1
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
2
|
Luan M, Hou Z, Zhang B, Ma L, Yuan S, Liu Y, Huang G. Inter-Domain Repulsion of Dumbbell-Shaped Calmodulin during Electrospray Ionization Revealed by Molecular Dynamics Simulations. Anal Chem 2023; 95:8798-8806. [PMID: 37309130 DOI: 10.1021/acs.analchem.2c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanisms whereby protein ions are released from nanodroplets at the liquid-gas interface have continued to be controversial since electrospray ionization (ESI) mass spectrometry was widely applied in biomolecular structure analysis in solution. Several viable pathways have been proposed and verified for single-domain proteins. However, the ESI mechanism of multi-domain proteins with more complicated and flexible structures remains unclear. Herein, dumbbell-shaped calmodulin was chosen as a multi-domain protein model to perform molecular dynamics simulations to investigate the structural evolution during the ESI process. For [Ca4CAM], the protein followed the classical charge residue model. As the inter-domain electrostatic repulsion increased, the droplet was found to split into two sub-droplets, while stronger-repulsive apo-calmodulin unfolded during the early evaporation stage. We designated this novel ESI mechanism as the domain repulsion model, which provides new mechanistic insights into further exploration of proteins containing more domains. Our results suggest that greater attention should be paid to the effect of domain-domain interactions on structure retention during liquid-gas interface transfer when mass spectrometry is used as the developing technique in gas phase structural biology.
Collapse
Affiliation(s)
- Moujun Luan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Buchun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Siming Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Sun B, Kekenes-Huskey PM. Calmodulin's Interdomain Linker Is Optimized for Dynamics Signal Transmission and Calcium Binding. J Chem Inf Model 2022; 62:4210-4221. [PMID: 35994621 DOI: 10.1021/acs.jcim.2c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linkers are ubiquitous in multidomain proteins. These linkers are integral to protein functions, and accumulating evidence suggests that the linkers' versatile roles are encoded in their sequences. However, a molecular picture of how amino acid differences in the linker influence protein function is still lacking. By using extensive Gaussian-accelerated MD coupled with dynamic network analysis, we reveal the molecular bases underlying the linker's role in Calmodulin (CaM), a highly conserved Ca2+-signaling hub in eukaryotes. Three CaM constructs comprising a wild-type linker, a flexible linker (four glycines at position D78-S81), and a rigid linker (four prolines at position D78-S81) were simulated. We show that the flexible linker resembles the wild type in allowing CaM to sample a large ensemble of conformations while the rigid linker confines the sampling. Our simulations recapture experimental observations that target binding enhances the Ca2+ affinity to CaM's EF-hand sites at the N-domain. However, only the wild-type linker can both correctly capture the Ca2+ binding order and maintain the α-helical structure of the domain. The other two constructs either bind Ca2+ in an incorrect order or exhibit unfolding of an N-domain helix. We demonstrate that the wild-type linker achieves these outcomes by transmitting interdomain dynamics efficiently. This was evidenced by stronger (anti)correlations among the linker residues, decoupling of the hydrogen bonds between A1-A15 and V35-E45, and structuring of the N-domain for Ca2+ binding. This decoupling was not evident for the other two constructs. Lastly, we show that the wild-type linker's optimal transmission stems from its thermodynamically favorable strain and solvation relative to the other two constructs. Our results show how the linker sequence tunes CaM function, suggesting possible mechanisms for changes in linker properties such as mutations or post-translational modifications to modulate protein/substrate binding.
