1
|
Equilibrium molecular structure and intramolecular interactions of picolinic acid hydrazide. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Equilibrium molecular structure of nicotinic acid hydrazide: joint study by means of gas electron diffraction and quantum chemistry. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Hegde P, Boshoff HIM, Rusman Y, Aragaw WW, Salomon CE, Dick T, Aldrich CC. Reinvestigation of the structure-activity relationships of isoniazid. Tuberculosis (Edinb) 2021; 129:102100. [PMID: 34116482 PMCID: PMC8324568 DOI: 10.1016/j.tube.2021.102100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022]
Abstract
Isoniazid (INH) remains a cornerstone for treatment of drug susceptible tuberculosis (TB), yet the quantitative structure-activity relationships for INH are not well documented in the literature. In this paper, we have evaluated a systematic series of INH analogs against contemporary Mycobacterium tuberculosis strains from different lineages and a few non-tuberculous mycobacteria (NTM). Deletion of the pyridyl nitrogen atom, isomerization of the pyridine nitrogen to other positions, replacement of the pyridine ring with isosteric heterocycles, and modification of the hydrazide moiety of INH abolishes antitubercular activity. Similarly, substitution of the pyridine ring at the 3-position is not tolerated while substitution at the 2-position is permitted with 2-methyl-INH 9 displaying antimycobacterial activity comparable to INH. To assess the specific activity of this series of INH analogs against mycobacteria, we assayed them against a panel of gram-positive and gram-negative bacteria, as well as a few fungi. As expected INH and its analogs display a narrow spectrum of activity and are inactive against all non-mycobacterial strains evaluated, except for 4, which has modest inhibitory activity against Cryptococcus neoformans. Our findings provide an updated analysis of the structure-activity relationship of INH that we hope will serve as useful resource for the community.
Collapse
Affiliation(s)
- Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Yudi Rusman
- Center for Drug Design, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Christine E Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Różycka D, Korycka-Machała M, Żaczek A, Dziadek J, Gurda D, Orlicka-Płocka M, Wyszko E, Biniek-Antosiak K, Rypniewski W, Olejniczak AB. Novel Isoniazid-Carborane Hybrids Active in Vitro Against Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13:ph13120465. [PMID: 33333865 PMCID: PMC7765321 DOI: 10.3390/ph13120465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is a severe infectious disease with high mortality and morbidity. The emergence of drug-resistant TB has increased the challenge to eliminate this disease. Isoniazid (INH) remains the key and effective component in the therapeutic regimen recommended by World Health Organization (WHO). A series of isoniazid-carborane derivatives containing 1,2-dicarba-closo-dodecaborane, 1,7-dicarba-closo-dodecaborane, 1,12-dicarba-closo-dodecaborane, or 7,8-dicarba-nido-undecaborate anion were synthesized for the first time. The compounds were tested in vitro against the Mycobacterium tuberculosis (Mtb) H37Rv strain and its mutant (DkatG) defective in the synthesis of catalase-peroxidase (KatG). N'-((7,8-dicarba-nido-undecaboranyl)methylidene)isonicotinohydrazide (16) showed the highest activity against the wild-type Mtb strain. All hybrids could inhibit the growth of the ΔkatG mutant in lower concentrations than INH. N'-([(1,12-dicarba-closo-dodecaboran-1yl)ethyl)isonicotinohydrazide (25) exhibited more than 60-fold increase in activity against Mtb DkatG as compared to INH. This compound was also found to be noncytotoxic up to a concentration four times higher than the minimum inhibitory concentration 99% (MIC99) value.
