape of the antenna pigments in response to the conformation dynamics of the protein. This situation is especially pronounced in Photosystem I (PSI) containing red shifted chlorophylls (red Chls) with the excitation energy much lower than the primary donor. The present study was conducted to clarify light-harvesting dynamics of PSI isolated from Synechocystis sp. PCC6803 by using single-molecule spectroscopy at liquid‑nitrogen temperatures. Fluorescence emission at around 720 nm from the red Chls in single PSI trimers was monitored at 80-100 K. Intermittent variations in the emission intensities, so-called blinking, were frequently observed. Its time scale lay in several tens of seconds. The blinking amplitude depended on the redox state of the phylloquinone (A1). Electrochromic shifts of Chls induced by the negative charge on A1 were calculated based on the X-ray crystallographic structure. A Chl molecule, Chl-A839 (numbering according to PDB 5OY0), bound near A1 was found to have a large electrochromic shift. This Chl has strong exciton coupling with neighboring Chl (A838) whose site energy was predicted to be determined by interaction with an arginine residue (ArgF84) [Adolphs et al., 2010]. A possible scenario of the blinking was proposed. Conformational fluctuations of ArgF84 seesaw the excitation-energy of Chl-A838, which perturbs the branching ratio of excitation-energy between the red Chl and the cationic form of P700 as a quencher. The electrochromic shift of Chl-A839 enhances the effect of the conformation dynamics of ArgF84.
Collapse
Affiliation(s)
- Sankar Jana
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Ting Du
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Ryo Nagao
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
9
|
Hatazaki S, Sharma DK, Hirata S, Nose K, Iyoda T, Kölsch A, Lokstein H, Vacha M. Identification of Short- and Long-Wavelength Emitting Chlorophylls in Cyanobacterial Photosystem I by Plasmon-Enhanced Single-Particle Spectroscopy at Room Temperature. J Phys Chem Lett 2018; 9:6669-6675. [PMID: 30400743 DOI: 10.1021/acs.jpclett.8b03064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A peculiarity of cyanobacterial Photosystem I (PSI) is the presence of so-called red chlorophylls absorbing at wavelengths longer than the reaction center P700. The origin and function of these chlorophylls have been debated in literature, but so far no consensus has been reached on either question. Here, we use plasmon-enhanced single-particle fluorescence spectroscopy to elucidate the origin of both short- and long-wavelength emitting species in monomeric PSI from Thermosynechococcus elongatus at room temperature. Polarized fluorescence spectra of single PSI complexes reveal a phase shift in the modulation of the short-wavelength (687 nm) and long-wavelength (717 nm) peaks. Numerical simulations show that this phase shift reflects a spatial angle of 15° between the transition dipole moments of the two forms. Quantum chemical calculations, together with reported X-ray structural and spectroscopic data, were used to assign the chlorophyll a monomer A3 as a candidate for the short-wavelength emitter and the B31-B32 chlorophyll dimer as a candidate for the long-wavelength emitter.
