1
|
Balsam SS, Zhong F, Pence N, Levintov L, Andhare D, Hammond JH, Ragusa MJ, Vashisth H, Hogan DA, Pletneva EV. Conserved C-Terminal Tail Is Responsible for Membrane Localization and Function of Pseudomonas aeruginosa Hemerythrin. Biochemistry 2024; 63:1795-1807. [PMID: 38951132 PMCID: PMC11481101 DOI: 10.1021/acs.biochem.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Many bacteria have hemerythrin (Hr) proteins that bind O2, including Pseudomonas aeruginosa, in which microoxia-induced Hr (Mhr) provide fitness advantages under microoxic conditions. Mhr has a 23 amino-acid extension at its C-terminus relative to a well-characterized Hr from Methylococcus capsulatus, and similar extensions are also found in Hrs from other bacteria. The last 11 amino acids of this extended, C-terminal tail are highly conserved in gammaproteobacteria and predicted to form a helix with positively charged and hydrophobic faces. In cellular fractionation assays, wild-type (WT) Mhr was found in both membrane and cytosolic fractions, while a MhrW143* variant lacking the last 11 residues was largely in the cytosol and did not complement Mhr function in competition assays. MhrL112Y, a variant that has a much longer-lived O2-bound form, was fully functional and had a similar localization pattern to that of WT Mhr. Both MhrW143* and MhrL112Y had secondary structures, stabilities, and O2-binding kinetics similar to those of WT Mhr. Fluorescence studies revealed that the C-terminal tail, and particularly the fragment corresponding to its last 11 residues, was sufficient and necessary for association with lipid vesicles. Molecular dynamics simulations and subsequent cellular analysis of Mhr variants have demonstrated that conserved, positively charged residues in the tail are important for Mhr interactions with negatively charged membranes and the contribution of this protein to competitive fitness. Together, these data suggest that peripheral interactions of Mhr with membranes are guided by the C-terminal tail and are independent of O2-binding.
Collapse
Affiliation(s)
- Stacie Stuut Balsam
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Natasha Pence
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Lev Levintov
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Devika Andhare
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - John H. Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH, 03824, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH, 03824, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | |
Collapse
|
2
|
Kitanishi K. Bacterial hemerythrin domain-containing oxygen and redox sensors: Versatile roles for oxygen and redox signaling. Front Mol Biosci 2022; 9:967059. [PMID: 35992274 PMCID: PMC9388753 DOI: 10.3389/fmolb.2022.967059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hemerythrin is an oxygen-binding protein originally found in certain marine invertebrates. Oxygen reversibly binds at its non-heme diiron center, which consists of two oxo-bridged iron atoms bound to a characteristic conserved set of five His residues, one Glu residue, and one Asp residue. It was recently discovered that several bacteria utilize hemerythrin as an oxygen- and redox-sensing domain in responding to changes in cellular oxygen concentration or redox status, and immediately adapt to these environmental changes in order to maintain important physiological processes, including chemotaxis and c-di-GMP synthesis and degradation. This Mini Review focuses on the recent progress made on structural and functional aspects of these emerging bacterial hemerythrin domain-containing oxygen and redox sensors, revealing characteristic features of this family of proteins.
Collapse
|
3
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Caldas Nogueira ML, Pastore AJ, Davidson VL. Diversity of structures and functions of oxo-bridged non-heme diiron proteins. Arch Biochem Biophys 2021; 705:108917. [PMID: 33991497 PMCID: PMC8165033 DOI: 10.1016/j.abb.2021.108917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Oxo-bridged diiron proteins are a distinct class of non-heme iron proteins. Their active sites are composed of two irons that are coordinated by amino acid side chains, and a bridging oxygen that interacts with each iron. These proteins are members of the ferritin superfamily and share the structural feature of a four α-helix bundle that provides the residues that coordinate the irons. The different proteins also display a wide range of structures and functions. A prototype of this family is hemerythrin, which functions as an oxygen transporter. Several other hemerythrin-like proteins have been described with a diversity of functions including oxygen and iron sensing, and catalytic activities. Rubrerythrins react with hydrogen peroxide and rubrerythrin-like proteins possess a rubredoxin domain, in addition to the oxo-bridged diiron center. Other redox enzymes with oxo-bridged irons include flavodiiron proteins that act as O2 or NO reductases, ribonucleotide reductase and methane monooxygenase. Ferritins have an oxo-bridged diiron in the ferroxidase center of the protein, which plays a role in the iron storage function of these proteins. There are also bacterial ferritins that exhibit catalytic activities. The structures and functions of this broad class of oxo-bridged diiron proteins are described and compared in this review.