Collapse
Affiliation(s)
- Bin Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois 60153, United States
| |
Collapse
|
4
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Jeon J, Yau WM, Tycko R. Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase. J Am Chem Soc 2020; 142:21220-21232. [PMID: 33280387 DOI: 10.1021/jacs.0c11156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calmodulin (CaM) mediates a wide range of biological responses to changes in intracellular Ca2+ concentrations through its calcium-dependent binding affinities to numerous target proteins. Binding of two Ca2+ ions to each of the two four-helix-bundle domains of CaM results in major conformational changes that create a potential binding site for the CaM binding domain of a target protein, which also undergoes major conformational changes to form the complex with CaM. Details of the molecular mechanism of complex formation are not well established, despite numerous structural, spectroscopic, thermodynamic, and kinetic studies. Here, we report a study of the process by which the 26-residue peptide M13, which represents the CaM binding domain of skeletal muscle myosin light chain kinase, forms a complex with CaM in the presence of excess Ca2+ on the millisecond time scale. Our experiments use a combination of selective 13C labeling of CaM and M13, rapid mixing of CaM solutions with M13/Ca2+ solutions, rapid freeze-quenching of the mixed solutions, and low-temperature solid state nuclear magnetic resonance (ssNMR) enhanced by dynamic nuclear polarization. From measurements of the dependence of 2D 13C-13C ssNMR spectra on the time between mixing and freezing, we find that the N-terminal portion of M13 converts from a conformationally disordered state to an α-helix and develops contacts with the C-terminal domain of CaM in about 2 ms. The C-terminal portion of M13 becomes α-helical and develops contacts with the N-terminal domain of CaM more slowly, in about 8 ms. The level of structural order in the CaM/M13/Ca2+ complexes, indicated by 13C ssNMR line widths, continues to increase beyond 27 ms.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
6
|
Huang S, Wang J, Sun H, Fu Y, Wang Y. Probing Changes in Ca 2+-Induced Interaction Forces between Calmodulin and Melittin by Atomic Force Microscopy. MICROMACHINES 2020; 11:E906. [PMID: 33007824 PMCID: PMC7601158 DOI: 10.3390/mi11100906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Mechanobiology studies the means by which physical forces and mechanical properties change intra- or inter- biological macromolecules. Calmodulin (CaM) is involved in physiological activities and various metabolic processes in eukaryotic cells. Although the configuration changes in the interaction between calmodulin and melittin have been studied, the biomechanical relationship of their interaction has rarely been explored. Here, we measured the adhesion forces between calmodulin and melittin in solutions of gradient concentration of calcium ions using atomic force microscopy (AFM). We found that the specific (Fi) and nonspecific (F0) adhesion forces between single melittin and calmodulin in a PBS solution were 69.4 ± 5.0 and 29.3 ± 8.9 pN, respectively. In the presence of 10-7 to 10-3 M Ca2+ PBS solution, the Fi increased significantly to 93.8 ± 5.0, 139.9 ± 9.0, 140.4 ± 9.7, 171.5 ± 9.0, and 213.3 ± 17.8 pN, indicating that the unbinding force between melittin and calmodulin increased in the presence of Ca2+ in a concentration-dependent manner. These findings demonstrated that biomechanical studies based on AFM could help us better understand the melittin/calmodulin-binding processes in the presence of calcium and help us design and screen peptide drugs based on calmodulin.
Collapse
Affiliation(s)
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China; (S.H.); (H.S.); (Y.F.); (Y.W.)
| | | | | | | |
Collapse
|
7
|
Zheng S, Yuan S, Hou Z, Li G, Chen Y, Pan Y, Liu Y, Huang G. Charge-dependent modulation of specific and nonspecific protein-metal ion interactions in nanoelectrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1502-1511. [PMID: 31151135 DOI: 10.1002/rcm.8493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Previous studies found that charge state could affect both specific and nonspecific binding of protein-metal ion interactions in nanoelectrospray ionization mass spectrometry (nESI-MS). However, the two kinds of interactions have been studied individually in spite of the problem that they often coexist in the same system. Thus, it is necessary to study the effects of charge state on specific and nonspecific protein-metal ion interactions in one system to reveal more accurate binding state. METHODS The HIV-1 nucleocapsid protein (NCp7(31-55)) which can bind specifically and nonspecifically to Zn2+ served as the model to show the charge-dependent protein-metal ion interactions. Hydrogen/deuterium exchange (HDX) and photodissociation (PD) were used to demonstrate that specific binding state was correlated with protein structure. In addition to NCp7(31-55), three other model proteins were used to investigate the reason for the charge-dependent nonspecific binding. RESULTS For specific binding, we proposed that protein ions with different charge states had different conformations. The HDX results showed that labile protons in the NCp7(31-55)-Zn complex were exchanged in a charge-state-dependent way. The PD experiments revealed differential fragment yields for different charge states. For nonspecific binding, higher charge states had more Zn2+ additions, but less SO4 2- additions. The effects of charge states on nonspecific binding levels were entirely the opposite for Zn2+ and SO4 2- . These results could reveal that the nonspecific binding was caused by electrostatic interaction. CONCLUSIONS For specific binding, NCp7(31-55) with lower charge states have folding and undenatured structures. The binding states of lower charge states can better reflect more native binding states. For nonspecific binding, when multiple metal ions adduct to proteins, the proteins have more net positive charges, which tend to generate higher charge ions during electrospray.
