1
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Abstract
Equilibrium dialysis has been used to examine the binding affinity of ligands to proteins. It is a simple and reliable method, which requires only inexpensive equipment. For analysis of lectin-sugar interactions, the lectin and sugar are placed in the individual chambers separated by the membrane to allow the sugar to diffuse into the lectin chamber. After equilibrium has been reached, the concentrations of the sugar in both chambers are determined to evaluate the sugar-binding affinity of lectin. In this chapter, an example of the equilibrium dialysis experiment using the chromophoric derivatives of galactose and N-acetylgalactosamine is demonstrated, which reveals the difference in the affinity as well as specificities of two different carbohydrate-binding sites present in the B-chains of the plant lectin ricin.
Collapse
|
3
|
Rozbeský D, Ivanova L, Hernychová L, Grobárová V, Novák P, Černý J. Nkrp1 family, from lectins to protein interacting molecules. Molecules 2015; 20:3463-78. [PMID: 25690298 PMCID: PMC6272133 DOI: 10.3390/molecules20023463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-like receptors include the Nkrp1 protein family that regulates the activity of natural killer (NK) cells. Rat Nkrp1a was reported to bind monosaccharide moieties in a Ca2+-dependent manner in preference order of GalNac > GlcNAc >> Fuc >> Gal > Man. These findings established for rat Nkrp1a have been extrapolated to all additional Nkrp1 receptors and have been supported by numerous studies over the past two decades. However, since 1996 there has been controversy and another article showed lack of interactions with saccharides in 1999. Nevertheless, several high affinity saccharide ligands were synthesized in order to utilize their potential in antitumor therapy. Subsequently, protein ligands were introduced as specific binders for Nkrp1 proteins and three dimensional models of receptor/protein ligand interaction were derived from crystallographic data. Finally, for at least some members of the NK cell C-type lectin-like proteins, the “sweet story” was impaired by two reports in recent years. It has been shown that the rat Nkrp1a and CD69 do not bind saccharide ligands such as GlcNAc, GalNAc, chitotetraose and saccharide derivatives (GlcNAc-PAMAM) do not directly and specifically influence cytotoxic activity of NK cells as it was previously described.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Male
- NK Cell Lectin-Like Receptor Subfamily B/chemistry
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/immunology
- Oligosaccharides/metabolism
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Ljubina Ivanova
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
| | - Lucie Hernychová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Petr Novák
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| |
Collapse
|
4
|
Rozbeský D, Krejzová J, Křenek K, Prchal J, Hrabal R, Kožíšek M, Weignerová L, Fiore M, Dumy P, Křen V, Renaudet O. Re-evaluation of binding properties of recombinant lymphocyte receptors NKR-P1A and CD69 to chemically synthesized glycans and peptides. Int J Mol Sci 2014; 15:1271-83. [PMID: 24445261 PMCID: PMC3907868 DOI: 10.3390/ijms15011271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/20/2023] Open
Abstract
The binding of monosaccharides and short peptides to lymphocyte receptors (human CD69 and rat NKR-P1A) was first reported in 1994 and then in a number of subsequent publications. Based on this observation, numerous potentially high-affinity saccharide ligands have been synthesized over the last two decades in order to utilize their potential in antitumor therapy. Due to significant inconsistencies in their reported binding properties, we decided to re-examine the interaction between multiple ligands and CD69 or NKR-P1A. Using NMR titration and isothermal titration calorimetry we were unable to detect the binding of the tested ligands such as N-acetyl-d-hexosamines and oligopeptides to both receptors, which contradicts the previous observations published in more than twenty papers over the last fifteen years.