Collapse
Affiliation(s)
- Maria Luiza Caldas Nogueira
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Anthony J Pastore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| |
Collapse
|
6
|
Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics 2020; 11:735-755. [PMID: 30734808 DOI: 10.1039/c8mt00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.
Collapse
Affiliation(s)
- Isidro Abreu
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
7
|
Kitanishi K, Igarashi J, Matsuoka A, Unno M. Identification and Characterization of a Redox Sensor Phosphodiesterase from Ferrovum sp. PN-J185 Containing Bacterial Hemerythrin and HD-GYP Domains. Biochemistry 2020; 59:983-991. [PMID: 32045213 DOI: 10.1021/acs.biochem.0c00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The second messenger bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates numerous important physiological functions in bacteria. In this study, we identified and characterized the first dimeric, full-length, non-heme iron-bound phosphodiesterase (PDE) containing bacterial hemerythrin and HD-GYP domains (Bhr-HD-GYP). We found that the amino acid sequence encoded by the FV185_09380 gene from Ferrovum sp. PN-J185 contains an N-terminal bacterial hemerythrin domain and a C-terminal HD-GYP domain, which is characteristic of proteins with PDE activity toward c-di-GMP. Inductively coupled plasma optical emission spectroscopy analyses showed that Bhr-HD-GYP contains 4 equiv of iron atoms per subunit, suggesting both hemerythrin and HD-GYP domains have non-heme di-iron sites. A redox-dependent spectral change expected for oxo-bridged non-heme iron with carboxylate ligands was observed, and this redox interconversion was reversible. However, unlike marine invertebrate hemerythrin, which functions as an oxygen-binding protein, Bhr-HD-GYP did not form an oxygen adduct because of rapid autoxidation. The reduced ferrous iron complex of the protein catalyzed the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas the oxidized ferric iron complex had no significant activity. These results suggest that Bhr-HD-GYP is a redox and oxygen sensor enzyme that regulates c-di-GMP levels in response to changes in cellular redox status or oxygen concentration. Our study may lead to an improved understanding of the physiology of iron-oxidizing bacterium Ferrovum sp. PN-J185.
Collapse
Affiliation(s)
- Kenichi Kitanishi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Jotaro Igarashi
- Department of Natural Sciences, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Ariki Matsuoka
- Department of Natural Sciences, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| |
Collapse
|
8
|
Alvarez‐Carreño C, Alva V, Becerra A, Lazcano A. Structure, function and evolution of the hemerythrin-like domain superfamily. Protein Sci 2018; 27:848-860. [PMID: 29330894 PMCID: PMC5866928 DOI: 10.1002/pro.3374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/22/2023]
Abstract
Hemerythrin-like proteins have generally been studied for their ability to reversibly bind oxygen through their binuclear nonheme iron centers. However, in recent years, it has become increasingly evident that some members of the hemerythrin-like superfamily also participate in many other biological processes. For instance, the binuclear nonheme iron site of YtfE, a hemerythrin-like protein involved in the repair of iron centers in Escherichia coli, catalyzes the reduction of nitric oxide to nitrous oxide, and the human F-box/LRR-repeat protein 5, which contains a hemerythrin-like domain, is involved in intracellular iron homeostasis. Furthermore, structural data on hemerythrin-like domains from two proteins of unknown function, PF0695 from Pyrococcus furiosus and NMB1532 from Neisseria meningitidis, show that the cation-binding sites, typical of hemerythrin, can be absent or be occupied by metal ions other than iron. To systematically investigate this functional and structural diversity of the hemerythrin-like superfamily, we have collected hemerythrin-like sequences from a database comprising fully sequenced proteomes and generated a cluster map based on their all-against-all pairwise sequence similarity. Our results show that the hemerythrin-like superfamily comprises a large number of protein families which can be classified into three broad groups on the basis of their cation-coordinating residues: (a) signal-transduction and oxygen-carrier hemerythrins (H-HxxxE-HxxxH-HxxxxD); (b) hemerythrin-like (H-HxxxE-H-HxxxE); and, (c) metazoan F-box proteins (H-HExxE-H-HxxxE). Interestingly, all but two hemerythrin-like families exhibit internal sequence and structural symmetry, suggesting that a duplication event may have led to the origin of the hemerythrin domain.
