1
|
Guo M, Rosbottom I, Zhou L, Yong CW, Zhou L, Yin Q, Todorov IT, Errington E, Heng JYY. Triglycine (GGG) Adopts a Polyproline II (pPII) Conformation in Its Hydrated Crystal Form: Revealing the Role of Water in Peptide Crystallization. J Phys Chem Lett 2021; 12:8416-8422. [PMID: 34436909 DOI: 10.1021/acs.jpclett.1c01622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polyproline II (pPII) is a left-handed 31-helix conformation, which has been observed to be the most abundant secondary structure in unfolded peptides and proteins compared to α-helix and β-sheet. Although pPII has been reported as the most stable conformation for several unfolded short chain peptides in aqueous solution, it is rarely observed in their solid state. Here, we show for the first time a glycine homopeptide (gly-gly-gly) adopting the pPII conformation in its crystalline dihydrate structure. The single crystal X-ray structure with molecular dynamic simulation suggests that a network of water and the charged carboxylate group is critical in stabilizing the pPII conformation in solid state, offering an insight into the structures of unfolded regions of proteins and the role of water in peptide crystallization.
Collapse
Affiliation(s)
| | | | - Lina Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Chin W Yong
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, U.K
| | - Ling Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ilian T Todorov
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, U.K
| | | | | |
Collapse
|
2
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
3
|
Zhang S, Liang R, Zhao Y, Zhang S, Lin S. Immunomodulatory Activity Improvement of Pine Nut Peptides by a Pulsed Electric Field and Their Structure-Activity Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3796-3810. [PMID: 30864792 DOI: 10.1021/acs.jafc.9b00760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, Alg-Gly-Ala-Val-Leu-His (RGAVLH) obtained from pine nut ( Pinus koraiensis Sieb. et Zucc.) protein was chosen to investigate the phenomenon of immunomodulatory activity improvement upon pulsed electric field (PEF) processing. The influence of electric field intensity on immunomodulatory activity of RGAVLH was evaluated using RAW 264.7 cells. It was found that RGAVLH can not only significantly ( p < 0.05) improve the capability of macrophage phagocytosis but also promote the production of nitric oxide. RGAVLH treated under an electric field intensity of 40 kV/cm exhibited the best immunomodulatory activity. The primary and secondary structures of PEF-treated peptides were analyzed by mid-infrared (MIR) spectroscopy, Raman spectroscopy, circular dichroism spectroscopy, and one-dimensional/two-dimensional nuclear magnetic resonance spectroscopy. After PEF treatment, the primary structure of RGAVLH was not influenced, as evaluated by MIR and Raman spectra. In addition, the content of β-sheet was decreased and active hydrogen was changed in PEF-treated RGAVLH solution. Moreover, the long-range connectivity between CαH (3.39 ppm) and NαH (8.24 ppm) was enhanced by PEF. Therefore, the improvement of the immunomodulatory activity of RGAVLH might result from the changes of the spatial state and spatial force in the peptide solution system.
Collapse
Affiliation(s)
- Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| | - Rong Liang
- College of Agriculture , Liaocheng University , Liaocheng , Shandong 252000 , People's Republic of China
| | - Yu Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
| |
Collapse
|
4
|
Futscher MH, Philipp M, Müller-Buschbaum P, Schulte A. The Role of Backbone Hydration of Poly(N-isopropyl acrylamide) Across the Volume Phase Transition Compared to its Monomer. Sci Rep 2017; 7:17012. [PMID: 29208941 PMCID: PMC5717149 DOI: 10.1038/s41598-017-17272-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Thermo-responsive polymers undergo a reversible coil-to-globule transition in water after which the chains collapse and aggregate into bigger globules when passing to above its lower critical solution temperature (LCST). The hydrogen bonding with the amide groups in the side chains has to be contrasted with the hydration interaction of the hydrophobic main-chain hydrocarbons. In the present investigation we study molecular changes in the polymer poly(N-isopropyl acrylamide) (PNIPAM) and in its monomer N-isopropyl acrylamide (NIPAM) in solution across the LCST transition. Employing Fourier-transform infrared spectroscopy we probe changes in conformation and hydrogen bonding. We observe a nearly discontinuous shift of the peak frequencies and areas of vibrational bands across the LCST transition for PNIPAM whereas NIPAM exhibits a continuous linear change with temperature. This supports the crucial role of the polymer backbone with respect to hydration changes in the amide group in combination with cooperative interactions of bound water along the backbone chain.
Collapse
Affiliation(s)
- Moritz H Futscher
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748, Garching, Germany
| | - Martine Philipp
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748, Garching, Germany
| | - Alfons Schulte
- University of Central Florida, Department of Physics and College of Optics and Photonics, 4111 Libra Drive, Orlando, FL, 32817-2385, United States.
| |
Collapse
|
5
|
DiGuiseppi D, Milorey B, Lewis G, Kubatova N, Farrell S, Schwalbe H, Schweitzer-Stenner R. Probing the Conformation-Dependent Preferential Binding of Ethanol to Cationic Glycylalanylglycine in Water/Ethanol by Vibrational and NMR Spectroscopy. J Phys Chem B 2017; 121:5744-5758. [DOI: 10.1021/acs.jpcb.7b02899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Nina Kubatova
- Institut
für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, 60438 Frankfurt am Main, Germany
| | | | - Harald Schwalbe
- Institut
für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
6
|
Feng Y, Huang J, Kim S, Shim JH, MacKerell AD, Ge NH. Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation. J Phys Chem B 2016; 120:5325-39. [PMID: 27299801 DOI: 10.1021/acs.jpcb.6b02608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the structure of (Ala)5, a model unfolded peptide, using a combination of 2D IR spectroscopy and molecular dynamics (MD) simulation. Two different isotopomers, each bis-labeled with (13)C═O and (13)C═(18)O, were strategically designed to shift individual site frequencies and uncouple neighboring amide-I' modes. 2D IR spectra taken under the double-crossed ⟨π/4, -π/4, Y, Z⟩ polarization show that the labeled four-oscillator systems can be approximated by three two-oscillator systems. By utilizing the different polarization dependence of diagonal and cross peaks, we extracted the coupling constants and angles between three pairs of amide-I' transition dipoles through spectral fitting. These parameters were related to the peptide backbone dihedral angles through DFT calculated maps. The derived dihedral angles are all located in the polyproline-II (ppII) region of the Ramachandran plot. These results were compared to the conformations sampled by Hamiltonian replica-exchange MD simulations with three different CHARMM force fields. The C36 force field predicted that ppII is the dominant conformation, consistent with the experimental findings, whereas C22/CMAP predicted similar population for α+, β, and ppII, and the polarizable Drude-2013 predicted dominating β structure. Spectral simulation based on MD representative conformations and structure ensembles demonstrated the need to include multiple 2D spectral features, especially the cross-peak intensity ratio and shape, in structure determination. Using 2D reference spectra defined by the C36 structure ensemble, the best spectral simulation is achieved with nearly 100% ppII population, although the agreement with the experimental cross-peak intensity ratio is still insufficient. The dependence of population determination on the choice of reference structures/spectra and the current limitations on theoretical modeling relating peptide structures to spectral parameters are discussed. Compared with the previous results on alanine based oligopeptides, the dihedral angles of our fitted structure, and the most populated ppII structure from the C36 simulation are in good agreement with those suggesting a major ppII population. Our results provide further support for the importance of ppII conformation in the ensemble of unfolded peptides.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Jing Huang