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Jana Krejzová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Karel Křenek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Jan Prchal
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Richard Hrabal
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Milan Kožíšek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Lenka Weignerová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Michele Fiore
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Pascal Dumy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic.
| | - Olivier Renaudet
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4 CZ14220, Czech Republic. ^
| |
Collapse
|
5
|
Identification and characterization of Cryptosporidium parvum Clec, a novel C-type lectin domain-containing mucin-like glycoprotein. Infect Immun 2013; 81:3356-65. [PMID: 23817613 DOI: 10.1128/iai.00436-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cryptosporidium species are waterborne apicomplexan parasites that cause diarrheal disease worldwide. Although the mechanisms underlying Cryptosporidium-host cell interactions are not well understood, mucin-like glycoproteins of the parasite are known to mediate attachment and invasion in vitro. We identified C. parvum Clec (CpClec), a novel mucin-like glycoprotein that contains a C-type lectin domain (CTLD) and has orthologs in C. hominis and C. muris. CTLD-containing proteins are ligand-binding proteins that function in adhesion and signaling and are present in a wide range of organisms, from humans to viruses. However, this is the first report of a CTLD-containing protein in protozoa and in Apicomplexa. CpClec is predicted to be a type 1 membrane protein, with a CTLD, an O-glycosylated mucin-like domain, a transmembrane domain, and a cytoplasmic tail containing a YXX sorting motif. The predicted structure of CpClec displays several characteristics of canonical CTLD-containing proteins, including a long loop region hydrophobic core associated with calcium-dependent glycan binding as well as predicted calcium- and glycan-binding sites. CpClec expression during C. parvum infection in vitro is maximal at 48 h postinfection, suggesting that it is developmentally regulated. The 120-kDa mass of native CpClec is greater than predicted, most likely due to O-glycosylation. CpClec is localized to the surface of the apical region and to dense granules of sporozoites and merozoites. Taken together, these findings, along with the known functions of C. parvum mucin-like glycoproteins and of CTLD-containing proteins, strongly implicate a significant role for CpClec in Cryptosporidium-host cell interactions.
Collapse
|
6
|
Krejzová J, Šimon P, Vavříková E, Slámová K, Pelantová H, Riva S, Spiwok V, Křen V. Enzymatic synthesis of new C-6-acylated derivatives of NAG-thiazoline and evaluation of their inhibitor activities towards fungal β-N-acetylhexosaminidase. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Bezouška K, Kubínková Z, Stříbný J, Volfová B, Pompach P, Kuzma M, Šírová M, Říhová B. Dimerization of an immunoactivating peptide derived from mycobacterial hsp65 using N-hydroxysuccinimide based bifunctional reagents is critical for its antitumor properties. Bioconjug Chem 2012; 23:2032-41. [PMID: 22988810 DOI: 10.1021/bc300056x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have shown previously that a short pentapeptide derived from the mycobacterial heat shock protein hsp65 can be highly activating for the immune system based on its strong reactivity with the early activation antigen of lymphocytes CD69. Here, we investigated an optimal form of presentation of this antigen to the cells of the immune system. Four different forms of the dimerized heptapeptide LELTEGY, and of the control inactive dimerized heptapeptide LELLEGY that both contained an extra UV active glycine-tyrosine sequence, were prepared using dihydroxysuccinimidyl oxalate (DSO), dihydroxysuccinimidyl tartarate (DST), dihydroxysuccinimidyl glutarate (DSG), and dihydroxysuccinimidyl suberate (DSS), respectively. Heptapeptides dimerized through DST and DSG linkers had optimal activity in CD69 precipitation assay. Moreover, dimerization of active heptapeptide resulted in a remarkable increase in its proliferation activity and production of cytokines in vitro. Furthermore, while DST and DSG dimerized heptapeptides both significantly enhanced the cytotoxicity of natural killer cells in vitro, only the DSG dimerized compound was active in suppressing growth of melanoma tumors in mice and in enhancing the cytotoxic activity of tumor infiltrating lymphocytes ex vivo. Thus, while the dimerization of the immunoactive peptide caused a dramatic increase in its immunoactivating properties, its in vivo anticancer properties were influenced by the chemical nature of linker used for its dimerization.