Collapse
Affiliation(s)
- Daria Różycka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Małgorzata Korycka-Machała
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Anna Żaczek
- Institute of Medical Sciences, Medical College, University of Rzeszow, 2A Kopisto Avenue, 35-959 Rzeszow, Poland;
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Dorota Gurda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Marta Orlicka-Płocka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Katarzyna Biniek-Antosiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Agnieszka B. Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
- Correspondence: ; Tel.: +48-42-272-36-37
| |
Collapse
|
5
|
Differential Sensitivity of Mycobacteria to Isoniazid Is Related to Differences in KatG-Mediated Enzymatic Activation of the Drug. Antimicrob Agents Chemother 2020; 64:AAC.01899-19. [PMID: 31767723 DOI: 10.1128/aac.01899-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022] Open
Abstract
Isoniazid (INH) is a cornerstone of antitubercular therapy. Mycobacterium tuberculosis complex bacteria are the only mycobacteria sensitive to clinically relevant concentrations of INH. All other mycobacteria, including M. marinum and M. avium subsp. paratuberculosis are resistant. INH requires activation by bacterial KatG to inhibit mycobacterial growth. We tested the role of the differences between M. tuberculosis KatG and that of other mycobacteria in INH sensitivity. We cloned the M. bovis katG gene into M. marinum and M. avium subsp. paratuberculosis and measured the MIC of INH. We recombinantly expressed KatG of these mycobacteria and tested in vitro binding to, and activation of, INH. Introduction of katG from M. bovis into M. marinum and M. avium subsp. paratuberculosis rendered them 20 to 30 times more sensitive to INH. Analysis of different katG sequences across the genus found KatG evolution diverged from RNA polymerase-defined mycobacterial evolution. Biophysical and biochemical tests of M. bovis and nontuberculous mycobacteria (NTM) KatG proteins showed lower affinity to INH and substantially lower enzymatic capacity for the conversion of INH into the active form in NTM. The KatG proteins of M. marinum and M. avium subsp. paratuberculosis are substantially less effective in INH activation than that of M. tuberculosis, explaining the relative INH insensitivity of these microbes. These data indicate that the M. tuberculosis complex KatG is divergent from the KatG of NTM, with a reciprocal relationship between resistance to host defenses and INH resistance. Studies of bacteria where KatG is functionally active but does not activate INH may aid in understanding M. tuberculosis INH-resistance mechanisms, and suggest paths to overcome them.
Collapse
|
6
|
Vila-Viçosa D, Victor BL, Ramos J, Machado D, Viveiros M, Switala J, Loewen PC, Leitão R, Martins F, Machuqueiro M. Insights on the Mechanism of Action of INH-C 10 as an Antitubercular Prodrug. Mol Pharm 2017; 14:4597-4605. [PMID: 29091448 DOI: 10.1021/acs.molpharmaceut.7b00719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis remains one of the top causes of death worldwide, and combating its spread has been severely complicated by the emergence of drug-resistance mutations, highlighting the need for more effective drugs. Despite the resistance to isoniazid (INH) arising from mutations in the katG gene encoding the catalase-peroxidase KatG, most notably the S315T mutation, this compound is still one of the most powerful first-line antitubercular drugs, suggesting further pursuit of the development of tailored INH derivatives. The N'-acylated INH derivative with a long alkyl chain (INH-C10) has been shown to be more effective than INH against the S315T variant of Mycobacterium tuberculosis, but the molecular details of this activity enhancement are still unknown. In this work, we show that INH N'-acylation significantly reduces the rate of production of both isonicotinoyl radical and isonicotinyl-NAD by wild type KatG, but not by the S315T variant of KatG mirroring the in vivo effectiveness of the compound. Restrained and unrestrained MD simulations of INH and its derivatives at the water/membrane interface were performed and showed a higher preference of INH-C10 for the lipidic phase combined with a significantly higher membrane permeability rate (27.9 cm s-1), compared with INH-C2 or INH (3.8 and 1.3 cm s-1, respectively). Thus, we propose that INH-C10 is able to exhibit better minimum inhibitory concentration (MIC) values against certain variants because of its better ability to permeate through the lipid membrane, enhancing its availability inside the cell. MIC values of INH and INH-C10 against two additional KatG mutations (S315N and D735A) revealed that some KatG variants are able to process INH faster than INH-C10 into an effective antitubercular form (wt and S315N), while others show similar reaction rates (S315T and D735A). Altogether, our results highlight the potential of increased INH lipophilicity for treating INH-resistant strains.