Collapse
Affiliation(s)
- Claudia Alvarez‐Carreño
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70‐407, Cd. UniversitariaMexico City04510Mexico
| | - Vikram Alva
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingen72076Germany
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70‐407, Cd. UniversitariaMexico City04510Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70‐407, Cd. UniversitariaMexico City04510Mexico
- Miembro de El Colegio NacionalMexico
| |
Collapse
|
9
|
Cu +-specific CopB transporter: Revising P 1B-type ATPase classification. Proc Natl Acad Sci U S A 2018; 115:2108-2113. [PMID: 29440418 DOI: 10.1073/pnas.1721783115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The copper-transporting P1B-ATPases, which play a key role in cellular copper homeostasis, have been divided traditionally into two subfamilies, the P1B-1-ATPases or CopAs and the P1B-3-ATPases or CopBs. CopAs selectively export Cu+ whereas previous studies and bioinformatic analyses have suggested that CopBs are specific for Cu2+ export. Biochemical and spectroscopic characterization of Sphaerobacter thermophilus CopB (StCopB) show that, while it does bind Cu2+, the binding site is not the prototypical P1B-ATPase transmembrane site and does not involve sulfur coordination as proposed previously. Most important, StCopB exhibits metal-stimulated ATPase activity in response to Cu+, but not Cu2+, indicating that it is actually a Cu+ transporter. X-ray absorption spectroscopic studies indicate that Cu+ is coordinated by four sulfur ligands, likely derived from conserved cysteine and methionine residues. The histidine-rich N-terminal region of StCopB is required for maximal activity, but is inhibitory in the presence of divalent metal ions. Finally, reconsideration of the P1B-ATPase classification scheme suggests that the P1B-1- and P1B-3-ATPase subfamilies both comprise Cu+ transporters. These results are completely consistent with the known presence of only Cu+ within the reducing environment of the cytoplasm, which should eliminate the need for a Cu2+ P1B-ATPase.
Collapse
|
10
|
Dzul SP, Rocha AG, Rawat S, Kandegedara A, Kusowski A, Pain J, Murari A, Pain D, Dancis A, Stemmler TL. In vitro characterization of a novel Isu homologue from Drosophila melanogaster for de novo FeS-cluster formation. Metallomics 2017; 9:48-60. [PMID: 27738674 DOI: 10.1039/c6mt00163g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FeS-clusters are utilized by numerous proteins within several biological pathways that are essential for life. In eukaryotes, the primary FeS-cluster production pathway is the mitochondrial iron-sulfur cluster (ISC) pathway. In Saccharomyces cerevisiae, de novo FeS-cluster formation is accomplished through coordinated assembly with the substrates iron and sulfur by the scaffold assembly protein "Isu1". Sulfur for cluster assembly is provided by cysteine desulfurase "Nfs1", a protein that works in union with its accessory protein "Isd11". Frataxin "Yfh1" helps direct cluster assembly by serving as a modulator of Nfs1 activity, by assisting in the delivery of sulfur and Fe(ii) to Isu1, or more likely through a combination of these and other possible roles. In vitro studies on the yeast ISC machinery have been limited, however, due to the inherent instability of recombinant Isu1. Isu1 is a molecule prone to degradation and aggregation. To circumvent Isu1 instability, we have replaced yeast Isu1 with the fly ortholog to stabilize our in vitro ISC assembly system and assist us in elucidating molecular details of the yeast ISC pathway. Our laboratory previously observed that recombinant frataxin from Drosophila melanogaster has remarkable stability compared to the yeast ortholog. Here we provide the first characterization of D. melanogaster Isu1 (fIscU) and demonstrate its ability to function within the yeast ISC machinery both in vivo and in vitro. Recombinant fIscU has physical properties similar to that of yeast Isu1. It functions as a stable dimer with similar Fe(ii) affinity and ability to form two 2Fe-2S clusters as the yeast dimer. The fIscU and yeast ISC proteins are compatible in vitro; addition of Yfh1 to Nfs1-Isd11 increases the rate of FeS-cluster formation on fIscU to a similar extent observed with Isu1. Finally, fIscU expressed in mitochondria of a yeast strain lacking Isu1 (and its paralog Isu2) is able to completely reverse the deletion phenotypes. These results demonstrate fIscU can functionally replace yeast Isu1 and it can serve as a powerful tool for exploring molecular details within the yeast ISC pathway.