Collapse
Affiliation(s)
- Shihui Zheng
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Siming Yuan
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhuanghao Hou
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongyu Li
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuting Chen
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yangzhong Liu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
8
|
Zhang H, Gong Q, Zhang H, Chen C. Combining the biased and unbiased sampling strategy into one convenient free energy calculation method. J Comput Chem 2019; 40:1806-1815. [PMID: 30942500 DOI: 10.1002/jcc.25834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022]
Abstract
Constructing a free energy landscape for a large molecule is difficult. One has to use either a high temperature or a strong driving force to enhance the sampling on the free energy barriers. In this work, we propose a mixed method that combines these two kinds of acceleration strategies into one simulation. First, it applies an adaptive biasing potential to some replicas of the molecule. These replicas are particularly accelerated in a collective variable space. Second, it places some unbiased and exchangeable replicas at various temperature levels. These replicas generate unbiased sampling data in the canonical ensemble. To improve the sampling efficiency, biased replicas transfer their state variables to the unbiased replicas after equilibrium by Monte Carlo trial moves. In comparison to previous integrated methods, it is more convenient for users. It does not need an initial reference biasing potential to guide the sampling of the molecule. And it is also unnecessary to insert many replicas for the requirement of passing the free energy barriers. The free energy calculation is accomplished in a single stage. It samples the data as fast as a biased simulation and it processes the data as simple as an unbiased simulation. The method provides a minimalist approach to the construction of the free energy landscape. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qiankun Gong
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
9
|
Li G, Zheng S, Chen Y, Hou Z, Huang G. Reliable Tracking In-Solution Protein Unfolding via Ultrafast Thermal Unfolding/Ion Mobility-Mass Spectrometry. Anal Chem 2018; 90:7997-8001. [PMID: 29894165 DOI: 10.1021/acs.analchem.8b00859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequential unfolding of monomeric proteins is important for the global understanding of local conformational elements (e.g., secondary structures and domain connections) within those protein assemblies. Ion mobility-mass spectrometry (IM-MS) is an emerging and promising technique for probing gradual protein structural perturbations in the gas phase. However, it is still challenging to track sequential unfolding in the solution phase. Here, we extended IM-MS to track in-solution sequential unfolding of monomeric proteins having single and/or multidomains. The present method combines ultrafast local heating effect (LHE)-driven sequential unfolding with IM-MS identification. Protein sequential unfolding in solution is demonstrated by the rapid and controllable IM-MS data switch between native and gradually unfolded states. Our results show that LHE induces gradual protein conformational transitions associated with biological functions, where IM-MS tracks the sequential unfolding of monomeric proteins.
Collapse
|
10
|
Jeanne Dit Fouque K, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Metal ions induced secondary structure rearrangements: mechanically interlocked lassovs.unthreaded branched-cyclic topoisomers. Analyst 2018; 143:2323-2333. [DOI: 10.1039/c8an00138c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change.
Collapse
Affiliation(s)
| | - Javier Moreno
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | | |
Collapse
|
11
|
Dilger JM, Glover MS, Clemmer DE. A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1293-1303. [PMID: 28357817 DOI: 10.1007/s13361-016-1592-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 05/18/2023]
Abstract
Ion mobility mass spectrometry (IMS-MS) techniques were used to generate a database of 2288 collision cross sections of transition-metal-coordinated tryptic peptide ions. This database consists of cross sections for 1253 [Pep + X]2+ and 1035 [Pep + X + H]3+, where X2+ corresponds to Mn2+, Co2+, Ni2+, Cu2+, or Zn2+. This number of measurements enables the extraction of structural trends for transition-metal-coordinated peptide ions. The range of structures and changes in collision cross sections for X2+-coordinated species (compared with protonated species of the same charge state) is similar to Mg2+-coordinated species. This suggests that the structures are largely determined by similarities in cation size with differences among the cross section distributions presumably caused by X2+ interactions with specific functional groups offered by the residue R-groups or the peptide backbone. Cross section contributions for individual residues upon X2+ solvation are assessed with the derivation of intrinsic size parameters (ISPs). The comparison of the [Pep + X]2+ ISPs with those previously reported for [Pep + Mg]2+ ions displays a lower contribution to the cross section for His, carboxyamidomethylated Cys, and Met, and is consistent with specific metal-residue interactions identified within protein X-ray crystallography databases. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jonathan M Dilger
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
- Spectrum Warfare Systems Department, Naval Surface Warfare Center, Crane Division, Crane, IN, 47522, USA.