Collapse
Affiliation(s)
- Diogo Vila-Viçosa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| | - Bruno L Victor
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa , 1349-008 Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa , 1349-008 Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa , 1349-008 Lisboa, Portugal
| | - Jacek Switala
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Ruben Leitão
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal.,Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa , R. Conselheiro Emídio Navarro, 1, 1959-007, Lisboa, Portugal
| | - Filomena Martins
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Laborde J, Deraeve C, Bernardes-Génisson V. Update of Antitubercular Prodrugs from a Molecular Perspective: Mechanisms of Action, Bioactivation Pathways, and Associated Resistance. ChemMedChem 2017; 12:1657-1676. [DOI: 10.1002/cmdc.201700424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Julie Laborde
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Céline Deraeve
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Vania Bernardes-Génisson
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| |
Collapse
|
8
|
Srivastava G, Tripathi S, Kumar A, Sharma A. Molecular investigation of active binding site of isoniazid (INH) and insight into resistance mechanism of S315T-MtKatG in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2017; 105:18-27. [DOI: 10.1016/j.tube.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022]
|
9
|
Zheng X, Bi C, Li Z, Podariu M, Hage DS. Analytical methods for kinetic studies of biological interactions: A review. J Pharm Biomed Anal 2015; 113:163-80. [PMID: 25700721 PMCID: PMC4516701 DOI: 10.1016/j.jpba.2015.01.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The rates at which biological interactions occur can provide important information concerning the mechanism and behavior of these processes in living systems. This review discusses several analytical methods that can be used to examine the kinetics of biological interactions. These techniques include common or traditional methods such as stopped-flow analysis and surface plasmon resonance spectroscopy, as well as alternative methods based on affinity chromatography and capillary electrophoresis. The general principles and theory behind these approaches are examined, and it is shown how each technique can be utilized to provide information on the kinetics of biological interactions. Examples of applications are also given for each method. In addition, a discussion is provided on the relative advantages or potential limitations of each technique regarding its use in kinetic studies.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
10
|
Veríssimo LMP, Cabral AMTDPV, Veiga FJB, Almeida SFG, Ramos ML, Burrows HD, Esteso MA, Ribeiro ACF. Transport properties in aqueous ethambutol dihydrochloride. Int J Pharm 2015; 479:306-11. [PMID: 25545796 DOI: 10.1016/j.ijpharm.2014.12.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
Mutual diffusion coefficients, densities and viscosities are reported for aqueous solutions of ethambutol as its dihydrochloride (EMBDHC) at finite concentrations and at 298.15K. From these experimental results and by using the appropriate models (Stokes-Einstein and Hartley), the hydrodynamic radii Rh, the diffusion coefficient at infinitesimal concentration D(0) and the thermodynamic factors, FT, have been estimated, permitting us to have a better understanding of the transport behavior of ethambutol dihydrochloride in solution. Elucidation of lack of any possible drug-drug interactions in these systems was obtained by complementary (1)H nuclear magnetic resonance (NMR) spectroscopy data.
Collapse
Affiliation(s)
- Luís M P Veríssimo
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal.
| | | | | | - Sara F G Almeida
- Faculty of Pharmacy, University of Coimbra, 3000-295 Coimbra, Portugal.
| | - M Luisa Ramos
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Hugh D Burrows
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - M A Esteso
- U.D Química Física, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ana C F Ribeiro
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
11
|
Teixeira VH, Ventura C, Leitão R, Ràfols C, Bosch E, Martins F, Machuqueiro M. Molecular Details of INH-C10 Binding to wt KatG and Its S315T Mutant. Mol Pharm 2015; 12:898-909. [DOI: 10.1021/mp500736n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vitor H. Teixeira
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Cristina Ventura
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Instituto Superior de Educação e Ciências, Alameda das Linhas de Torres 179, 1750 Lisboa, Portugal
| | - Ruben Leitão
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Área
Departamental de Engenharia Química, Instituto Superior de
Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro
Emídio Navarro, 1, 1959-007 Lisboa, Portugal
| | - Clara Ràfols
- Departament
de Química Analítica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Elisabeth Bosch
- Departament
de Química Analítica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Filomena Martins
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
12
|
Tan X, Wang Z, Chen D, Luo K, Xiong X, Song Z. Study on the interaction of catalase with pesticides by flow injection chemiluminescence and molecular docking. CHEMOSPHERE 2014; 108:26-32. [PMID: 24875908 DOI: 10.1016/j.chemosphere.2014.02.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
The interaction mechanisms of catalase (CAT) with pesticides (including organophosphates: disulfoton, isofenphos-methyl, malathion, isocarbophos, dimethoate, dipterex, methamidophos and acephate; carbamates: carbaryl and methomyl; pyrethroids: fenvalerate and deltamethrin) were first investigated by flow injection (FI) chemiluminescence (CL) analysis and molecular docking. By homemade FI-CL model of lg[(I0-I)/I]=lgK+nlg[D], it was found that the binding processes of pesticides to CAT were spontaneous with the apparent binding constants K of 10(3)-10(5) L mol(-1) and the numbers of binding sites about 1.0. The binding abilities of pesticides to CAT followed the order: fenvalerate>deltamethrin>disulfoton>isofenphos-methyl>carbaryl>malathion>isocarbophos>dimethoate>dipterex>acephate>methomyl>methamidophos, which was generally similar to the order of determination sensitivity of pesticides. The thermodynamic parameters revealed that CAT bound with hydrophobic pesticides by hydrophobic interaction force, and with hydrophilic pesticides by hydrogen bond and van der Waals force. The pesticides to CAT molecular docking study showed that pesticides could enter into the cavity locating among the four subdomains of CAT, giving the specific amino acid residues and hydrogen bonds involved in CAT-pesticides interaction. It was also found that the lgK values of pesticides to CAT increased regularly with increasing lgP, Mr, MR and MV, suggesting that the hydrophobicity and steric property of pesticide played essential roles in its binding to CAT.