Collapse
Affiliation(s)
- Stephen P Dzul
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Agostinho G Rocha
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Swati Rawat
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Ashoka Kandegedara
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - April Kusowski
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Anjaneyulu Murari
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Science, and Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Smith AT, Barupala D, Stemmler TL, Rosenzweig AC. A new metal binding domain involved in cadmium, cobalt and zinc transport. Nat Chem Biol 2015; 11:678-84. [PMID: 26192600 PMCID: PMC4543396 DOI: 10.1038/nchembio.1863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/28/2015] [Indexed: 11/26/2022]
Abstract
The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural, and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+, or Zn2+ ions in distinct and unique sites, and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full length CzcP, truncated CzcP, and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.
Collapse
Affiliation(s)
- Aaron T Smith
- 1] Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA. [2] Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Dulmini Barupala
- Department of Pharmaceutical Sciences and Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences and Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Amy C Rosenzweig
- 1] Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA. [2] Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
12
|
Smith AT, Smith KP, Rosenzweig AC. Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 2014; 19:947-60. [PMID: 24729073 PMCID: PMC4119550 DOI: 10.1007/s00775-014-1129-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/21/2014] [Indexed: 01/23/2023]
Abstract
The P1B-ATPases are integral membrane proteins that couple ATP hydrolysis to metal cation transport. Widely distributed across all domains of life, these enzymes have been previously shown to transport copper, zinc, cobalt, and other thiophilic heavy metals. Recent data suggest that these enzymes may also be involved in nickel and/or iron transport. Here we have exploited large amounts of genomic data to examine and classify the various P1B-ATPase subfamilies. Specifically, we have combined new methods of data partitioning and network visualization known as Transitivity Clustering and Protein Similarity Networks with existing biochemical data to examine properties such as length, speciation, and metal-binding motifs of the P1B-ATPase subfamily sequences. These data reveal interesting relationships among the enzyme sequences of previously established subfamilies, indicate the presence of two new subfamilies, and suggest the existence of new regulatory elements in certain subfamilies. Taken together, these findings underscore the importance of P1B-ATPases in homeostasis of nearly every biologically relevant transition metal and provide an updated framework for future studies.
Collapse
Affiliation(s)
- Aaron T. Smith
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Kyle P. Smith
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Ruiz JC, Bruick RK. F-box and leucine-rich repeat protein 5 (FBXL5): sensing intracellular iron and oxygen. J Inorg Biochem 2014; 133:73-7. [PMID: 24508277 DOI: 10.1016/j.jinorgbio.2014.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Abstract
Though essential for many vital biological processes, excess iron results in the formation of damaging reactive oxygen species (ROS). Therefore, iron metabolism must be tightly regulated. F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, regulates cellular and systemic iron homeostasis by facilitating iron regulatory protein 2 (IRP2) degradation. FBXL5 possesses an N-terminal hemerythrin (Hr)-like domain that mediates its own differential stability by switching between two different conformations to communicate cellular iron availability. In addition, the FBXL5-Hr domain also senses O2 availability, albeit by a distinct mechanism. Mice lacking FBXL5 fail to sense intracellular iron levels and die in utero due to iron overload and exposure to damaging levels of oxidative stress. By closely monitoring intracellular levels of iron and oxygen, FBLX5 prevents the formation of conditions that favor ROS formation. These findings suggest that FBXL5 is essential for the maintenance of iron homeostasis and is a key sensor of bioavailable iron. Here, we describe the iron and oxygen sensing mechanisms of the FBXL5 Hr-like domain and its role in mediating ROS biology.
Collapse
Affiliation(s)
- Julio C Ruiz
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States
| | - Richard K Bruick
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States.