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Seongheun Kim
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| | - Ji Hyun Shim
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
7
|
Novotná P, Urbanová M. A Solid Phase Vibrational Circular Dichroism Study of Polypeptide-Surfactant Interaction. Chirality 2015; 27:965-72. [DOI: 10.1002/chir.22534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/07/2015] [Accepted: 08/27/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Pavlína Novotná
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
| | - Marie Urbanová
- Department of Physics and Measurements; University of Chemistry and Technology; Prague Czech Republic
| |
Collapse
|
8
|
Xiao X, Kallenbach N, Zhang Y. Peptide Conformation Analysis Using an Integrated Bayesian Approach. J Chem Theory Comput 2014; 10:4152-4159. [PMID: 25221447 PMCID: PMC4159213 DOI: 10.1021/ct500433d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 01/22/2023]
Abstract
Unlike native proteins that are amenable to structural analysis at atomic resolution, unfolded proteins occupy a manifold of dynamically interconverting structures. Defining the conformations of unfolded proteins is of significant interest and importance, for folding studies and for understanding the properties of intrinsically disordered proteins. Short chain protein fragments, i.e., oligopeptides, provide an excellent test-bed in efforts to define the conformational ensemble of unfolded chains. Oligomers of alanine in particular have been extensively studied as minimalist models of the intrinsic conformational preferences of the peptide backbone. Even short alanine peptides occupy an ensemble of substates that are distinguished by small free energy differences, so that the problem of quantifying the conformational preferences of the backbone remains a fundamental challenge in protein biophysics. Here, we demonstrate an integrated computational-experimental-Bayesian approach to quantify the conformational ensembles of the model trialanine peptide in water. In this approach, peptide conformational substates are first determined objectively by clustering molecular dynamics snapshots based on both structural and dynamic information. Next, a set of spectroscopic data for each conformational substate is computed. Finally, a Bayesian statistical analysis of both experimentally measured spectroscopic data and computational results is carried out to provide a current best estimate of the substate population ensemble together with corresponding confidence intervals. This distribution of substates can be further systematically refined with additional high-quality experimental data and more accurate computational modeling. Using an experimental data set of NMR coupling constants, we have also applied this approach to characterize the conformation ensemble of trivaline in water.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Neville Kallenbach
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University , New York, New York 10003, United States ; NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| |
Collapse
|
9
|
Jiang F, Han W, Wu YD. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development. Phys Chem Chem Phys 2013; 15:3413-28. [PMID: 23385383 DOI: 10.1039/c2cp43633g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The local conformational (φ, ψ, χ) preferences of amino acid residues remain an active research area, which are important for the development of protein force fields. In this perspective article, we first summarize spectroscopic studies of alanine-based short peptides in aqueous solution. While most studies indicate a preference for the P(II) conformation in the unfolded state over α and β conformations, significant variations are also observed. A statistical analysis from various coil libraries of high-resolution protein structures is then summarized, which gives a more coherent view of the local conformational features. The φ, ψ, χ distributions of the 20 amino acids have been obtained from a protein coil library, considering both backbone and side-chain conformational preferences. The intrinsic side-chain χ(1) rotamer preference and χ(1)-dependent Ramachandran plot can be generally understood by combining the interaction of the side-chain Cγ/Oγ atom with two neighboring backbone peptide groups. Current all-atom force fields such as AMBER ff99sb-ILDN, ff03 and OPLS-AA/L do not reproduce these distributions well. A method has been developed by combining the φ, ψ plot of alanine with the influence of side-chain χ(1) rotamers to derive the local conformational features of various amino acids. It has been further applied to improve the OPLS-AA force field. The modified force field (OPLS-AA/C) reproduces experimental (3)J coupling constants for various short peptides quite well. It also better reproduces the temperature-dependence of the helix-coil transition for alanine-based peptides. The new force field can fold a series of peptides and proteins with various secondary structures to their experimental structures. MD simulations of several globular proteins using the improved force field give significantly less deviation (RMSD) to experimental structures. The results indicate that the local conformational features from coil libraries are valuable for the development of balanced protein force fields.
Collapse
Affiliation(s)
- Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | | | | |
Collapse
|
10
|
Byrne C, Miclet E, Broutin I, Gallo D, Pelekanou V, Kampa M, Castanas E, Leclercq G, Jacquot Y. Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: new insights for ERα coactivator interactions. Chirality 2013; 25:628-42. [PMID: 23925889 DOI: 10.1002/chir.22188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 04/12/2013] [Indexed: 11/07/2022]
Abstract
Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation.
Collapse
Affiliation(s)
- C Byrne
- Laboratoire des BioMolécules (LBM), CNRS - UMR 7203, Ecole Normale Supérieure / Université Pierre et Marie Curie 24, rue Lhomond, 75231, Paris Cedex 05, France; Fondation Pierre-Gilles de Gennes pour la Recherche, 29, rue d'Ulm, 75005, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li Y, Gao Y, Zhang X, Wang X, Mou L, Duan L, He X, Mei Y, Zhang JZH. A coupled two-dimensional main chain torsional potential for protein dynamics: generation and implementation. J Mol Model 2013; 19:3647-57. [PMID: 23765039 DOI: 10.1007/s00894-013-1879-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/01/2013] [Indexed: 11/29/2022]
Abstract
Main chain torsions of alanine dipeptide are parameterized into coupled 2-dimensional Fourier expansions based on quantum mechanical (QM) calculations at M06 2X/aug-cc-pvtz//HF/6-31G** level. Solvation effect is considered by employing polarizable continuum model. Utilization of the M06 2X functional leads to precise potential energy surface that is comparable to or even better than MP2 level, but with much less computational demand. Parameterization of the 2D expansions is against the full main chain torsion space instead of just a few low energy conformations. This procedure is similar to that for the development of AMBER03 force field, except unique weighting factor was assigned to all the grid points. To avoid inconsistency between quantum mechanical calculations and molecular modeling, the model peptide is further optimized at molecular mechanics level with main chain dihedral angles fixed before the calculation of the conformational energy on molecular mechanical level at each grid point, during which generalized Born model is employed. Difference in solvation models at quantum mechanics and molecular mechanics levels makes this parameterization procedure less straightforward. All force field parameters other than main chain torsions are taken from existing AMBER force field. With this new main chain torsion terms, we have studied the main chain dihedral distributions of ALA dipeptide and pentapeptide in aqueous solution. The results demonstrate that 2D main chain torsion is effective in delineating the energy variation associated with rotations along main chain dihedrals. This work is an implication for the necessity of more accurate description of main chain torsions in the future development of ab initio force field and it also raises a challenge to the development of quantum mechanical methods, especially the quantum mechanical solvation models.