Collapse
Affiliation(s)
- Xijuan Tan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Zhuming Wang
- Key Laboratory of Western Mineral Resources and Geological Engineering of Ministry of Education, College of Earth Sciences and Land Resources, Chang'an University, 126 Yanta Road, Xi'an 710054, China
| | - Donghua Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Kai Luo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Xunyu Xiong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Zhenghua Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, 229 North Taibai Road, Xi'an 710069, China.
| |
Collapse
|
13
|
Martins F, Santos S, Ventura C, Elvas-Leitão R, Santos L, Vitorino S, Reis M, Miranda V, Correia HF, Aires-de-Sousa J, Kovalishyn V, Latino DA, Ramos J, Viveiros M. Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Eur J Med Chem 2014; 81:119-38. [DOI: 10.1016/j.ejmech.2014.04.077] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/08/2014] [Accepted: 04/26/2014] [Indexed: 11/28/2022]
|
14
|
Vidossich P, Loewen PC, Carpena X, Fiorin G, Fita I, Rovira C. Binding of the Antitubercular Pro-Drug Isoniazid in the Heme Access Channel of Catalase-Peroxidase (KatG). A Combined Structural and Metadynamics Investigation. J Phys Chem B 2014; 118:2924-31. [DOI: 10.1021/jp4123425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pietro Vidossich
- Unitat de Química
Física, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Peter C. Loewen
- Department
of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xavi Carpena
- IRB Barcelona, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Giacomo Fiorin
- Institute for
Computational Molecular Science, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, United States
| | - Ignacio Fita
- Institut de Biologia
Molecular (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Carme Rovira
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
- Departament
de Química Orgànica and Institut de Química Teòrica
i Computacional (IQTCUB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Ascenzi P, Coletta A, Cao Y, Trezza V, Leboffe L, Fanali G, Fasano M, Pesce A, Ciaccio C, Marini S, Coletta M. Isoniazid inhibits the heme-based reactivity of Mycobacterium tuberculosis truncated hemoglobin N. PLoS One 2013; 8:e69762. [PMID: 23936350 PMCID: PMC3731299 DOI: 10.1371/journal.pone.0069762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Isoniazid represents a first-line anti-tuberculosis medication in prevention and treatment. This prodrug is activated by a mycobacterial catalase-peroxidase enzyme called KatG in Mycobacterium tuberculosis), thereby inhibiting the synthesis of mycolic acid, required for the mycobacterial cell wall. Moreover, isoniazid activation by KatG produces some radical species (e.g., nitrogen monoxide), that display anti-mycobacterial activity. Remarkably, the ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of (pseudo-)enzymatic detoxification systems, including truncated hemoglobins (trHbs). Here, we report that isoniazid binds reversibly to ferric and ferrous M. tuberculosis trHb type N (or group I; Mt-trHbN(III) and Mt-trHbN(II), respectively) with a simple bimolecular process, which perturbs the heme-based spectroscopic properties. Values of thermodynamic and kinetic parameters for isoniazid binding to Mt-trHbN(III) and Mt-trHbN(II) are K = (1.1±0.1)×10−4 M, kon = (5.3±0.6)×103 M−1 s−1 and koff = (4.6±0.5)×10−1 s−1; and D = (1.2±0.2)×10−3 M, don = (1.3±0.4)×103 M−1 s−1, and doff = 1.5±0.4 s−1, respectively, at pH 7.0 and 20.0°C. Accordingly, isoniazid inhibits competitively azide binding to Mt-trHbN(III) and Mt-trHbN(III)-catalyzed peroxynitrite isomerization. Moreover, isoniazid inhibits Mt-trHbN(II) oxygenation and carbonylation. Although the structure of the Mt-trHbN-isoniazid complex is not available, here we show by docking simulation that isoniazid binding to the heme-Fe atom indeed may take place. These data suggest a direct role of isoniazid to impair fundamental functions of mycobacteria, e.g. scavenging of reactive nitrogen and oxygen species, and metabolism.