| |
Collapse
|
14
|
Kendall JJ, Barrero-Tobon AM, Hendrixson DR, Kelly DJ. Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron-sulphur cluster enzymes from oxidative damage. Environ Microbiol 2013; 16:1105-21. [PMID: 24245612 PMCID: PMC4257069 DOI: 10.1111/1462-2920.12341] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/12/2013] [Indexed: 01/27/2023]
Abstract
Microaerophilic bacteria are adapted to low oxygen environments, but the mechanisms by which their growth in air is inhibited are not well understood. The citric acid cycle in the microaerophilic pathogen Campylobacter jejuni is potentially vulnerable, as it employs pyruvate and 2-oxoglutarate:acceptor oxidoreductases (Por and Oor), which contain labile (4Fe-4S) centres. Here, we show that both enzymes are rapidly inactivated after exposure of cells to a fully aerobic environment. We investigated the mechanisms that might protect enzyme activity and identify a role for the hemerythrin HerA (Cj0241). A herA mutant exhibits an aerobic growth defect and reduced Por and Oor activities after exposure to 21% (v/v) oxygen. Slow anaerobic recovery of these activities after oxygen damage was observed, but at similar rates in both wild-type and herA strains, suggesting the role of HerA is to prevent Fe-S cluster damage, rather than promote repair. Another hemerythrin (HerB; Cj1224) also plays a protective role. Purified HerA and HerB exhibited optical absorption, ligand binding and resonance Raman spectra typical of μ-oxo-bridged di-iron containing hemerythrins. We conclude that oxygen lability and poor repair of Por and Oor are major contributors to microaerophily in C. jejuni; hemerythrins help prevent enzyme damage microaerobically or during oxygen transients.
Collapse
Affiliation(s)
- John J Kendall
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
15
|
Zielazinski EL, González-Guerrero M, Subramanian P, Stemmler TL, Argüello JM, Rosenzweig AC. Sinorhizobium meliloti Nia is a P(1B-5)-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport. Metallomics 2013; 5:1614-1623. [PMID: 24056637 DOI: 10.1039/c3mt00195d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The P1B-ATPases are a ubiquitous family of metal transporters. These transporters are classified into subfamilies on the basis of substrate specificity, which is conferred by conserved amino acids in the last three transmembrane domains. Five subfamilies have been identified to date, and representative members of four (P1B-1 to P1B-4) have been studied. The fifth family (P1B-5), of which some members contain a C-terminal hemerythrin (Hr) domain, is less well characterized. The S. meliloti Sma1163 gene encodes for a P1B-5-ATPase, denoted Nia (Nickel-iron ATPase), that is induced by exogenous Fe(2+) and Ni(2+). The nia mutant accumulates nickel and iron, suggesting a possible role in detoxification of these two elements under free-living conditions, as well as in symbiosis, when the highest expression levels are measured. This function is supported by an inhibitory effect of Fe(2+) and Ni(2+) on the pNPPase activity, and by the ability of Nia to bind Fe(2+) in the transmembrane domain. Optical and X-ray absorption spectroscopic studies of the isolated Hr domain confirm the presence of a dinuclear iron center and suggest that this domain might function as an iron sensor.
Collapse
Affiliation(s)
- Eliza L Zielazinski
- Departments of Molecular Biosciences and of Chemistry. Northwestern University, Evanston, Illinois, USA.
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Poorna Subramanian
- Department of Biochemistry and Molecular Biology and the Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Timothy L Stemmler
- Department of Biochemistry and Molecular Biology and the Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry. Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
16
|
Schaller RA, Ali SK, Klose KE, Kurtz DM. A bacterial hemerythrin domain regulates the activity of a Vibrio cholerae diguanylate cyclase. Biochemistry 2012; 51:8563-70. [PMID: 23057727 DOI: 10.1021/bi3011797] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first demonstrated example of a regulatory function for a bacterial hemerythrin (Bhr) domain is reported. Bhrs have a characteristic sequence motif providing ligand residues for a type of non-heme diiron site that is known to bind O(2) and undergo autoxidation. The amino acid sequence encoded by the VC1216 gene from Vibrio cholerae O1 biovar El Tor str. N16961 contains an N-terminal Bhr domain connected to a C-terminal domain characteristic of bacterial diguanylate cyclases (DGCs) that catalyze formation of cyclic di-(3',5')-guanosine monophosphate (c-di-GMP) from GTP. This protein, Vc Bhr-DGC, was found to contain two tightly bound non-heme iron atoms per protein monomer. The as-isolated protein showed the spectroscopic signatures of oxo/dicarboxylato-bridged non-heme diferric sites of previously characterized Bhr domains. The diiron site was capable of cycling between diferric and diferrous forms, the latter of which was stable only under anaerobic conditions, undergoing rapid autoxidation upon being exposed to air. Vc Bhr-DGC showed approximately 10 times higher DGC activity in the diferrous than in the diferric form. The level of intracellular c-di-GMP is known to regulate biofilm formation in V. cholerae. The higher DGC activity of the diferrous Vc Bhr-DGC is consistent with induction of biofilm formation in low-dioxygen environments. The non-heme diiron cofactor in the Bhr domain thus represents an alternative to heme or flavin for redox and/or diatomic gas sensing and regulation of DGC activity.