Collapse
Affiliation(s)
- Yongxiu Li
- Center for Laser and Computational Biophysics, State Key Laboratory of Precision Spectroscopy and Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai, 200062, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Polyproline-II Helix in Proteins: Structure and Function. J Mol Biol 2013; 425:2100-32. [DOI: 10.1016/j.jmb.2013.03.018] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
|
13
|
Toal S, Meral D, Verbaro D, Urbanc B, Schweitzer-Stenner R. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study. J Phys Chem B 2013; 117:3689-706. [PMID: 23448349 DOI: 10.1021/jp310466b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several lines of evidence now well establish that unfolded peptides in general, and alanine in specific, have an intrinsic preference for the polyproline II (pPII) conformation. Investigation of local order in the unfolded state is, however, complicated by experimental limitations and the inherent dynamics of the system, which has in some cases yielded inconsistent results from different types of experiments. One method of studying these systems is the use of short model peptides, and specifically short alanine peptides, known for predominantly sampling pPII structure in aqueous solution. Recently, He et al. ( J. Am. Chem. Soc. 2012 , 134 , 1571 - 1576 ) proposed that unblocked tripeptides may not be suitable models for studying conformational propensities in unfolded peptides due to the presence of end effect, that is, electrostatic interactions between investigated amino acid residues and terminal charges. To determine whether changing the protonation states of the N- and C-termini influence the conformational manifold of the central amino acid residue in tripeptides, we have examined the pH-dependence of unblocked trialanine and the conformational preferences of alanine in the alanine dipeptide. To this end, we measured and globally analyzed amide I' band profiles and NMR J-coupling constants. We described conformational distributions as the superposition of two-dimensional Gaussian distributions assignable to specific subspaces of the Ramachandran plot. Results show that the conformational ensemble of trialanine as a whole, and the pPII content (χpPII = 0.84) in particular, remains practically unaffected by changing the protonation state. We found that compared to trialanine, the alanine dipeptide has slightly lower pPII content (χpPII = 0.74) and an ensemble more reminiscent of the unblocked Gly-Ala-Gly model peptide. In addition, a two-state thermodynamic analysis of the conformational sensitive Δε(T) and (3)J(H(N)H(α))(T) data obtained from electronic circular dichroism and H NMR spectra indicate that the free energy landscape of trialanine is similar in all protonation states. MD simulations for the investigated peptides corroborate this notion and show further that the hydration shell around unblocked trialanine is unaffected by the protonation/deprotonation of the C-terminal group. In contrast, the alanine dipeptide shows a reduced water density around the central residue as well as a less ordered hydration shell, which decreases the pPII propensity and reduces the lifetime of sampled conformations.
Collapse
Affiliation(s)
- Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Advances in electrochemical detection for study of neurodegenerative disorders. Anal Bioanal Chem 2013; 405:5725-41. [DOI: 10.1007/s00216-013-6904-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/30/2022]
|
15
|
Shim J, Zhu X, Best RB, MacKerell AD. (Ala)(4)-X-(Ala)4 as a model system for the optimization of the χ1 and χ2 amino acid side-chain dihedral empirical force field parameters. J Comput Chem 2012. [PMID: 23197420 DOI: 10.1002/jcc.23178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Amino acid side-chain fluctuations play an essential role in the structure and function of proteins. Accordingly, in theoretical studies of proteins, it is important to have an accurate description of their conformational properties. Recently, new side-chain torsion parameters were introduced into the CHARMM and Amber additive force fields and evaluated based on the conformational properties of the individual side-chains using protein simulations in explicit solvent. While effective for validation, molecular dynamics simulations of proteins must be extended into the microsecond regime to obtain full convergence of the side-chain conformations, limiting their use for force field optimization. To address this, we systematically test the utility of explicit solvent simulations of (Ala)(4)-X-(Ala)(4) peptides, where X represents the amino acids, as model systems for the optimization of χ(1) and χ(2) side-chain parameters. The effect of (Ala)(4)-X-(Ala)(4) backbone conformation was tested by constraining the backbone in the α-helical, C5, C7(eq), and PPII conformations and performing exhaustive sampling using Hamiltonian replica exchange simulations. Rotamer distributions from protein and the (Ala)(4)-X-(Ala)(4) simulations showed the highest correlation for the C7(eq) and PPII conformations, although agreement was the best for the α-helical conformation for Asn. Hydrogen bond analysis indicates the utility of the C7(eq) and PPII conformations to be due to specific side-chain-backbone hydrogen bonds not being oversampled, thereby allowing sampling of a range of side-chain conformations consistent with the distributions occurring in full proteins. It is anticipated that the (Ala)(4)-X-(Ala)(4) model system will allow for iterative force field optimization targeting condensed-phase conformational distributions of side-chains.
Collapse
Affiliation(s)
- Jihyun Shim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
16
|
Verbaro DJ, Mathieu D, Toal SE, Schwalbe H, Schweitzer-Stenner R. Ionized Trilysine: A Model System for Understanding the Nonrandom Structure of Poly-l-lysine and Lysine-Containing Motifs in Proteins. J Phys Chem B 2012; 116:8084-94. [DOI: 10.1021/jp303794s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Verbaro
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia,
Pennsylvania 19104, United States
| | - Daniel Mathieu
- Institute for Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse
7, 60438 Frankfurt, Germany
| | - Siobhan E. Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia,
Pennsylvania 19104, United States
| | - Harald Schwalbe
- Institute for Organic Chemistry
and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse
7, 60438 Frankfurt, Germany
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia,
Pennsylvania 19104, United States
| |
Collapse
|
17
|
Duitch L, Toal S, Measey TJ, Schweitzer-Stenner R. Triaspartate: A Model System for Conformationally Flexible DDD Motifs in Proteins. J Phys Chem B 2012; 116:5160-71. [DOI: 10.1021/jp2121565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Duitch
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| | - Siobhan Toal
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| | - Thomas J. Measey
- Department of Chemistry, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 3141 Chestnut Street,
Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Schweitzer-Stenner R, Soffer JB, Verbaro D. Structure analysis of unfolded peptides I: vibrational circular dichroism spectroscopy. Methods Mol Biol 2012; 895:271-313. [PMID: 22760325 DOI: 10.1007/978-1-61779-927-3_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy is an invaluable spectroscopic techniques utilized to exploit the optical strength of vibrational transitions for structure analysis. In this chapter, we describe the protocol for measuring and self-consistently analyzing VCD and the corresponding FT-IR spectra of short peptides. This process involves the decomposition of the IR spectrum as well as simulations of the amide I band profiles in both spectra based on structural models of the peptides investigated. This type of spectral analysis should be complemented with similar investigations of Raman spectra, which are described in the subsequent chapter. The structural analysis of short, unfolded peptides described in this chapter can easily be extended for the analysis of longer unfolded peptides or even proteins. This is particularly important in view of the demonstrated biological relevance of intrinsically disordered peptides and proteins (IDPs).