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The binding characteristics of isoniazid with copper-zinc superoxide dismutase and its effect on enzymatic activity. Chem Cent J 2013; 7:97. [PMID: 23738738 PMCID: PMC3679938 DOI: 10.1186/1752-153x-7-97] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022] Open
Abstract
Background Isoniazid (INH) is front-line anti-tuberculosis (TB) drugs, which are usually prescribed to TB patients for a total period of 6 months. Antituberculosis drug-induced hepatotoxicity (ATDH) is a serious adverse reaction of TB treatment. It is reported that INH-induced hepatotoxicity is associated with oxidative stress. Superoxide dismutase (SOD, EC 1.15.1.1) is the key enzyme for the protection of oxidative stress, which catalyzes the removal of superoxide radical anion, thereby raising the need to better understand the interaction between INH and SOD. Results The experimental results showed that the fluorescence intensity of Cu/Zn-SOD regularly decreased owing to form a 1:1 INH-SOD complex. According to the corresponding association constants (KSV) between INH and SOD obtained from Stern–Volmer plot, it is shown that values of KA are 1.01 × 104, 5.31 × 103, 3.33 × 103, 2.20 × 103 L · mol−1 at four different temperatures, respectively. The binding constants, binding sites and the corresponding thermodynamic parameters (ΔH, ΔG and ΔS) were calculated. A value of 3.93 nm for the average distance between INH and chromophore of Cu/Zn-SOD was derived from Förster theory of non-radiation energy transfer. The conformational investigation showed that the presence of INH resulted in the microenvironment and conformational changes of Cu/Zn-SOD. In addition, Effects of INH on superoxide dismutase activity was examined. Conclusions The results show that the hydrogen bonding and van der Waals forces play major roles in stabilizing the 1:1 INH-SOD complex. After addition of INH during the range of the experiment, the conformation and microenvironment of Cu/Zn-SOD are changed, but the activity of Cu/Zn-SOD is not changed.
Collapse
|
17
|
Discovery of novel InhA reductase inhibitors: application of pharmacophore- and shape-based screening approach. Future Med Chem 2013; 5:249-59. [DOI: 10.4155/fmc.12.211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: InhA is a promising and attractive target in antimycobacterial drug development. InhA is involved in the reduction of long-chain trans-2-enoyl-ACP in the type II fatty acid biosynthesis pathway of Mycobacterium tuberculosis. Recent studies have demonstrated that InhA is one of the targets for the second line antitubercular drug ethionamide. Results: In the current study, we have generated quantitative pharmacophore models using known InhA inhibitors and validated using a large test set. The validated pharmacophore model was used as a query to screen an in-house database of 400,000 compounds and retrieved 25,000 hits. These hits were further ranked based on its shape and feature similarity with potent InhA inhibitor using rapid overlay of chemical structures (OpenEye™) and subsequent hits were subjected for docking. Based on the pharmacophore, rapid overlay of chemical structures model and docking interactions, 32 compounds with more than eight chemotypes were selected, purchased and assayed for InhA inhibitory activity. Out of the 32 compounds, 28 demonstrated 10–38% inhibition against InhA at 10 µM. Conclusion: Further optimization of these analogues is in progress and will update in due course.