Collapse
Affiliation(s)
- Soya Hatazaki
- Department of Materials Science and Engineering , Tokyo Institute of Technology , Ookayama 2-12-1-S8-44 , Meguro-ku , Tokyo 152-8552 , Japan
| | - Dharmendar Kumar Sharma
- Department of Materials Science and Engineering , Tokyo Institute of Technology , Ookayama 2-12-1-S8-44 , Meguro-ku , Tokyo 152-8552 , Japan
| | - Shuzo Hirata
- Department of Materials Science and Engineering , Tokyo Institute of Technology , Ookayama 2-12-1-S8-44 , Meguro-ku , Tokyo 152-8552 , Japan
| | - Keiji Nose
- Harris Science Research Institute , Doshisha University , 1-3 Miyakodani , Tatara, Kyotanabe , Kyoto 611-0394 , Japan
| | - Tomokazu Iyoda
- Harris Science Research Institute , Doshisha University , 1-3 Miyakodani , Tatara, Kyotanabe , Kyoto 611-0394 , Japan
| | - Adrian Kölsch
- Biophysik der Photosynthese , Humboldt-Universität zu Berlin , Philippstr. 13 , 10115 Berlin , Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague , Czech Republic
| | - Martin Vacha
- Department of Materials Science and Engineering , Tokyo Institute of Technology , Ookayama 2-12-1-S8-44 , Meguro-ku , Tokyo 152-8552 , Japan
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague , Czech Republic
| |
Collapse
|
10
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
11
|
Herascu N, Hunter MS, Shafiei G, Najafi M, Johnson TW, Fromme P, Zazubovich V. Spectral Hole Burning in Cyanobacterial Photosystem I with P700 in Oxidized and Neutral States. J Phys Chem B 2016; 120:10483-10495. [PMID: 27661089 DOI: 10.1021/acs.jpcb.6b07803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicoleta Herascu
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - Mark S. Hunter
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Golia Shafiei
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - Mehdi Najafi
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - T. Wade Johnson
- Department
of Chemistry, Susquehanna University, Selinsgrove, Pennsylvania, United States
| | - Petra Fromme
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Valter Zazubovich
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| |
Collapse
|
12
|
Skandary S, Konrad A, Hussels M, Meixner AJ, Brecht M. Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sepideh Skandary
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alexander Konrad
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Martin Hussels
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alfred J. Meixner
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Marc Brecht
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
- Zurich University of Applied Science (ZHAW), CH-8401 Winterthur, Switzerland
| |
Collapse
|
13
|
Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus. PHOTONICS 2015. [DOI: 10.3390/photonics2030838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
|
15
|
Spectroscopic properties of photosystem II core complexes from Thermosynechococcus elongatus revealed by single-molecule experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:773-81. [DOI: 10.1016/j.bbabio.2014.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 11/20/2022]
|
16
|
Shibata Y, Katoh W, Chiba T, Namie K, Ohnishi N, Minagawa J, Nakanishi H, Noguchi T, Fukumura H. Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:880-7. [PMID: 24650629 DOI: 10.1016/j.bbabio.2014.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 01/15/2023]
Abstract
A novel cryogenic optical-microscope system was developed in which the objective lens is set inside of the cryostat adiabatic vacuum space. Being isolated from the sample when it was cooled, the objective lens was maintained at room temperature during the cryogenic measurement. Therefore, the authors were able to use a color-aberration corrected objective lens with a numerical aperture of 0.9. The lens is equipped with an air vent for compatibility to the vacuum. The theoretically expected spatial resolutions of 0.39μm along the lateral direction and 1.3μm along the axial direction were achieved by the developed system. The system was applied to the observations of non-uniform distributions of the photosystems in the cells of a green alga, Chlamydomonas reinhardtii, at 94K. Gaussian decomposition analysis of the fluorescence spectra at all the pixels clearly demonstrated a non-uniform distribution of the two photosystems, as reflected in the variable ratios of the fluorescence intensities assigned to photosystem II and to those assigned to photosystem I. The system was also applied to the fluorescence spectroscopy of single isolated photosystem I complexes at 90K. The fluorescence, assigned to be emitted from a single photosystem I trimer, showed an intermittent fluctuation called blinking, which is typical for a fluorescence signal from a single molecule. The vibronic fluorescence bands at around 790nm were observed for single photosystem I trimers, suggesting that the color aberration is not serious up to the 800nm spectral region.