Collapse
Affiliation(s)
- Karel Bezouška
- Department of Biochemistry, Faculty of Science, Charles University Prague, Hlavova 8, CZ-12840 Praha 2, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Grave L, Tůmová L, Mrázek H, Kavan D, Chmelík J, Vaněk O, Novák P, Bezouška K. Preparation of soluble isotopically labeled NKp30, a human natural cytotoxicity receptor, for structural studies using NMR. Protein Expr Purif 2012; 86:142-50. [PMID: 23059620 DOI: 10.1016/j.pep.2012.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023]
Abstract
Using a codon-optimized gene fragment, we report remarkable yields for extracellular domain of human NK cell receptor (NKp30ex) when produced on M9 minimal medium, even with low (2g/L) glucose concentration. The yields were identical using media containing (15)NH(4)Cl or (15)NH(4)Cl in combination with all-(13)C-d-glucose allowing to produce homogenous soluble monomeric NKp30 in several formats needed for advanced NMR studies. Our optimized protocol now allows to produce routinely 10mg batches of these NKp30ex proteins per 1L of M9 production medium in four working days. The purity and identity of the produced proteins were checked by SDS-PAGE, MALDI MS peptide mapping, and high resolution ion cyclotron resonance MS. Analytical ultracentrifugation confirmed the monomeric status of the produced proteins. Long-term stability of the produced protein proved to be very good allowing its use for NMR studies using elevated temperatures. These studies should reveal further details of the interaction of NKp30 with several of its ligands including target cell surface proteins and heparin-derived oligosaccharides.
Collapse
Affiliation(s)
- Lena Grave
- Department of Biochemistry, Charles University Prague, Praha, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bae N, Lödl M, Pollak A, Lubec G. Mass spectrometrical analysis of cuticular proteins from the wing of Hebemoia glaucippe (Linnaeus, 1758) (Lepidoptera: Pieridae). J Proteomics 2011; 75:517-31. [DOI: 10.1016/j.jprot.2011.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/02/2011] [Accepted: 08/22/2011] [Indexed: 12/29/2022]
|
10
|
Drozdová A, Bojarová P, Křenek K, Weignerová L, Henßen B, Elling L, Christensen H, Jensen HH, Pelantová H, Kuzma M, Bezouška K, Krupová M, Adámek D, Slámová K, Křen V. Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Carbohydr Res 2011; 346:1599-609. [DOI: 10.1016/j.carres.2011.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
11
|
Kovalová A, Ledvina M, Saman D, Zyka D, Kubícková M, Zídek L, Sklenár V, Pompach P, Kavan D, Bílý J, Vanek O, Kubínková Z, Libigerová M, Ivanová L, Antolíková M, Mrázek H, Rozbeský D, Hofbauerová K, Kren V, Bezouska K. Synthetic N-acetyl-D-glucosamine based fully branched tetrasaccharide, a mimetic of the endogenous ligand for CD69, activates CD69+ killer lymphocytes upon dimerization via a hydrophilic flexible linker. J Med Chem 2010; 53:4050-65. [PMID: 20433142 DOI: 10.1021/jm100055b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
On the basis of the highly branched ovomucoid-type undecasaccharide that had been shown previously to be an endogenous ligand for CD69 leukocyte receptor, a systematic investigation of smaller oligosaccharide mimetics was performed based on linear and branched N-acetyl-d-hexosamine homooligomers prepared synthetically using hitherto unexplored reaction schemes. The systematic structure-activity studies revealed the tetrasaccharide GlcNAcbeta1-3(GlcNAcbeta1-4)(GlcNAcbeta1-6)GlcNAc (compound 52) and its alpha-benzyl derivative 49 as the best ligand for CD69 with IC(50) as high as 10(-9) M. This compound thus approaches the affinity of the classical high-affinity neoglycoprotein ligand GlcNAc(23)BSA. Compound 68, GlcNAc tetrasaccharide 52 dimerized through a hydrophilic flexible linker, turned out to be effective in activating CD69(+) lymphocytes. It also proved efficient in enhancing natural killing in vitro, decreasing the growth of tumors in vivo, and activating the CD69(+) tumor infiltrating lymphocytes examined ex vivo. This compound is thus a candidate for carbohydrate-based immunomodulators with promising antitumor potential.
Collapse
Affiliation(s)
- Anna Kovalová
- Institute of Organic Chemistry and Biochemistry, VVI, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|