Collapse
Affiliation(s)
- Ruth A Schaller
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
17
|
Zielazinski EL, Cutsail GE, Hoffman BM, Stemmler TL, Rosenzweig AC. Characterization of a cobalt-specific P(1B)-ATPase. Biochemistry 2012; 51:7891-900. [PMID: 22971227 DOI: 10.1021/bi3006708] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P(1B)-type ATPases are a ubiquitous family of P-type ATPases involved in the transport of transition metal ions. Divided into subclasses based on sequence characteristics and substrate specificity, these integral membrane transporters play key roles in metal homeostasis, metal tolerance, and the biosynthesis of metalloproteins. The P(1B-4)-ATPases have the simplest architecture of the five P(1B)-ATPase families and have been suggested to play a role in Co(2+) transport. A P(1B-4)-ATPase from Sulfitobacter sp. NAS-14.1, designated sCoaT, has been cloned, expressed, and purified. Activity assays indicate that sCoaT is specific for Co(2+). A single Co(2+) binding site is present, and optical, electron paramagnetic resonance, and X-ray absorption spectroscopic data are consistent with tetrahedral coordination by oxygen and nitrogen ligands, including a histidine and likely a water. Surprisingly, there is no evidence for coordination by sulfur. Mutation of a conserved cysteine residue, Cys 327, in the signature transmembrane Ser-Pro-Cys metal binding motif does not abolish the ATP hydrolysis activity or affect the spectroscopic analysis, establishing that this residue is not involved in the initial Co(2+) binding by sCoaT. In contrast, replacements of conserved transmembrane residues Ser 325, His 657, Glu 658, and Thr 661 with alanine abolish ATP hydrolysis activity and Co(2+) binding, indicating that these residues are necessary for Co(2+) transport. These data represent the first in vitro characterization of a P(1B-4)-ATPase and its Co(2+) binding site.
Collapse
Affiliation(s)
- Eliza L Zielazinski
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
18
|
Chollangi S, Thompson JW, Ruiz JC, Gardner KH, Bruick RK. Hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5) communicates cellular iron and oxygen availability by distinct mechanisms. J Biol Chem 2012; 287:23710-7. [PMID: 22648410 DOI: 10.1074/jbc.m112.360404] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Iron regulatory proteins play a principal role in maintaining cellular iron homeostasis by post-transcriptionally regulating factors responsible for iron uptake, utilization, and storage. An E3 ubiquitin ligase complex containing FBXL5 targets IRP2 for proteasomal degradation under iron- and oxygen-replete conditions, whereas FBXL5 itself is degraded when iron and oxygen availability decreases. FBXL5 contains a hemerythrin-like (Hr) domain at its N terminus that mediates its own differential stability. Here, we investigated the iron- and oxygen-dependent conformational changes within FBXL5-Hr that underlie its role as a cellular sensor. As predicted, FBXL5-Hr undergoes substantive structural changes when iron becomes limiting, accounting for its switch-like behavior. However, these same changes are not observed in response to oxygen depletion, indicating that this domain accommodates two distinct sensing mechanisms. Moreover, FBXL5-Hr does not behave as a dynamic sensor that continuously samples the cellular environment, assuming conformations in equilibrium with ever-changing cellular iron levels. Instead, the isolated domain appears competent to incorporate iron only at or near the time of its own synthesis. These observations have important implications for mechanisms by which these metabolites are sensed within mammalian cells.
Collapse
Affiliation(s)
- Srinivas Chollangi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
19
|
Thompson JW, Salahudeen AA, Chollangi S, Ruiz JC, Brautigam CA, Makris TM, Lipscomb JD, Tomchick DR, Bruick RK. Structural and molecular characterization of iron-sensing hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5). J Biol Chem 2012; 287:7357-65. [PMID: 22253436 DOI: 10.1074/jbc.m111.308684] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells maintain iron homeostasis by sensing changes in bioavailable iron levels and promoting adaptive responses. FBXL5 is a subunit of an E3 ubiquitin ligase complex that mediates the stability of iron regulatory protein 2, an important posttranscriptional regulator of several genes involved in iron metabolism. The stability of FBXL5 is regulated in an iron- and oxygen-responsive manner, contingent upon the presence of its N-terminal domain. Here we present the atomic structure of the FBXL5 N terminus, a hemerythrin-like α-helical bundle fold not previously observed in mammalian proteins. The core of this domain employs an unusual assortment of amino acids necessary for the assembly and sensing properties of its diiron center. These regulatory features govern the accessibility of a mapped sequence required for proteasomal degradation of FBXL5. Detailed molecular and structural characterization of the ligand-responsive hemerythrin domain provides insights into the mechanisms by which FBXL5 serves as a unique mammalian metabolic sensor.