Collapse
Affiliation(s)
- Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Wataru Katoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomofumi Chiba
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Keisuke Namie
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Norikazu Ohnishi
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hanayo Nakanishi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Effect of TMAO and betaine on the energy landscape of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:849-56. [PMID: 24440559 DOI: 10.1016/j.bbabio.2014.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/30/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
The accumulation of organic co-solvents in cells is a basic strategy for organisms from various species to increase stress tolerance in extreme environments. Widespread representatives of this class of co-solvents are trimethylamine-N-oxide (TMAO) and betaine; these small molecules are able to stabilize the native conformation of proteins and prevent their aggregation. Despite their importance, detailed experimental studies on the impact of these co-solvents on the energy landscape of proteins have not yet been carried out. We use single-molecule spectroscopy at cryogenic temperatures to examine the influence of these physiological relevant co-solvents on photosystem I (PSI) from Thermosynechococcus elongatus. In contrast to PSI ensemble spectra, which are almost unaffected by the addition of TMAO and betaine, statistical analysis of the fluorescence emission from individual PSI trimers yields insight into the interaction of the co-solvents with PSI. The results show an increased homogeneity upon addition of TMAO or betaine. The number of detectable zero-phonon lines (ZPLs) is reduced, indicating spectral diffusion processes with faster rates. In the framework of energy landscape model these findings indicate that co-solvents lead to reduced barrier heights between energy valleys, and thus efficient screening of protein conformations can take place.
Collapse
|
18
|
Hussels M, Konrad A, Brecht M. Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:123706. [PMID: 23277995 DOI: 10.1063/1.4769996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The construction of a microscope with fast sample transfer system for single-molecule spectroscopy and microscopy at low temperatures using 2D/3D sample-scanning is reported. The presented construction enables the insertion of a sample from the outside (room temperature) into the cooled (4.2 K) cryostat within seconds. We describe the mechanical and optical design and present data from individual Photosystem I complexes. With the described setup numerous samples can be investigated within one cooling cycle. It opens the possibility to investigate biological samples (i) without artifacts introduced by prolonged cooling procedures and (ii) samples that require preparation steps like plunge-freezing or specific illumination procedures prior to the insertion into the cryostat.
Collapse
Affiliation(s)
- Martin Hussels
- Universität Tübingen, Institut für Physikalische und Theoretische Chemie and LISA+ Center, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | |
Collapse
|
19
|
|
20
|
Brecht M, Hussels M, Schlodder E, Karapetyan NV. Red antenna states of Photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:445-52. [PMID: 22155210 DOI: 10.1016/j.bbabio.2011.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Single-molecule fluorescence spectroscopy at 1.4K was used to investigate the spectral properties of red (long-wavelength) chlorophylls in trimeric Photosystem I (PSI) complexes from the cyanobacterium Arthrospira platensis. Three distinct red antenna states could be identified in the fluorescence spectra of single PSI trimers from A. platensis in the presence of oxidized P700. Two of them are responsible for broad emission bands centered at 726 and 760nm. These bands are similar to those found in bulk fluorescence spectra measured at cryogenic temperatures. The broad fluorescence bands at ≅726 and ≅760nm belong to individual emitters that are broadened by strong electron-phonon coupling giving rise to a large Stokes-shift of about 20nm and rapid spectral diffusion. An almost perpendicular orientation of the transition dipole moments of F726 and F760 has to be assumed because direct excitation energy transfer does not occur between F726 and F760. For the first time a third red state assigned to the pool absorbing around 708nm could be detected by its zero-phonon lines. The center of the zero-phonon line distribution is found at ≅714nm. The spectral properties of the three red antenna states show a high similarity to the red antenna states found in trimeric PSI of Thermosynechoccocus elongatus. Based on these findings a similar organization of the red antenna states in PSI of these two cyanobacteria is discussed.