| | - Matthew S Glover
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
12
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
13
|
Chen C. Calculation of the Local Free Energy Landscape in the Restricted Region by the Modified Tomographic Method. J Phys Chem B 2016; 120:3061-71. [PMID: 26974860 DOI: 10.1021/acs.jpcb.5b11892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The free energy landscape is the most important information in the study of the reaction mechanisms of the molecules. However, it is difficult to calculate. In a large collective variable space, a molecule must take a long time to obtain the sufficient sampling during the simulation. To save the calculation quantity, decreasing the sampling region and constructing the local free energy landscape is required in practice. However, the restricted region in the collective variable space may have an irregular shape. Simply restricting one or more collective variables of the molecule cannot satisfy the requirement. In this paper, we propose a modified tomographic method to perform the simulation. First, it divides the restricted region by some hyperplanes and connects the centers of hyperplanes together by a curve. Second, it forces the molecule to sample on the curve and the hyperplanes in the simulation and calculates the free energy data on them. Finally, all the free energy data are combined together to form the local free energy landscape. Without consideration of the area outside the restricted region, this free energy calculation can be more efficient. By this method, one can further optimize the path quickly in the collective variable space.
Collapse
Affiliation(s)
- Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology , Wuhan 430074, Hubei, China
| |
Collapse
|
14
|
Calabrese AN, Bowie JH, Pukala TL. Structural analysis of calmodulin binding by nNOS inhibitory amphibian peptides. Biochemistry 2014; 54:567-76. [PMID: 25436860 DOI: 10.1021/bi5004124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calmodulin (CaM) is a ubiquitous protein in nature and plays a regulatory role in numerous biological processes, including the upregulation of nitric oxide (NO) synthesis in vivo. Several peptides that prevent NO production by interacting with CaM have been isolated in the cutaneous secretions of Australian amphibians, and are thought to serve as a defense mechanism against predators. In this work, we probe the mechanism by which three of these peptides, namely, caerin 1.8, dahlein 5.6, and a synthetic modification of citropin 1.1, interact with CaM to inhibit NO signaling. Isothermal titration calorimetry was used to determine thermodynamic parameters of the binding interactions and revealed that all the peptides bind to CaM in a similar fashion, with the peptide encapsulated between the two lobes of CaM. Ion mobility-mass spectrometry was used to investigate the changes in collision cross section that occur as a result of complexation, providing additional evidence for this binding mode. Finally, nuclear magnetic resonance spectroscopy was used to track chemical shift changes upon binding. The results obtained confirm that these complexes adopt canonical collapsed structures and demonstrate the strength of the interaction between the peptides and CaM. An understanding of these molecular recognition events provides insights into the underlying mechanism of the amphibian host-defense system.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Chemistry and Physics, The University of Adelaide , Adelaide, SA Australia 5005
| | | | | |
Collapse
|
15
|
Chen C, Huang Y, Jiang X, Xiao Y. A fast tomographic method for searching the minimum free energy path. J Chem Phys 2014; 141:154109. [DOI: 10.1063/1.4897983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yanzhao Huang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xuewei Jiang
- School of Fashion, Wuhan Textile University, Wuhan 430073, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
16
|
Flick TG, Merenbloom SI, Williams ER. Effects of metal ion adduction on the gas-phase conformations of protein ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1654-62. [PMID: 23733259 PMCID: PMC3795793 DOI: 10.1007/s13361-013-0664-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/10/2013] [Accepted: 05/03/2013] [Indexed: 05/16/2023]
Abstract
Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.