Collapse
|
19
|
Georgoulia PS, Glykos NM. Using J-coupling constants for force field validation: application to hepta-alanine. J Phys Chem B 2011; 115:15221-7. [PMID: 22087590 DOI: 10.1021/jp209597e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A computational solution to the protein folding problem is the holy grail of biomolecular simulation and of the corresponding force fields. The complexity of the systems used for folding simulations precludes a direct feedback between the simulations and the force fields, thus necessitating the study of simpler systems with sufficient experimental data to allow force field optimization and validation. Recent studies on short polyalanine peptides of increasing length (up to penta-alanine) indicated the presence of a systematic deviation between the experimental (NMR-derived) J-couplings and the great majority of biomolecular force fields, with the χ(2) values for even the best-performing force fields being in the 1.4-1.8 range. Here we show that by increasing the number of residues to seven and by achieving convergence through an increase of the simulation time to 2 μs, we can identify one force field (the AMBER99SB force field, out of the three force fields studied) which when compared with the experimental J-coupling data (and for a specific set of Karplus equation parameters and estimated J-coupling errors previously used in the literature) gave a value of χ(2) = 0.99, indicating that full statistical consistency between experiment and simulation is feasible. However, and as a detailed analysis of the effects of estimated errors shows, the χ(2) values may be unsuitable as indicators of the goodness of fit of the various biomolecular force fields.
Collapse
Affiliation(s)
- Panagiota S Georgoulia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, 68100 Alexandroupolis, Greece
| | | |
Collapse
|
20
|
Carvajal-Rondanelli PA, Marshall SH, Guzman F. Antifreeze glycoprotein agents: structural requirements for activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2507-2510. [PMID: 21725975 DOI: 10.1002/jsfa.4473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 05/31/2023]
Abstract
Antifreeze glycoproteins (AFGPs) are considered to be the most efficient means to reduce ice damage to cell tissues since they are able to inhibit growth and crystallization of ice. The key element of antifreeze proteins is to act in a non-colligative manner which allows them to function at concentrations 300-500 times lowers than other dissolved solutes. During the past decade, AFGPs have demonstrated tremendous potential for many pharmaceutical and food applications. Presently, the only route to obtain AFGPs involves the time consuming and expensive process of isolation and purification from deep-sea polar fishes. Unfortunately, it is not amenable to mass production and commercial applications. The lack of understanding of the mechanism through which the AFGPs inhibit ice growth has also hampered the realization of industrial and biotechnological applications. Here we report the structural motifs that are essential for antifreeze activity of AFGPs, and propose a unified mechanism based on both recent studies of short alanine peptides and structure activity relationship of synthesized AFGPs.
Collapse
|
21
|
Ioannou F, Archontis G, Leontidis E. Specific interactions of sodium salts with alanine dipeptide and tetrapeptide in water: insights from molecular dynamics. J Phys Chem B 2011; 115:13389-400. [PMID: 21978277 DOI: 10.1021/jp207068m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We examine computationally the dipeptide and tetrapeptide of alanine in pure water and solutions of sodium chloride (NaCl) and iodide (NaI), with salt concentrations up to 3 M. Enhanced sampling of the configuration space is achieved by the replica exchange method. In agreement with other works, we observe preferential sodium interactions with the peptide carbonyl groups, which are enhanced in the NaI solutions due to the increased affinity of the less hydrophilic iodide anion for the peptide methyl side-chains and terminal blocking groups. These interactions have been associated with a decrease in the helicities of more complex peptides. In our simulations, both salts have a small effect on the dipeptide, but consistently stabilize the intramolecular hydrogen-bonding interactions and "α-helical" conformations of the tetrapeptide. This behavior, and an analysis of the intermolecular interaction energies show that ion-peptide interactions, or changes in the peptide hydration due to salts, are not sufficient determining factors of the peptide conformational preferences. Additional simulations suggest that the observed stabilizing effect is not due to the employed force-field, and that it is maintained in short peptides but is reversed in longer peptides. Thus, the peptide conformational preferences are determined by an interplay of energetic and entropic factors, arising from the peptide sequence and length and the composition of the solution.
Collapse
|
22
|
Toal S, Amidi O, Schweitzer-Stenner R. Conformational Changes of Trialanine Induced by Direct Interactions between Alanine Residues and Alcohols in Binary Mixtures of Water with Glycerol and Ethanol. J Am Chem Soc 2011; 133:12728-39. [DOI: 10.1021/ja204123g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Siobhan Toal
- Departments of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Omid Amidi
- Departments of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Departments of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Hagarman A, Mathieu D, Toal S, Measey TJ, Schwalbe H, Schweitzer-Stenner R. Amino acids with hydrogen-bonding side chains have an intrinsic tendency to sample various turn conformations in aqueous solution. Chemistry 2011; 17:6789-97. [PMID: 21547966 DOI: 10.1002/chem.201100016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Indexed: 11/07/2022]
Abstract
Local structure in unfolded proteins, especially turn segments, has been suggested to initiate the hierarchical protein-folding process. To determine the intrinsic propensity to form such turn structures, amide I' band profiles of the Raman, IR, and vibrational circular dichroism (VCD) spectra, and several structure-sensitive NMR J-coupling constants, have been measured for a series of GxG (x=D, N, T, C) peptides, in which the central x residues are abundant in various turn motifs in folded proteins. In addition, we revisited earlier measured GSG experimental data. To check whether this relatively high propensity for these residues to sample turns reflects an intrinsic propensity, the experimental data were analyzed in terms of conformational distributions that can be described as a superposition of two-dimensional Gaussian distributions associated with different so-called mesostates. The analysis reveals that the investigated residues sample dihedral angles similar to those found in the corner residues of various turns, namely, type I/I', II/II', and IV β-turns. Aspartic acid (D) was found to predominantly sample regions attributed to turns, including distributions at the upper border of the upper-right quadrant of the Ramachandran plot, which bear some resemblance to asx-turns observed in proteins. This conformation enables hydrogen bonding between the side-chain carboxylate and the C-terminal amide group. Altogether, the study shows that the high propensity for T, S, C, N, and D to be located in turn motifs reflects, to a substantial degree, an intrinsic property and supports the role of these residues as initiation sites for hierarchical folding processes that can lead to compact structures in the unfolded state of peptides and proteins.