Collapse
Affiliation(s)
- Marc Brecht
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
21
|
Schlodder E, Hussels M, Çetin M, Karapetyan NV, Brecht M. Fluorescence of the various red antenna states in photosystem I complexes from cyanobacteria is affected differently by the redox state of P700. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1423-31. [DOI: 10.1016/j.bbabio.2011.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/30/2022]
|
22
|
Hussels M, Brecht M. Evidence for direct binding of glycerol to photosystem I. FEBS Lett 2011; 585:2445-9. [DOI: 10.1016/j.febslet.2011.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 11/27/2022]
|
23
|
Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T. Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron–Phonon Coupling of Selected Photosynthetic Complexes. Chem Rev 2011; 111:4546-98. [DOI: 10.1021/cr100234j] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mike Reppert
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal H4B1R6 Quebec, Canada
| | - Jörg Pieper
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University of Berlin, Germany
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | - Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
24
|
Hussels M, Brecht M. Effect of Glycerol and PVA on the Conformation of Photosystem I. Biochemistry 2011; 50:3628-37. [DOI: 10.1021/bi2000615] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Hussels
- Universität Tübingen, IPTC, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Marc Brecht
- Universität Tübingen, IPTC, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Nieder JB, Bittl R, Brecht M. Fluoreszenzstudien zum Einfluss plasmonischer Wechselwirkungen auf die Funktion eines Proteins. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Nieder JB, Bittl R, Brecht M. Fluorescence Studies into the Effect of Plasmonic Interactions on Protein Function. Angew Chem Int Ed Engl 2010; 49:10217-20. [DOI: 10.1002/anie.201002172] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Adolphs J, Müh F, Madjet MEA, am Busch MS, Renger T. Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting process. J Am Chem Soc 2010; 132:3331-43. [PMID: 20166713 DOI: 10.1021/ja9072222] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optical line shape theory is combined with a quantum-chemical/electrostatic calculation of the site energies of the 96 chlorophyll a pigments and their excitonic couplings to simulate optical spectra of photosystem I core complexes from Thermosynechococcus elongatus. The absorbance, linear dichroism and circular dichroism spectra, calculated on the basis of the 2.5 A crystal structure, match the experimental data semiquantitatively allowing for a detailed analysis of the pigment-protein interaction. The majority of site energies are determined by multiple interactions with a large number (>20) of amino acid residues, a result which demonstrates the importance of long-range electrostatic interactions. The low-energy exciton states of the antenna are found to be located at a nearest distance of about 25 A from the special pair of the reaction center. The intermediate pigments form a high-energy bridge, the site energies of which are stabilized by a particularly large number (>100) of amino acid residues. The concentration of low energy exciton states in the antenna is larger on the side of the A-branch of the reaction center, implying an asymmetric delivery of excitation energy to the latter. This asymmetry in light-harvesting may provide the key for understanding the asymmetric use of the two branches in primary electron transfer reactions. Experiments are suggested to check for this possibility.
Collapse
Affiliation(s)
- Julian Adolphs
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
28
|
Grozdanov D, Herascu N, Reinot T, Jankowiak R, Zazubovich V. Low-temperature protein dynamics of the B800 molecules in the LH2 light-harvesting complex: spectral hole burning study and comparison with single photosynthetic complex spectroscopy. J Phys Chem B 2010; 114:3426-38. [PMID: 20166717 DOI: 10.1021/jp9089358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously published and new spectral hole burning (SHB) data on the B800 band of LH2 light-harvesting antenna complex of Rps. acidophila are analyzed in light of recent single photosynthetic complex spectroscopy (SPCS) results (for a review, see Berlin et al. Phys. Life Rev. 2007, 4, 64.). It is demonstrated that, in general, SHB-related phenomena observed for the B800 band are in qualitative agreement with the SPCS data and the protein models involving multiwell multitier protein energy landscapes. Regarding the quantitative agreement, we argue that the single-molecule behavior associated with the fastest spectral diffusion (smallest barrier) tier of the protein energy landscape is inconsistent with the SHB data. The latter discrepancy can be attributed to SPCS probing not only the dynamics of of the protein complex per se, but also that of the surrounding amorphous host and/or of the host-protein interface. It is argued that SHB (once improved models are developed) should also be able to provide the average magnitudes and probability distributions of light-induced spectral shifts and could be used to determine whether SPCS probes a set of protein complexes that are both intact and statistically relevant. SHB results are consistent with the B800 --> B850 energy-transfer models including consideration of the whole B850 density of states.