Collapse
Affiliation(s)
| | | | - Evan R. Williams
- Address reprint requests to Prof. Evan R. Williams: Department of Chemistry University of California, Berkeley Latimer Hall #1460 Berkeley, CA 94620-1460 Phone: (510) 643-7161 Fax: (510) 542-7714
| |
Collapse
|
17
|
Scarff CA, Sicorello A, Tomé RJ, Macedo-Ribeiro S, Ashcroft AE, Radford SE. A tale of a tail: Structural insights into the conformational properties of the polyglutamine protein ataxin-3. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 345-347:63-70. [PMID: 25844046 PMCID: PMC4375668 DOI: 10.1016/j.ijms.2012.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 05/24/2023]
Abstract
Ataxin-3 is the protein responsible for the neurodegenerative polyglutamine disease Spinocerebellar ataxia type 3. Full structural characterisation of ataxin-3 is required to aid in understanding the mechanism of disease. Despite extensive study, little is known about the conformational properties of the full-length protein, in either its non-expanded healthy or expanded pathogenic forms, particularly since its polyglutamine-containing region has denied structural elucidation. In this work, travelling-wave ion mobility spectrometry-mass spectrometry and limited proteolysis have been used to compare the conformational properties of full-length non-expanded ataxin-3 (14Q) and its isolated N-terminal Josephin domain (JD). Limited proteolysis experiments have confirmed that the JD is stable, being extremely resistant to trypsin digestion, with the exception of the α2/α3 hairpin which is flexible and exposed to protease cleavage in solution. The C-terminal region of ataxin-3 which contains the glutamine-rich sequences is largely unstructured, showing little resistance to limited proteolysis. Using ion mobility spectrometry-mass spectrometry we show that ataxin-3 (14Q) adopts a wide range of conformational states in vitro conferred by the flexibility of its C-terminal tail and the α2/α3 hairpin of the N-terminal JD. This study highlights how the power of MS-based approaches to protein structural characterisation can be particularly useful when the target protein is aggregation-prone and has intrinsically unordered regions.
Collapse
Affiliation(s)
- Charlotte A. Scarff
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alessandro Sicorello
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ricardo J.L. Tomé
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
18
|
Chen C, Huang Y, Jiang X, Xiao Y. Binding free-energy calculation of an ion-peptide complex by constrained dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062705. [PMID: 23848713 DOI: 10.1103/physreve.87.062705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/06/2013] [Indexed: 06/02/2023]
Abstract
Binding free energy is the most important physical parameter that describes the binding affinity of a receptor-ligand complex. Conventionally, it was obtained based on the thermodynamic cycle or alchemical reaction. These strategies have been widely used, but they would be problematic if the receptors and/or ligands have large conformational changes during the binding processes. In this paper, we present a way to calculate the binding free energy: constrained dynamics along a fragmental and high-dimensional transition path. This method directly considers unbound states in the simulation. The application to the calmodulin loop-calcium complexes shows that it is practical and the calculated relative binding affinities are in good agreement with experimental results.
Collapse
Affiliation(s)
- Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | | | | | |
Collapse
|
19
|
Dilger JM, Valentine SJ, Glover MS, Clemmer DE. A database of alkaline-earth-coordinated peptide cross sections: insight into general aspects of structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:768-79. [PMID: 23512423 DOI: 10.1007/s13361-013-0579-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 05/18/2023]
Abstract
A database of 1470 collision cross sections (666 doubly- and 804 triply-charged) of alkaline-earth-coordinated tryptic peptide ions [where the cation (M(2+)) correspond to Mg(2+), Ca(2+), or Ba(2+)] is presented. The utility of such an extensive set of measurements is illustrated by extraction of general properties of M(2+)-coordinated peptide structures. Specifically, we derive sets of intrinsic size parameters (ISPs) for individual amino acid residues for M(2+)-coordinated peptides. Comparison of these parameters with existing ISPs for protonated peptides suggests that M(2+) binding occurs primarily through interactions with specific polar aliphatic residues (Asp, Ser, and Thr) and the peptide backbone. A comparison of binding interactions for these alkaline-earth metals with interactions reported previously for alkali metals is provided. Finally, we describe a new analysis in which ISPs are used as probes for assessing peptide structure based on amino acid composition.