Collapse
Affiliation(s)
- Andrew Hagarman
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
24
|
Otto KE, Hesse S, Wassermann TN, Rice CA, Suhm MA, Stafforst T, Diederichsen U. Temperature-dependent intensity anomalies in amino acid esters: weak hydrogen bonds in protected glycine, alanine and valine. Phys Chem Chem Phys 2011; 13:14119-30. [DOI: 10.1039/c1cp20883g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Liu Z, Ensing B, Moore PB. Quantitative Assessment of Force Fields on Both Low-Energy Conformational Basins and Transition-State Regions of the (ϕ-ψ) Space. J Chem Theory Comput 2010; 7:402-19. [PMID: 26596162 DOI: 10.1021/ct100395n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The free energy surfaces (FESs) of alanine dipeptide are studied to illustrate a new strategy to assess the performance of classical molecular mechanics force field on the full range of the (ϕ-ψ) conformational space. The FES is obtained from metadynamics simulations with five commonly used force fields and from ab initio density functional theory calculations in both gas phase and aqueous solution. The FESs obtained at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) level of theory are validated by comparison with previously reported MP2 and LMP2 results as well as with experimentally obtained probability distribution between the C5-β (or β-PPII) and αR states. A quantitative assessment is made for each force field in three conformational basins, LeRI (C5-β-C7eq), LeRII (β2-αR), and LeRIII(αL-C7ax-αD) as well as three transition-state regions linking the above conformational basins. The performance of each force field is evaluated in terms of the average free energy of each region in comparison with that of the ab initio results. We quantify how well a force field FES matches the ab initio FES through the calculation of the standard deviation of a free energy difference map between the two FESs. The results indicate that the performance varies largely from region to region or from force field to force field. Although not one force field is able to outperform all others in all conformational areas, the OPLSAA/L force field gives the best performance overall, followed by OPLSAA and AMBER03. For the three top performers, the average free energies differ from the corresponding ab initio values from within the error range (<0.4 kcal/mol) to ∼1.5 kcal/mol for the low-energy regions and up to ∼2.0 kcal/mol for the transition-state regions. The strategy presented and the results obtained here should be useful for improving the parametrization of force fields targeting both accuracy in the energies of conformers and the transition-state barriers.
Collapse
Affiliation(s)
- Zhiwei Liu
- West Center for Computational Chemistry and Drug Design, Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States and Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Bernd Ensing
- West Center for Computational Chemistry and Drug Design, Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States and Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Preston B Moore
- West Center for Computational Chemistry and Drug Design, Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States and Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|
26
|
Oh KI, Lee KK, Park EK, Yoo DG, Hwang GS, Cho M. Circular dichroism eigenspectra of polyproline II and β-strand conformers of trialanine in water: Singular value decomposition analysis. Chirality 2010; 22 Suppl 1:E186-201. [DOI: 10.1002/chir.20870] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Huerta-Viga A, Shaw DJ, Woutersen S. pH Dependence of the Conformation of Small Peptides Investigated with Two-Dimensional Vibrational Spectroscopy. J Phys Chem B 2010; 114:15212-20. [DOI: 10.1021/jp105133r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Adriana Huerta-Viga
- Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Daniel J. Shaw
- Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Moradi M, Babin V, Roland C, Sagui C. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J Chem Phys 2010; 133:125104. [DOI: 10.1063/1.3481087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
29
|
Pizzanelli S, Forte C, Monti S, Zandomeneghi G, Hagarman A, Measey TJ, Schweitzer-Stenner R. Conformations of phenylalanine in the tripeptides AFA and GFG probed by combining MD simulations with NMR, FTIR, polarized Raman, and VCD spectroscopy. J Phys Chem B 2010; 114:3965-78. [PMID: 20184301 DOI: 10.1021/jp907502n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conformational properties of small, flexible peptides are a matter of ongoing interest since they can be considered as models for unfolded proteins. However, the investigation of the conformations of small peptides is challenging as they are ensembles of rapidly interconverting conformers; moreover, the different methods used are prone to different approximations and errors. In order to obtain more reliable results, it is prudent to combine different techniques; here, molecular dynamics (MD) simulations together with nuclear magnetic resonance (NMR), Fourier transform IR (FTIR), polarized Raman, and vibrational circular dichroism (VCD) measurements were used to study the conformational propensity of phenylalanine in the tripeptides AFA and GFG, motivated by the relevance of phenylalanine for the self-aggregation of peptides. The results of this analysis indicate that the F residue predominantly populates the beta-strand (beta) and polyproline II (PPII) conformations in both AFA and GFG. However, while phenylalanine exhibits a propensity for beta-strand conformations in GFG (0.40 < or = beta population < or = 0.69 and 0.29 < or = PPII population < or = 0.42), the substitution of terminal glycines with alanine residues induces a higher population of PPII (0.31 < or = beta population < or = 0.50 and 0.37 < or = PPII population < or = 0.57).
Collapse
Affiliation(s)
- Silvia Pizzanelli
- Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, via G. Moruzzi, 1 56124 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Hagarman A, Measey TJ, Mathieu D, Schwalbe H, Schweitzer-Stenner R. Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I' band profiles and NMR scalar coupling constants. J Am Chem Soc 2010; 132:540-51. [PMID: 20014772 DOI: 10.1021/ja9058052] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A reliable intrinsic propensity scale of amino acid residues is indispensable for an assessment of how local conformational distributions in the unfolded state can affect the folding of peptides and proteins. Short host-guest peptides, such as GxG tripeptides, are suitable tools for probing such propensities. To explore the conformational distributions sampled by the central amino acid residue in these motifs, we combined vibrational (IR, Raman, and VCD) with NMR spectroscopy. The data were analyzed in terms of a superposition of two-dimensional Gaussian distribution functions in the Ramachandran space pertaining to subensembles of polyproline II, beta-strand, right- and left-handed helical, and gamma-turn-like conformations. The intrinsic propensities of eight amino acid residues (x = A, V, F, L, S, E, K, and M) in GxG peptides were determined as mole fractions of these subensembles. Our results show that alanine adopts primarily (approximately 80%) a PPII-like conformation, while valine and phenylalanine were found to sample PPII and beta-strand-like conformations equally. The centers of the respective beta-strand distributions generally do not coincide with canonical values of dihedral angles of residues in parallel or antiparallel beta-strands. In fact, the distributions for most residues found in the beta-region significantly overlap the PPII-region. A comparison with earlier reported results for trivaline reveals that the terminal valines increase the beta-strand propensity of the central valine residue even further. Of the remaining investigated amino acids, methionine preferred PPII the most (0.64), and E, S, L, and K exhibit moderate (0.56-0.45) PPII propensities. Residues V, F, S, E, and L sample, to a significant extent, a region between the canonical PPII and (antiparallel) beta-strand conformations. This region coincides with the sampling reported for L and V using theoretical predictions (Tran et al. Biochemistry 2005, 44, 11369). The distributions of all investigated residues differ from coil library and computationally predicted distributions in that they do not exhibit a substantial sampling of helical conformations. We conclude that this sampling of helical conformations arises from the context dependence, for example, neighboring residues, in proteins and longer peptides, some of which is long-range.