Collapse
|
18
|
Brossier F. Mécanismes d’action et de résistance de l’isoniazide, un antituberculeux de première ligne. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.antinf.2011.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
First structural evidence for the mode of diffusion of aromatic ligands and ligand-induced closure of the hydrophobic channel in heme peroxidases. J Biol Inorg Chem 2010; 15:1099-107. [DOI: 10.1007/s00775-010-0669-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022]
|
20
|
Singh AK, Kumar RP, Pandey N, Singh N, Sinha M, Bhushan A, Kaur P, Sharma S, Singh TP. Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution. J Biol Chem 2009; 285:1569-76. [PMID: 19907057 DOI: 10.1074/jbc.m109.060327] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well as the mode of diffusion and interactions together with a detailed structural and functional comparison with MtCP. The structure determination shows that isoniazid binds to LPO at the substrate binding site on the distal heme side. The substrate binding site is connected to the protein surface through a long hydrophobic channel. The acyl hydrazide moiety of isoniazid interacts with Phe(422) O, Gln(423) O(epsilon1), and Phe(254) O. In this arrangement, pyridinyl nitrogen forms a hydrogen bond with a water molecule, W-1, which in turn forms three hydrogen bonds with Fe(3+), His(109) N(epsilon2), and Gln(105) N(epsilon2). The remaining two sides of isoniazid form hydrophobic interactions with the atoms of heme pyrrole ring A, C(beta) and C(gamma) atoms of Glu(258), and C(gamma) and C(delta) atoms of Arg(255). The binding studies indicate that INH binds to LPO with a value of 0.9 x 10(-6) m for the dissociation constant. The nitro blue tetrazolium reduction assay shows that INH is activated by the reaction of LPO-H(2)O(2) with INH. This suggests that LPO can be used for INH activation. It also indicates that the conversion of INH into isonicotinoyl radical by LPO may be the cause of INH toxicity.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Suarez J, Ranguelova K, Schelvis JPM, Magliozzo RS. Antibiotic resistance in Mycobacterium tuberculosis: peroxidase intermediate bypass causes poor isoniazid activation by the S315G mutant of M. tuberculosis catalase-peroxidase (KatG). J Biol Chem 2009; 284:16146-16155. [PMID: 19363028 DOI: 10.1074/jbc.m109.005546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KatG (catalase-peroxidase) in Mycobacterium tuberculosis is responsible for activation of isoniazid (INH), a pro-drug used to treat tuberculosis infections. Resistance to INH is a global health problem most often associated with mutations in the katG gene. The origin of INH resistance caused by the KatG[S315G] mutant enzyme is examined here. Overexpressed KatG[S315G] was characterized by optical, EPR, and resonance Raman spectroscopy and by studies of the INH activation mechanism in vitro. Catalase activity and peroxidase activity with artificial substrates were moderately reduced (50 and 35%, respectively), whereas the rates of formation of oxyferryl heme:porphyrin pi-cation radical and the decay of heme intermediates were approximately 2-fold faster in KatG[S315G] compared with WT enzyme. The INH binding affinity for the resting enzyme was unchanged, whereas INH activation, measured by the rate of formation of an acyl-nicotinamide adenine dinucleotide adduct considered to be a bactericidal molecule, was reduced by 30% compared with WT KatG. INH resistance is suggested to arise from a redirection of catalytic intermediates into nonproductive reactions that interfere with oxidation of INH. In the resting mutant enzyme, a rapid evolution of 5-c heme to 6-c species occurred in contrast with the behavior of WT KatG and KatG[S315T] and consistent with greater flexibility at the heme edge in the absence of the hydroxyl of residue 315. Insights into the effects of mutations at residue 315 on enzyme structure, peroxidation kinetics, and specific interactions with INH are presented.
Collapse
Affiliation(s)
- Javier Suarez
- From the Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210; Department of Biochemistry, The Graduate Center of the City University of New York, New York, New York 11216
| | - Kalina Ranguelova
- From the Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210; Department of Biochemistry, The Graduate Center of the City University of New York, New York, New York 11216
| | | | - Richard S Magliozzo
- From the Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210; Department of Biochemistry, The Graduate Center of the City University of New York, New York, New York 11216.