Collapse
Affiliation(s)
- Jonathan M Dilger
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
20
|
Deng L, Kitova EN, Klassen JS. Dissociation kinetics of the streptavidin-biotin interaction measured using direct electrospray ionization mass spectrometry analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:49-56. [PMID: 23247970 DOI: 10.1007/s13361-012-0533-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
Dissociation rate constants (k (off)) for the model high affinity interaction between biotin (B) and the homotetramer of natural core streptavidin (S(4)) were measured at pH 7 and temperatures ranging from 15 to 45 °C using electrospray ionization mass spectrometry (ESI-MS). Two different approaches to data analysis were employed, one based on the initial rate of dissociation of the (S(4) + 4B) complex, the other involving nonlinear fitting of the time-dependent relative abundances of the (S(4) + iB) species. The two methods were found to yield k (off) values that are in good agreement, within a factor of two. The Arrhenius parameters for the dissociation of the biotin-streptavidin interaction in solution were established from the k (off) values determined by ESI-MS and compared with values measured using a radiolabeled biotin assay. Importantly, the dissociation activation energies determined by ESI-MS agree, within 1 kcal mol(-1), with the reported value. In addition to providing a quantitative measure of k (off), the results of the ESI-MS measurements revealed that the apparent cooperative distribution of (S(4) + iB) species observed at short reaction times is of kinetic origin and that sequential binding of B to S(4) occurs in a noncooperative fashion with the four ligand binding sites being kinetically and thermodynamically equivalent and independent.
Collapse
Affiliation(s)
- Lu Deng
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | |
Collapse
|
21
|
Masada N, Schaks S, Jackson SE, Sinz A, Cooper DMF. Distinct mechanisms of calmodulin binding and regulation of adenylyl cyclases 1 and 8. Biochemistry 2012; 51:7917-29. [PMID: 22971080 PMCID: PMC3466776 DOI: 10.1021/bi300646y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca(2+) ions. These two lobes have differing affinities for Ca(2+), and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca(2+)](i). We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca(2+)-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca(2+) binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca(2+)-CaM activation of AC1 and AC8, which may underpin their different physiological roles.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Li H, Wells SA, Jimenez-Roldan JE, Römer RA, Zhao Y, Sadler PJ, O'Connor PB. Protein flexibility is key to cisplatin crosslinking in calmodulin. Protein Sci 2012; 21:1269-79. [PMID: 22733664 PMCID: PMC3631356 DOI: 10.1002/pro.2111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/15/2012] [Indexed: 01/03/2023]
Abstract
Chemical crosslinking in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) has significant potential for studying protein structures and protein-protein interactions. Previously, cisplatin has been shown to be a crosslinker and crosslinks multiple methionine (Met) residues in apo-calmodulin (apo-CaM). However, the inter-residue distances obtained from nuclear magnetic resonance structures are inconsistent with the measured distance constraints by crosslinking. Met residues lie too far apart to be crosslinked by cisplatin. Here, by combining FTICR MS with a novel computational flexibility analysis, the flexible nature of the CaM structure is found to be key to cisplatin crosslinking in CaM. It is found that the side chains of Met residues can be brought together by flexible motions in both apo-CaM and calcium-bound CaM (Ca₄-CaM). The possibility of cisplatin crosslinking Ca₄-CaM is then confirmed by MS data. Therefore, flexibility analysis as a fast and low-cost computational method can be a useful tool for predicting crosslinking pairs in protein crosslinking analysis and facilitating MS data analysis. Finally, flexibility analysis also indicates that the crosslinking of platinum to pairs of Met residues will effectively close the nonpolar groove and thus will likely interfere with the binding of CaM to its protein targets, as was proved by comparing assays for cisplatin-modified/unmodified CaM binding to melittin. Collectively, these results suggest that cisplatin crosslinking of apo-CaM or Ca₄-CaM can inhibit the ability of CaM to recognize its target proteins, which may have important implications for understanding the mechanism of tumor resistance to platinum anticancer drugs.