Collapse
Affiliation(s)
- Andrew Hagarman
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Gaigeot MP. Theoretical spectroscopy of floppy peptides at room temperature. A DFTMD perspective: gas and aqueous phase. Phys Chem Chem Phys 2010; 12:3336-59. [PMID: 20336243 DOI: 10.1039/b924048a] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Theoretical spectroscopy is mandatory for a precise understanding and assignment of experimental spectra recorded at finite temperature. We review here room temperature DFT-based molecular dynamics simulations for the purpose of interpreting finite temperature infrared spectra of peptides of increasing size and complexity, in terms of temperature-dependent conformational dynamics and flexibility, and vibrational anharmonicities (potential energy surface anharmonicities, vibrational mode couplings and dipole anharmonicities). We take examples from our research projects in order to illustrate the main key-points and strengths of dynamical spectra modeling in that context. The calculations are presented in relation to room temperature gas phase IR-MPD experiments and room temperature liquid phase IR absorption experiments. These illustrations of floppy polypeptides have been chosen in order to convey the following ideas: temperature-dependent spectra modeling is pivotal for a precise understanding of gas phase spectra recorded at room temperature, including conformational dynamics and vibrational anharmonicities; harmonic spectroscopy (as commonly performed in the literature) can be misleading and even erroneous for a proper interpretation of spectra recorded at finite temperature; taking into account vibrational anharmonicities is pivotal for a proper interplay between theory and experiments; amide I-III bands are not necessarily the most relevant fingerprints for unraveling the local structures of peptides and more complex systems; liquid phase simulations have unraveled relationships between the zwitterionic properties of the peptide bonds and infrared signatures. The review presents a state-of-the-art account of the domain and offers perspectives and new developments for future still more challenging applications.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université d'Evry val d'Essonne, LAMBE UMR8587 Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Blvd F. Mitterrand, Bat Maupertuis, 91025 Evry, France.
| |
Collapse
|
32
|
Seabra GDM, Walker RC, Roitberg AE. Are current semiempirical methods better than force fields? A study from the thermodynamics perspective. J Phys Chem A 2010; 113:11938-48. [PMID: 19848431 DOI: 10.1021/jp903474v] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The semiempirical Hamiltonians MNDO, AM1, PM3, RM1, PDDG/MNDO, PDDG/PM3, and SCC-DFTB, when used as part of a hybrid QM/MM scheme for the simulation of biological molecules, were compared on their abilities to reproduce experimental ensemble averages at or near room temperatures for the model system alanine dipeptide in water. Free energy surfaces in the (phi, psi) dihedral angle space, (3)J(H(N),H(alpha)) NMR dipolar coupling constants, basin populations, and peptide-water radial distribution functions (RDF) were calculated from replica exchange simulations and compared to both experiment and fully classical force field calculations using the Amber ff99SB force field. In contrast with the computational chemist's intuitive idea that the more expensive a method the better its accuracy, the ff99SB force field results were more accurate than most of the semiempirical methods, with the exception of RM1. None of the methods, however, was able to accurately reproduce the experimental data. Analysis of the results indicate that the specific QM/MM interactions have little influence on the sampling of free energy surfaces, and the differences are well explained simply by the intrinsic properties of the various QM methods.
Collapse
Affiliation(s)
- Gustavo de M Seabra
- Quantum Theory Project and Department of Chemistry, University of Florida, 2234 New Physics Building #92, P.O. Box 118435, Gainesville, Florida 32611-8435, USA
| | | | | |
Collapse
|
33
|
Schweitzer-Stenner R. Distribution of conformations sampled by the central amino acid residue in tripeptides inferred from amide I band profiles and NMR scalar coupling constants. J Phys Chem B 2009; 113:2922-32. [PMID: 19243204 DOI: 10.1021/jp8087644] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The conformational preference of individual amino acid residues in the unfolded state of peptides and proteins is the subject of a continuous debate. Research has mostly been focused on alanine, owing to its abundance in proteins and its relevance for the understanding of helix <----> coil transitions. In the current study, we have analyzed the amide I band profiles of the IR, isotropic and anisotropic Raman, and VCD profiles of trialanine in terms of a conformational model which, for the first time, explicitly considers the entire ensemble of possible conformations rather than representative structures. The distribution function utilized for a satisfactory simulation of the amide I band profiles was found to also reproduce a set of five J coupling constants reported by Graf et al. (Graf, J.; et al. J. Am. Chem. Soc. 2007, 129, 1179). The results of our analysis reveal a PPII fraction of approximately 0.84 for the central alanine residue, which strongly corroborates the notion that alanine has a very high PPII propensity, exceeding the values obtained from restricted coil libraries. We performed a similar analysis for trivaline and found that the dominant fraction of its central residue is a beta-strand. The fraction of the respective distribution is 0.68. The remaining fraction contains contributions from helical and PPII conformations. The results of our analysis enable us to decide on the suitability of force fields used for MD simulations of short alanine-containing peptides. The paper establishes vibrational spectroscopy as a suitable method to explore the energy landscape of amino acid residues.
Collapse
Affiliation(s)
- Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University, 32nd and Chestnut Streets, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
34
|
Jang S, Yuan JM, Shin J, Measey TJ, Schweitzer-Stenner R, Li FY. Energy Landscapes Associated with the Self-Aggregation of an Alanine-Based Oligopeptide (AAKA)4. J Phys Chem B 2009; 113:6054-61. [DOI: 10.1021/jp809279r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 143-747, Korea, Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, and Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C
| | - Jian-Min Yuan
- Department of Chemistry, Sejong University, Seoul 143-747, Korea, Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, and Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C
| | - Jungho Shin
- Department of Chemistry, Sejong University, Seoul 143-747, Korea, Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, and Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C
| | - Thomas J. Measey
- Department of Chemistry, Sejong University, Seoul 143-747, Korea, Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, and Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Sejong University, Seoul 143-747, Korea, Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, and Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C
| | - Feng-Yin Li
- Department of Chemistry, Sejong University, Seoul 143-747, Korea, Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, and Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C
| |
Collapse
|
35
|
Characterizing aqueous solution conformations of a peptide backbone using Raman optical activity computations. Biophys J 2008; 95:5574-86. [PMID: 18805935 DOI: 10.1529/biophysj.108.137596] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mounting spectroscopic evidence indicates that alanine predominantly adopts extended polyproline II (PPII) conformations in short polypeptides. Here we analyze Raman optical activity (ROA) spectra of N-acetylalanine-N'-methylamide (Ala dipeptide) in H2O and D2O using density functional theory on Monte Carlo (MC) sampled geometries to examine the propensity of Ala dipeptide to adopt compact right-handed (alpha(R)) and left-handed (alpha(L)) helical conformations. The computed ROA spectra based on MC-sampled alpha(R) and PPII peptide conformations contain all the key spectral features found in the measured spectra. However, there is no significant similarity between the measured and computed ROA spectra based on the alpha(L)- and beta-conformations sampled by the MC methods. This analysis suggests that Ala dipeptide populates the alpha(R) and PPII conformations but no substantial population of alpha(L)- or beta-structures, despite sampling alpha(L)- and beta-structures in our MC simulations. Thus, ROA spectra combined with the theoretical analysis allow us to determine the dominant populated structures. Including explicit solute-solvent interactions in the theoretical analysis is essential for the success of this approach.