Collapse
Affiliation(s)
- Daniel Grozdanov
- Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Brecht M, Radics V, Nieder JB, Bittl R. Protein dynamics-induced variation of excitation energy transfer pathways. Proc Natl Acad Sci U S A 2009; 106:11857-61. [PMID: 19574453 PMCID: PMC2715472 DOI: 10.1073/pnas.0903586106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Indexed: 11/18/2022] Open
Abstract
Strong anticorrelation between the fluorescence emission of different emitters is observed by employing single-molecule fluorescence spectroscopy on photosystem I at cryogenic temperatures. This anticorrelation demonstrates a time-dependent interaction between pigments participating in the exciton transfer chain, implying that uniquely defined energy transfer pathways within the complex do not exist. Fluctuations of the chromophores themselves or their immediate protein surroundings induce changes in their site energy, and, as a consequence, these fluctuations change the coupling within the excitation transfer pathways. The time scales of the site energy fluctuations of the individual emitters do not meet the time scales of the observed correlated emission behavior. Therefore, the emitters must be fed individually by energetically higher lying states, causing the observed intensity variations. This phenomenon is shown for photosystem I pigment-protein complexes from 2 different cyanobacteria (Thermosynechococcus elongatus and Synechocystis sp. PCC 6803) with strongly different spectral properties underlining the general character of the findings. The variability of energy transfer pathways might play a key role in the extreme robustness of light-harvesting systems in general.
Collapse
Affiliation(s)
- M Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
31
|
Nieder JB, Brecht M, Bittl R. Dynamic intracomplex heterogeneity of phytochrome. J Am Chem Soc 2009; 131:69-71. [PMID: 19128172 DOI: 10.1021/ja8058292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low temperature single-molecule fluorescence emission spectroscopy on individual phytochromes from Agrobacterium tumefaciens corroborates findings from ensemble spectroscopy concerning intercomplex heterogeneity. Furthermore, time-dependent intracomplex heterogeneity has been observed.
Collapse
Affiliation(s)
- Jana B Nieder
- Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | |
Collapse
|
32
|
Slavov C, El-Mohsnawy E, Rögner M, Holzwarth AR. Trapping kinetics in isolated cyanobacterial PS I complexes. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Brecht M, Radics V, Nieder JB, Studier H, Bittl R. Red Antenna States of Photosystem I from Synechocystis PCC 6803. Biochemistry 2008; 47:5536-43. [DOI: 10.1021/bi800121t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Volker Radics
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Jana B. Nieder
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Hauke Studier
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Robert Bittl
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
34
|
Brecht M, Nieder JB, Studier H, Schlodder E, Bittl R. Red antenna states of photosystem I from Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2008; 95:155-162. [PMID: 17924203 DOI: 10.1007/s11120-007-9241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 05/25/2023]
Abstract
Absorption, fluorescence and single-molecule spectroscopy at low temperatures were used to elucidate spectral properties, heterogeneities and dynamics of the red-shifted chlorophyll a (Chla) molecules responsible for the fluorescence in photosystem I (PSI) from the cyanobacterium Synechoccocus sp. PCC 7002. The 77 K absorption spectrum indicates the presence of 2-3 red-shifted Chla's absorbing at about 708 nm. The fluorescence emission spectrum is dominated by a broad band at 714 nm. The emission spectra of single PSI complexes show zero-phonon lines (ZPLs) as well as a broad intensity distribution without ZPLs. The spectral region below 710 nm often shows ZPLs, they form a spectral band with a maximum at 698 nm (F698). The region above 710 nm is dominated by broad intensity distributions and the observation of ZPLs is less frequent. The broad distributions are due to the emission of the C708 Chla's and the emission from F698 stems from a Chla species absorbing at the blue side of P700. The properties of these two emissions show a close relation to those of the C708 and C719 pools observed in T. elongatus. Therefore an assignment of F698 and C708 to Chla-species with similarities to C708 and C719 in T. elongatus is proposed.
Collapse
Affiliation(s)
- Marc Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195, Berlin, Germany
| | | | | | | | | |
Collapse
|