Collapse
Affiliation(s)
- Joel W Thompson
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosenzweig AC, Argüello JM. Toward a molecular understanding of metal transport by P(1B)-type ATPases. CURRENT TOPICS IN MEMBRANES 2012; 69:113-36. [PMID: 23046649 DOI: 10.1016/b978-0-12-394390-3.00005-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P(1B) family of P-type ATPases couples the transport of cytoplasmic transition metals across biological membranes to the hydrolysis of ATP. These ubiquitous transporters function in maintaining cytoplasmic metal quotas and in the assembly of metalloproteins, and have been classified into subfamilies (P(1B-1)-P(1B-5)) on the basis of their transported substrates (Cu(+), Zn(2+), Cu(2+), and Co(2+)) and signature sequences in their transmembrane segments. In addition, each subgroup presents a characteristic membrane topology and specific regulatory cytoplasmic metal-binding domains. In recent years, significant major aspects of their transport mechanism have been described, including the stoichiometry of transport and the delivery of substrates to transport sites by metallochaperones. Toward understanding their structure, the metal coordination by transport sites has been characterized for Cu(+) and Zn(2+)-ATPases. In addition, atomic resolution structures have been determined, providing key insight into the elements that enable transition metal transport. Because the Cu(+)-transporting ATPases are found in humans and are linked to disease, this subfamily has been the focus of intense study. As a result, significant progress has been made toward understanding Cu(+)-ATPase function on the molecular level, using both the human proteins and the bacterial homologs, most notably the CopA proteins from Archaeoglobus fulgidus, Bacillus subtilis, and Thermotoga maritima. This chapter thus focuses on the mechanistic and structural information obtained by studying these latter Cu(+)-ATPases, with some consideration of how these aspects might differ for the other subfamilies of P(1B)-ATPases.
Collapse
Affiliation(s)
- Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | | |
Collapse
|
21
|
Argüello JM, González-Guerrero M, Raimunda D. Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. Biochemistry 2011; 50:9940-9. [PMID: 21999638 DOI: 10.1021/bi201418k] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
P(1B)-type ATPases are polytopic membrane proteins that couple the hydrolysis of ATP to the efflux of cytoplasmic transition metals. This paper reviews recent progress in our understanding of the structure and function of these proteins in bacteria. These are members of the P-type superfamily of transport ATPases. Cu(+)-ATPases are the most frequently observed and best-characterized members of this group of transporters. However, bacterial genomes show diverse arrays of P(1B)-type ATPases with a range of substrates (Cu(+), Zn(2+), Co(2+)). Furthermore, because of the structural similarities among transitions metals, these proteins can also transport nonphysiological substrates (Cd(2+), Pb(2+), Au(+), Ag(+)). P(1B)-type ATPases have six or eight transmembrane segments (TM) with metal coordinating amino acids in three core TMs flanking the cytoplasmic domain responsible for ATP binding and hydrolysis. In addition, regulatory cytoplasmic metal binding domains are present in most P(1B)-type ATPases. Central to the transport mechanism is the binding of the uncomplexed metal to these proteins when cytoplasmic substrates are bound to chaperone and chelating molecules. Metal binding to regulatory sites is through a reversible metal exchange among chaperones and cytoplasmic metal binding domains. In contrast, the chaperone-mediated metal delivery to transport sites appears as a largely irreversible event. P(1B)-ATPases have two overarching physiological functions: to maintain cytoplasmic metal levels and to provide metals for the periplasmic assembly of metalloproteins. Recent studies have shown that both roles are critical for bacterial virulence, since P(1B)-ATPases appear key to overcome high phagosomal metal levels and are required for the assembly of periplasmic and secreted metalloproteins that are essential for survival in extreme oxidant environments.
Collapse
Affiliation(s)
- José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | |
Collapse
|