| |
Collapse
|
22
|
Zhao X, Yu S, Ranguelova K, Suarez J, Metlitsky L, Schelvis JPM, Magliozzo RS. Role of the oxyferrous heme intermediate and distal side adduct radical in the catalase activity of Mycobacterium tuberculosis KatG revealed by the W107F mutant. J Biol Chem 2009; 284:7030-7. [PMID: 19139098 DOI: 10.1074/jbc.m808107200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalase-peroxidase (KatG) is essential in Mycobacterium tuberculosis for oxidative stress management and activation of the antitubercular pro-drug isoniazid. The role of a unique distal side adduct found in KatG enzymes, involving linked side chains of residues Met255, Tyr229, and Trp107 (MYW), in the unusual catalase activity of KatG is addressed here and in our companion paper (Suarez, J., Ranguelova, K., Jarzecki, A. A., Manzerova, J., Krymov, V., Zhao, X., Yu, S., Metlitsky, L., Gerfen, G. J., and Magliozzo, R. S. (2009) J. Biol. Chem. 284, in press). The KatG[W107F] mutant exhibited severely reduced catalase activity yet normal peroxidase activity, and as isolated contains more abundant 6-coordinate heme in high spin and low spin forms compared with the wild-type enzyme. Most interestingly, oxyferrous heme is also found in the purified enzyme. Oxyferrous KatG[W107F] was prepared by photolysis in air of the carbonyl enzyme or was generated using hydrogen peroxide decayed with a t1/2 of 2 days compared with 6 min for wild-type protein. The stability of oxyenyzme was modestly enhanced in KatG[Y229F] but was not affected in KatG[M255A]. Optical stopped-flow experiments showed rapid formation of Compound I in KatG[W107F] and facile formation of oxyferrous heme in the presence of micromolar hydrogen peroxide. An analysis of the relationships between catalase activity, stability of oxyferrous enzyme, and a proposed MYW adduct radical is presented. The loss of catalase function is assigned to the loss of the MYW adduct radical and structural changes that lead to greatly enhanced stability of oxyenzyme, an intermediate of the catalase cycle of native enzyme.
Collapse
Affiliation(s)
- Xiangbo Zhao
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ranguelova K, Suarez J, Metlitsky L, Yu S, Brejt SZ, Brejt SZ, Zhao L, Schelvis JPM, Magliozzo RS. Impact of Distal Side Water and Residue 315 on Ligand Binding to Ferric Mycobacterium tuberculosis Catalase−Peroxidase (KatG). Biochemistry 2008; 47:12583-92. [DOI: 10.1021/bi801511u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kalina Ranguelova
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Javier Suarez
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Leonid Metlitsky
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Shengwei Yu
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Shelly Zev Brejt
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Sidney Zelig Brejt
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Lin Zhao
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Johannes P. M. Schelvis
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| | - Richard S. Magliozzo
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, Department of Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, and Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003
| |
Collapse
|
24
|
Priebe JP, Mello RS, Nome F, Bortoluzzi AJ. Nicotinohydrazide. Acta Crystallogr Sect E Struct Rep Online 2007; 64:o302-3. [PMID: 21200867 PMCID: PMC2915351 DOI: 10.1107/s160053680706655x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/11/2007] [Indexed: 11/27/2022]
Abstract
The title mol-ecule (alternative name: pyridine-3-carbohydrazide; C(6)H(7)N(3)O) was obtained from the reaction of ethyl nicotinate with hydrazine hydrate in methanol. In the amide group, the C-N bond is relatively short, suggesting some degree of electronic delocalization in the mol-ecule. The stabilized conformation may be compared with those of isomeric compounds picolinohydrazide (pyridine-2-carbohydrazide) and isonicotinohydrazide (pyridine-4-carbohydrazide). In the title isomer, the pyridine ring forms an angle of 33.79 (9)° with the plane of the non-H atoms of the hydrazide group. This lack of coplanarity between the hydrazide functionality and the pyridine ring is considerably greater than that observed in isonicotinohydrazide (dihedral angle = 17.14°), while picolinohydrazide is almost fully planar. The title isomer forms inter-molecular N-H⋯O and N-H⋯N hydrogen bonds, which stabilize the crystal structure.
Collapse
Affiliation(s)
- Jacks P. Priebe
- Depto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Renata S. Mello
- Depto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Faruk Nome
- Depto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Adailton J. Bortoluzzi
- Depto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
25
|
Bonnac L, Gao GY, Chen L, Felczak K, Bennett EM, Xu H, Kim T, Liu N, Oh H, Tonge PJ, Pankiewicz KW. Synthesis of 4-phenoxybenzamide adenine dinucleotide as NAD analogue with inhibitory activity against enoyl-ACP reductase (InhA) of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2007; 17:4588-91. [PMID: 17560106 DOI: 10.1016/j.bmcl.2007.05.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 11/19/2022]
Abstract
The chemical synthesis of 4-phenoxybenzamide adenine dinucleotide (3), a NAD analogue which mimics isoniazid-NAD adduct and inhibits Mycobacterium tuberculosis NAD-dependent enoyl-ACP reductase (InhA), is reported. The 4-phenoxy benzamide riboside (1) has been prepared as a key intermediate, converted into its 5'-mononucleotide (2), and coupled with AMP imidazolide to give the desired NAD analogue 3. It inhibits InhA with IC50 = 27 microM.
Collapse
Affiliation(s)
- Laurent Bonnac
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|