1
|
Why calpain inhibitors are interesting leading compounds to search for new therapeutic options to treat leishmaniasis? Parasitology 2016; 144:117-123. [PMID: 27869056 PMCID: PMC5300003 DOI: 10.1017/s003118201600189x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leishmaniasis is a neglected disease, which needs improvements in drug development, mainly due to the toxicity, parasite resistance and low compliance of patients to treatment. Therefore, the development of new chemotherapeutic compounds is an urgent need. This opinion article will briefly highlight the feasible use of calpain inhibitors as leading compounds to search for new therapeutic options to treat leishmaniasis. The milestone of this approach is to take advantage on the myriad of inhibitors developed against calpains, some of which are in advanced clinical trials. The deregulated activity of these enzymes is associated with several pathologies, such as strokes, diabetes and Parkinson's disease, to name a few. In Leishmania, calpain upregulation has been associated to drug resistance and virulence. Whereas the difficulties in developing new drugs for neglected diseases are more economical than biotechnological, repurposing approach with compounds already approved for clinical use by the regulatory agencies can be an interesting shortcut to a successful chemotherapeutic treatment for leishmaniasis.
Collapse
|
2
|
White-Schenk D, Shi R, Leary JF. Nanomedicine strategies for treatment of secondary spinal cord injury. Int J Nanomedicine 2015; 10:923-38. [PMID: 25673988 PMCID: PMC4321603 DOI: 10.2147/ijn.s75686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach.
Collapse
Affiliation(s)
- Désirée White-Schenk
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA ; Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - James F Leary
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA ; Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA ; Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Chen H, Jiao W, Jones MA, Coxon JM, Morton JD, Bickerstaffe R, Pehere AD, Zvarec O, Abell AD. New tripeptide-based macrocyclic calpain inhibitors formed by N-alkylation of histidine. Chem Biodivers 2013; 9:2473-84. [PMID: 23161629 DOI: 10.1002/cbdv.201200320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Indexed: 01/14/2023]
Abstract
Two new series of 15-membered macrocyclic peptidomimetics, in which the P1 and P3 residues of the peptide backbone are linked by a bridge containing a 1,4-disubstituted 1H-imidazole, are reported. The structure with an aldehyde at the C-terminus and the imidazole at P3, i.e., 4c, shows significant inhibitory activity against calpain 2, with an IC(50) value of 238 nM. The macrocyclic aldehyde with the imidazole at the alternative P1 position, i.e., 5c, is significantly less active. The relative activities are linked to the ability of the component macrocycles to mimic a β-strand geometry that is known to favor active-site binding. This ability is defined by conformational searches and docking studies with calpain.
Collapse
Affiliation(s)
- Hongyuan Chen
- Chemistry Department, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Stuart BG, Coxon JM, Morton JD, Abell AD, McDonald DQ, Aitken SG, Jones MA, Bickerstaffe R. Molecular Modeling: A Search for a Calpain Inhibitor as a New Treatment for Cataractogenesis. J Med Chem 2011; 54:7503-22. [DOI: 10.1021/jm200471r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Donkor IO. Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 2011; 21:601-36. [DOI: 10.1517/13543776.2011.568480] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Huang Y, Liu Z. Anchoring intrinsically disordered proteins to multiple targets: lessons from N-terminus of the p53 protein. Int J Mol Sci 2011; 12:1410-30. [PMID: 21541066 PMCID: PMC3083713 DOI: 10.3390/ijms12021410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 02/03/2023] Open
Abstract
Anchor residues, which are deeply buried upon binding, play an important role in protein–protein interactions by providing recognition specificity and facilitating the binding kinetics. Up to now, studies on anchor residues have been focused mainly on ordered proteins. In this study, we investigated anchor residues in intrinsically disordered proteins (IDPs) which are flexible in the free state. We identified the anchor residues of the N-terminus of the p53 protein (Glu17–Asn29, abbreviated as p53N) which are involved in binding with two different targets (MDM2 and Taz2), and analyzed their side chain conformations in the unbound states. The anchor residues in the unbound p53N were found to frequently sample conformations similar to those observed in the bound complexes (i.e., Phe19, Trp23, and Leu26 in the p53N-MDM2 complex, and Leu22 in the p53N-Taz2 complex). We argue that the bound-like conformations of the anchor residues in the unbound state are important for controlling the specific interactions between IDPs and their targets. Further, we propose a mechanism to account for the binding promiscuity of IDPs in terms of anchor residues and molecular recognition features (MoRFs).
Collapse
Affiliation(s)
- Yongqi Huang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Theoretical Biology, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhirong Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Theoretical Biology, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-62753422; Fax: +86-10-62751708
| |
Collapse
|