Collapse
Affiliation(s)
- Huilin Li
- Department of Chemistry, University of WarwickCoventry, CV4 7AL, United Kingdom
| | - Stephen A Wells
- Department of Physics and Centre for Scientific Computing, University of WarwickCoventry, CV4 7AL, United Kingdom
| | - J Emilio Jimenez-Roldan
- Department of Physics and Centre for Scientific Computing, University of WarwickCoventry, CV4 7AL, United Kingdom
| | - Rudolf A Römer
- Department of Physics and Centre for Scientific Computing, University of WarwickCoventry, CV4 7AL, United Kingdom
| | - Yao Zhao
- Department of Chemistry, University of WarwickCoventry, CV4 7AL, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of WarwickCoventry, CV4 7AL, United Kingdom
| | - Peter B O'Connor
- Department of Chemistry, University of WarwickCoventry, CV4 7AL, United Kingdom
| |
Collapse
|
23
|
Calabrese AN, Speechley LA, Pukala TL. Characterisation of Calmodulin Structural Transitions by Ion Mobility Mass Spectrometry. Aust J Chem 2012. [DOI: 10.1071/ch12047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study demonstrates the ability of travelling wave ion mobility-mass spectrometry to measure collision cross-sections of ions in the negative mode, using a calibration based approach. Here, negative mode ion mobility-mass spectrometry was utilised to understand structural transitions of calmodulin upon Ca2+ binding and complexation with model peptides melittin and the plasma membrane Ca2+ pump C20W peptide. Coexisting calmodulin conformers were distinguished on the basis of their mass and cross-section, and identified as relatively folded and unfolded populations, with good agreement in collision cross-section to known calmodulin geometries. Titration of calcium tartrate to physiologically relevant Ca2+ levels provided evidence for intermediately metalated species during the transition from apo- to holo-calmodulin, with collision cross-section measurements indicating that higher Ca2+ occupancy is correlated with more compact structures. The binding of two representative peptides which exemplify canonical compact (melittin) and extended (C20W) peptide-calmodulin binding models has also been interrogated by ion mobility mass spectrometry. Peptide binding to calmodulin involves intermediates with metalation states from 1–4 Ca2+, which demonstrate relatively collapsed structures, suggesting neither the existence of holo-calmodulin or a pre-folded calmodulin conformation is a prerequisite for binding target peptides or proteins. The biological importance of the different metal unsaturated calmodulin complexes, if any, is yet to be understood.
Collapse
|
24
|
Testa L, Brocca S, Grandori R. Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Anal Chem 2011; 83:6459-63. [PMID: 21800882 DOI: 10.1021/ac201740z] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrospray-ionization mass spectrometry (ESI-MS) is widely used for protein studies. It has been shown that the extent of protein ionization under nondenaturing conditions correlates well with the solvent-accessible surface area of the tridimensional structure, for either folded monomers or multimeric complexes. The goal of this study was to test whether this relation holds for unfolded proteins as well. In order to overcome the paucity of structural data, the server ProtSA was used to model the conformational ensembles of proteins in the unfolded state and generate estimates of the average solvent accessibility. The results are analyzed along with literature data or original measurements by ESI-MS. It is found that the charge-to-surface relation holds for proteins in the unfolded state, free from solvent effects. A double-log plot is derived, in close agreement with published data for folded proteins. These results suggest that the solvent-accessible surface area is a key factor determining the extent of protein ionization by electrospray, independent of the conformational state. This conclusion helps rationalizing conformational effects in protein ESI-MS. The here reported relation can be used to predict the average solvent accessibility and, hence, the state of folding of unknown proteins from ESI-MS data.
Collapse
|
25
|
Carlton DD, Schug KA. A review on the interrogation of peptide–metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta 2011; 686:19-39. [DOI: 10.1016/j.aca.2010.11.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
|
26
|
McFadden MJ, Junop MS, Brennan JD. Magnetic “Fishing” Assay To Screen Small-Molecule Mixtures for Modulators of Protein−Protein Interactions. Anal Chem 2010; 82:9850-7. [PMID: 21067198 DOI: 10.1021/ac102164d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meghan J. McFadden
- Chemical Biology Graduate Program, Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, and Department of Biochemistry and Biomedical Engineering, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Murray S. Junop
- Chemical Biology Graduate Program, Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, and Department of Biochemistry and Biomedical Engineering, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - John D. Brennan
- Chemical Biology Graduate Program, Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, and Department of Biochemistry and Biomedical Engineering, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|