1
|
Yu J, Fu Y, Cao Z. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase. J Phys Chem B 2023; 127:7462-7471. [PMID: 37584503 DOI: 10.1021/acs.jpcb.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
V-type nerve agents are hardly degraded by phosphotriesterase (PTE). Interestingly, the PTE variant of BHR-73MNW can effectively improve the hydrolytic efficiency of VR, especially for its Sp-enantiomer. Here, the whole enzymatic degradation of both Sp and Rp enantiomers of VR by the wild-type PTE and its variant BHR-73MNW was investigated by quantum mechanics/molecular mechanics (QM/MM) calculations and MM molecular dynamics simulations. Present results indicate that the degradation of VR can be initiated by the nucleophilic attack of the bridging OH- and the zinc-bound water molecule. The QM/MM-predicted energy barriers for the hydrolytic process of Sp-VR are 19.8 kcal mol-1 by the variant with water as a nucleophile and 22.0 kcal mol-1 by the wild-type PTE with OH- as a nucleophile, and corresponding degraded products are bound to the dinuclear metal site in monodentate and bidentate coordination modes, respectively. The variant effectively increases the volume of the large pocket, allowing more water molecules to enter the active pocket and resulting in the improvement of the degradation efficiency of Sp-VR. The hydrolysis of Rp-VR is triggered only by the hydroxide with an energy span of 20.6 kcal mol-1 for the wild-type PTE and 20.7 kcal mol-1 for the variant BHR-73-MNW PTE. Such mechanistic insights into the stereoselective degradation of VR by PTE and the role of water may inspire further studies to improve the catalytic efficiency of PTE toward the detoxification of nerve agents.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Mali H, Shah C, Patel DH, Trivedi U, Subramanian RB. Bio-catalytic system of metallohydrolases for remediation of neurotoxin organophosphates and applications with a future vision. J Inorg Biochem 2022; 231:111771. [DOI: 10.1016/j.jinorgbio.2022.111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
|
3
|
Fu Y, Zhang Y, Fan F, Wang B, Cao Z. Degradation of pesticides diazinon and diazoxon by phosphotriesterase: insight into divergent mechanisms from QM/MM and MD simulations. Phys Chem Chem Phys 2022; 24:687-696. [PMID: 34927643 DOI: 10.1039/d1cp05034f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic hydrolysis by phosphotriesterase (PTE) is one of the most effective ways of degrading organophosphorus pesticides, but the catalytic efficiency depends on the structural features of substrates. Here the enzymatic degradation of diazinon (DIN) and diazoxon (DON), characterized by PS and PO, respectively, have been investigated by QM/MM calculations and MM MD simulations. Our calculations demonstrate that the hydrolysis of DON (with PO) is inevitably initiated by the nucleophilic attack of the bridging-OH- on the phosphorus center, while for DIN (with PS), we proposed a new degradation mechanism, initiated by the nucleophilic attack of the Znα-bound water molecule, for its low-energy pathway. For both DIN and DON, the hydrolytic reaction is predicted to be the rate-limiting step, with energy barriers of 18.5 and 17.7 kcal mol-1, respectively. The transportation of substrates to the active site, the release of the leaving group and the degraded product are generally verified to be favorable by MD simulations via umbrella sampling, both thermodynamically and dynamically. The side-chain residues Phe132, Leu271 and Tyr309 play the gate-switching role to manipulate substrate delivery and product release. In comparison with the DON-enzyme system, the degraded product of DIN is more easily released from the active site. These new findings will contribute to the comprehensive understanding of the enzymatic degradation of toxic organophosphorus compounds by PTE.
Collapse
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
4
|
Xiang DF, Narindoshvili T, Raushel FM. Atropselective Hydrolysis of Chiral Binol-Phosphate Esters Catalyzed by the Phosphotriesterase from Sphingobium sp. TCM1. Biochemistry 2020; 59:4463-4469. [PMID: 33167613 DOI: 10.1021/acs.biochem.0c00831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphotriesterase from Sphingobium sp. TCM1 (Sb-PTE) is notable for its ability to hydrolyze a broad spectrum of organophosphate triesters, including organophosphorus flame retardants and plasticizers such as triphenyl phosphate and tris(2-chloroethyl) phosphate that are not substrates for other enzymes. This enzyme is also capable of hydrolyzing any one of the three ester groups attached to the central phosphorus core. The enantiomeric isomers of 1,1'-bi-2-naphthol (BINOL) have become among the most widely used chiral auxiliaries for the chemical synthesis of chiral carbon centers. PTE was tested for its ability to hydrolyze a series of biaryl phosphate esters, including mono- and bis-phosphorylated BINOL derivatives and cyclic phosphate triesters. Sb-PTE was shown to be able to catalyze the hydrolysis of the chiral phosphate triesters with significant stereoselectivity. The catalytic efficiency, kcat/Km, of Sb-PTE toward the test phosphate triesters ranged from ∼10 to 105 M-1 s-1. The product ratios and stereoselectivities were determined for four pairs of phosphorylated BINOL derivatives.