Collapse
|
36
|
Kwac K, Lee KK, Han JB, Oh KI, Cho M. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra. J Chem Phys 2008; 128:105106. [PMID: 18345930 DOI: 10.1063/1.2837461] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have implemented the combined quantum mechanical (QM)/molecular mechanical (MM) molecular dynamics (MD) simulations of alanine dipeptide in water along with the polarizable and nonpolarizable classical MD simulations with different models of water. For the QM/MM MD simulation, the alanine dipeptide is treated with the AM1 or PM3 approximations and the fluctuating solute dipole moment is calculated by the Mulliken population analysis. For the classical MD simulations, the solute is treated with the polarizable or nonpolarizable AMBER and polarizable CHARMM force fields and water is treated with the TIP3P, TIP4P, or TIP5P model. It is found that the relative populations of right-handed alpha-helix and extended beta and P(II) conformations in the simulation trajectory strongly depend on the simulation method. For the QM/MM MD simulations, the PM3/MM shows that the P(II) conformation is dominant, whereas the AM1/MM predicts that the dominant conformation is alpha(R). Polarizable CHARMM force field gives almost exclusively P(II) conformation and other force fields predict that both alpha-helical and extended (beta and P(II)) conformations are populated with varying extents. Solvation environment around the dipeptide is investigated by examining the radial distribution functions and numbers and lifetimes of hydrogen bonds. Comparing the simulated IR and vibrational circular dichroism spectra with experimental results, we concluded that the dipeptide adopts the P(II) conformation and PM3/MM, AMBER03 with TIP4P water, and AMBER polarizable force fields are acceptable for structure determination of the dipeptide considered in this paper.
Collapse
Affiliation(s)
- Kijeong Kwac
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
37
|
Zhu F, Kapitan J, Tranter GE, Pudney PDA, Isaacs NW, Hecht L, Barron LD. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data. Proteins 2008; 70:823-33. [PMID: 17729278 DOI: 10.1002/prot.21593] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vibrational Raman optical activity (ROA), measured as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarized incident light, or as the intensity of a small circularly polarized component in the scattered light, is a powerful probe of the aqueous solution structure of proteins. The large number of structure-sensitive bands in protein ROA spectra makes multivariate analysis techniques such as nonlinear mapping (NLM) especially favorable for determining structural relationships between different proteins. We have previously used NLM to map a large dataset of peptide, protein, and virus ROA spectra into a readily visualizable two-dimensional space in which points close to or distant from each other, respectively, represent similar or dissimilar structures. As well as folded proteins, our dataset contains ROA spectra from many natively unfolded proteins, proteins containing both folded and unfolded domains, denatured partially structured molten globule and reduced protein states, together with folded proteins containing little or no alpha-helix or beta-sheet. In this article, the relative positions of these systems in the NLM plot are used to obtain information about any residual structure that they may contain. The striking differences between the structural propensities of proteins that are unfolded in their native states and those that are unfolded due to denaturation may be responsible for their often very different behavior, especially with regard to aggregation. An ab initio simulation of the Raman and ROA spectra of an alanine oligopeptide in the poly(L-proline) II-helical conformation confirms previous suggestions that this conformation is a significant structural element in disordered peptides and natively unfolded proteins. The use of ROA to identify and characterize proteins containing significant amounts of unfolded structure will, inter alia, be valuable in structural genomics/proteomics since unfolded sequences often inhibit crystallization.
Collapse
Affiliation(s)
- Fujiang Zhu
- WestCHEM, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Pizzanelli S, Forte C, Monti S, Schweitzer-Stenner R. Interaction of a tripeptide with cesium perfluorooctanoate micelles. J Phys Chem B 2008; 112:1251-61. [PMID: 18173254 DOI: 10.1021/jp073947x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The interaction of alanyl-phenylalanyl-alanine (Ala-Phe-Ala) with the micelles formed by cesium perfluorooctanoate (CsPFO) in water was studied in the isotropic phase by means of 1H NMR and by molecular dynamics (MD) simulations. Information on the location of the peptide was experimentally obtained from selective variations in Ala-Phe-Ala chemical shifts and from differential line broadening in the presence of the paramagnetic ion Mn2+. The peptide-micelle association constant was estimated analyzing the chemical shift variations of the most sensitive Ala-Phe-Ala resonances with the peptide concentration. MD simulations of Ala-Phe-Ala in the micellar environment confirmed the experimental observations, identifying the hydrogen bonding interactions of the different peptide moieties with the micelle, yielding a binding constant close to the experimental one. NOESY experiments suggest that the peptide in the micellar environment does not adopt a preferred conformation but is mainly unstructured. Details on the conformational behavior of the peptide in the micellar solution observed through MD were consistent with a different conformational equilibrium in the proximity of the micelle. Information on Ala-Phe-Ala dynamics was obtained from 1H T1 data and compared to MD simulation results on the overall tumbling motion.
Collapse
Affiliation(s)
- Silvia Pizzanelli
- Istituto per i Processi Chimico-Fisici (IPCF-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | | | | | | |
Collapse
|
39
|
Balakrishnan G, Hu Y, Bender GM, Getahun Z, DeGrado WF, Spiro TG. Enthalpic and entropic stages in alpha-helical peptide unfolding, from laser T-jump/UV Raman spectroscopy. J Am Chem Soc 2007; 129:12801-8. [PMID: 17910449 PMCID: PMC2887291 DOI: 10.1021/ja073366l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alpha-helix is a ubiquitous structural element in proteins, and a number of studies have addressed the mechanism of helix formation and melting in simple peptides. However, fundamental issues remain to be resolved, particularly the temperature (T) dependence of the rate. In this work, we report application of a novel kHz repetition rate solid-state tunable NIR (pump) and deep UV Raman (probe) laser system to study the dynamics of helix unfolding in Ac-GSPEA3KA4KA4-CO-D-Arg-CONH2, a peptide designed for helix stabilization in aqueous solution. Its T-dependent UV resonance Raman (UVRR) spectra, excited at 197 nm for optimal enhancement of amide vibrations, were decomposed into variable contributions from helix and coil spectra. The helix fractions derived from the UVRR spectra and from far UV CD spectra were coincident at low T but deviated increasingly at high T, the UVRR curve giving higher helix content. This difference is consistent with the greater sensitivity of UVRR spectra to local conformation than CD. After a laser-induced T-jump, the UVRR-determined helix fractions defined monoexponential decays, with time-constants of approximately 120 ns, independent of the final T (Tf = 18-61 degrees C), provided the initial T (Ti) was held constant (6 degrees C). However, there was also a prompt loss of helicity, whose amplitude increased with increasing Tf, thereby defining an initial enthalpic phase, distinct from the subsequent entropic phase. These phases are attributed to disruption of H-bonds followed by reorientation of peptide links, as the chain is extended. When Ti was raised in parallel with Tf (10 degrees C T-jumps), the prompt phase merged into an accelerating slow phase, an effect attributable to the shifting distribution of initial helix lengths. Even greater acceleration with rising Ti has been reported in T-jump experiments monitored by IR and fluorescence spectroscopies. This difference is attributable to the longer range character of these probes, whose responses are therefore more strongly weighted toward the H-bond-breaking enthalpic process.
Collapse
Affiliation(s)
| | - Ying Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Gretchen M. Bender
- Department Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zelleka Getahun
- Department Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - William F. DeGrado
- Department Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
40
|
Schweitzer-Stenner R, Gonzales W, Bourne GT, Feng JA, Marshall GR. Conformational Manifold of α-Aminoisobutyric Acid (Aib) Containing Alanine-Based Tripeptides in Aqueous Solution Explored by Vibrational Spectroscopy, Electronic Circular Dichroism Spectroscopy, and Molecular Dynamics Simulations. J Am Chem Soc 2007; 129:13095-109. [PMID: 17918837 DOI: 10.1021/ja0738430] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Reinhard Schweitzer-Stenner
- Contribution from the Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 and Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110
| | - Widalys Gonzales
- Contribution from the Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 and Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110
| | - Gregory T. Bourne
- Contribution from the Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 and Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110
| | - Jianwen A. Feng
- Contribution from the Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 and Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110
| | - Garland R. Marshall
- Contribution from the Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 and Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
41
|
Min HM, Aye M, Taniguchi T, Miura N, Monde K, Ohzawa K, Nikai T, Niwa M, Takaya Y. A structure and an absolute configuration of (+)-alternamin, a new coumarin from Murraya alternans having antidote activity against snake venom. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.06.156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Sahoo H, Roccatano D, Hennig A, Nau WM. A 10-Å Spectroscopic Ruler Applied to Short Polyprolines. J Am Chem Soc 2007; 129:9762-72. [PMID: 17629273 DOI: 10.1021/ja072178s] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence resonance energy transfer (FRET) from the amino acid tryptophan (Trp) as donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as acceptor in peptides of the general structure Trp-(Pro)n-Dbo-NH2 (n = 1-6) was investigated by steady-state and time-resolved fluorescence, CD, and NMR spectroscopy as well as by molecular dynamics (MD) simulations (GROMOS96 force field). The Trp/Dbo FRET pair is characterized by a very short Förster radius (R0 ca. 9 A), which allowed distance determinations in such short peptides. Water and propylene glycol were investigated as solvents. The peptides were designed to show an early nucleation of the poly(Pro)II (PPII) secondary helix structure for n > or = 2, which was confirmed by their CD spectra. The shortest peptide (n = 1) adopts preferentially the trans conformation about the Trp-Pro bond, as confirmed by NMR spectra. The FRET efficiencies ranged 2-72% and were found to depend sensitively on the peptide length, i.e., the number of intervening proline residues. The analysis of the FRET data at different levels of theory (assuming either a fixed distance or distance distributions according to a wormlike chain or Gaussian model) afforded donor-acceptor distances between ca. 8 A (n = 1) and ca. 16 A (n = 6) in water, which were found to be similar or slightly higher in propylene glycol. The distances afforded by the Trp/Dbo FRET pair were found to be reasonable in comparison to literature data, expectations from the PPII helix structure, and the results from MD simulations. The persistence lengths for the longer peptides were found to lie at 30-70 A in water and 220 +/- 40 A in propylene glycol, suggesting a more rigid PPII helical structure in propylene glycol. A detailed comparison with literature data on FRET in polyprolines demonstrates that the donor-acceptor distances extracted by FRET are correlated with the Förster radii of the employed FRET pairs. This demonstrates the limitations of using FRET as a spectroscopic ruler for short polyprolines, which is presumably due to the breakdown of the point dipole approximation in Förster theory, when the size of the chromophores becomes comparable or larger than the distances under investigation.
Collapse
Affiliation(s)
- Harekrushna Sahoo
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
43
|
Schweitzer-Stenner R, Measey TJ. The alanine-rich XAO peptide adopts a heterogeneous population, including turn-like and polyproline II conformations. Proc Natl Acad Sci U S A 2007; 104:6649-54. [PMID: 17416675 PMCID: PMC1871840 DOI: 10.1073/pnas.0700006104] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Indexed: 11/18/2022] Open
Abstract
The solution structure of the hepta-alanine polypeptide Ac-X(2)A(7)O(2)-NH(2) (XAO) has been a matter of controversy in the current literature. On one side of the argument is a claim that the peptide adopts a mostly polyproline II (PPII) structure, with a <20% population of beta conformations at room temperature [Shi Z, Olson CA, Rose GA, Baldwin RL, Kallenbach NR (2002) Proc Natl Acad Sci USA 99:9190-9195], whereas the other side of the argument insists that the peptide exists as an ensemble of conformations, including multiple beta-turn structures [Makowska J, Rodziewicz-Motowidlo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA (2006) Proc Natl Acad Sci USA 103:1744-1749]. We have used an excitonic coupling model to simulate the amide I band of the FTIR, vibrational circular dichroism, and isotropic and anisotropic Raman spectra of XAO, where, for each residue, the backbone dihedral angle varphi was constrained by using the reported (3)J(CalphaHNH) values and a modified Karplus relation. The best reproduction of the experimental data could only be achieved by assuming an ensemble of conformations, which contains various beta-turn conformations ( approximately 26%), in addition to beta-strand ( approximately 23%) and PPII ( approximately 50%) conformations. PPII is the dominant conformation in segments not involved in turn formations. Most of the residues were found to sample the bridge region connecting the PPII and right-handed helix troughs in the Ramachandran plot, which is part of the very heterogeneous ensemble of conformations generally termed type IV beta-turn.
Collapse
|