Collapse
Affiliation(s)
- Dao Feng Xiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Abstract
The role of phosphotriesterase as an enzyme which is able to hydrolyze organophosphate compounds cannot be disputed. Contamination by organophosphate (OP) compounds in the environment is alarming, and even more worrying is the toxicity of this compound, which affects the nervous system. Thus, it is important to find a safer way to detoxify, detect and recuperate from the toxicity effects of this compound. Phosphotriesterases (PTEs) are mostly isolated from soil bacteria and are classified as metalloenzymes or metal-dependent enzymes that contain bimetals at the active site. There are three separate pockets to accommodate the substrate into the active site of each PTE. This enzyme generally shows a high catalytic activity towards phosphotriesters. These microbial enzymes are robust and easy to manipulate. Currently, PTEs are widely studied for the detection, detoxification, and enzyme therapies for OP compound poisoning incidents. The discovery and understanding of PTEs would pave ways for greener approaches in biotechnological applications and to solve environmental issues relating to OP contamination.
Collapse
|
6
|
Fan F, Zheng Y, Zhang Y, Zheng H, Zhong J, Cao Z. A Comprehensive Understanding of Enzymatic Degradation of the G-Type Nerve Agent by Phosphotriesterase: Revised Role of Water Molecules and Rate-Limiting Product Release. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| | - Yongchao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People’s Republic of China
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| | - He Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People’s Republic of China
| | - Jinyi Zhong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People’s Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| |
Collapse
|
7
|
The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Chem Biol Interact 2019; 308:80-88. [PMID: 31100274 DOI: 10.1016/j.cbi.2019.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
The organophosphorus chemical warfare agents were initially synthesized in the 1930's and are some of the most toxic compounds ever discovered. The standard means of decontamination are either harsh chemical hydrolysis or high temperature incineration. Given the continued use of chemical warfare agents there are ongoing efforts to develop gentle environmentally friendly means of decontamination and medical counter measures to chemical warfare agent intoxication. Enzymatic decontamination offers the benefits of extreme specificity and mild conditions, allowing their use for both environmental and medical applications. The most promising enzyme for decontamination of the organophosphorus chemical warfare agents is the enzyme phosphotriesterase from Pseudomonas diminuta. However, the catalytic activity of the wild-type enzyme with the chemical warfare agents falls far below that seen with its best substrates, and its stereochemical preference is for the less toxic enantiomer of the chiral phosphorus center found in most chemical warfare agents. Rational design efforts have succeeded in the dramatic improvement of the stereochemical preference of PTE for the more toxic enantiomers. Directed evolution experiments, including site-saturation mutagenesis, targeted error-prone PCR, computational design, and quantitative library analysis, have systematically improved the catalytic activity against the chemical warfare nerve agents. These efforts have resulted in greater than 4-orders of magnitude improvement in catalytic activity and have led to the identification of variants that are highly effective at detoxifying both G-type and V-type nerve agents. The best of these variants have the ability to prevent intoxication when delivered as a post-exposure treatment for VX and as a pre-exposure treatment for G-agent intoxication with observed protective factors up to 60-fold. Combining the best variant, H257Y/L303T, with a PCB polymer coating has enabled the development of a long lasting circulating prophylactic treatment that is highly effective against sarin.
Collapse
|
8
|
Effect of Active Site Pocket Structure Modification of d-Stereospecific Amidohydrolase on the Recognition of Stereospecific and Hydrophobic Substrates. Mol Biotechnol 2018; 60:690-697. [DOI: 10.1007/s12033-018-0104-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Yuan Y, Yang Y, Faheem M, Zou X, Ma X, Wang Z, Meng Q, Wang L, Zhao S, Zhu G. Molecularly Imprinted Porous Aromatic Frameworks Serving as Porous Artificial Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800069. [PMID: 29782674 DOI: 10.1002/adma.201800069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/17/2018] [Indexed: 05/25/2023]
Abstract
Artificially designed enzymes are in demand as ideal catalysts for industrial production but their dense structure conceals most of their functional fragments, thus detracting from performance. Here, molecularly imprinted porous aromatic frameworks (MIPAFs) which are exploited to incorporate full host-guest interactions of porous materials within the artificial enzymes are presented. By decorating a porous skeleton with molecularly imprinted complexes, it is demonstrated that MIPAFs are porous artificial enzymes possessing excellent kinetics for guest molecules. In addition, due to the abundance of accessible sites, MIPAFs can perform a wide range of sequential processes such as substrate hydrolysis and product transport. Through its two functional sites in tandem, the MIPAF subsequently manifests both hydrolysis and transport behaviors. Advantageously, the obtained catalytic rate is ≈58 times higher than that of all other conventional artificial enzymes and even surpasses by 14 times the rate for natural organophosphorus hydrolase (Flavobacterium sp. strain ATCC 27551).
Collapse
Affiliation(s)
- Ye Yuan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Muhammad Faheem
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Xiaoqin Zou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Xujiao Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Zeyu Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Qinghao Meng
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Lili Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Shuai Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| |
Collapse
|
10
|
Bigley AN, Narindoshvili T, Xiang DF, Raushel FM. Multiple Reaction Products from the Hydrolysis of Chiral and Prochiral Organophosphate Substrates by the Phosphotriesterase from Sphingobium sp. TCM1. Biochemistry 2018. [PMID: 29513982 DOI: 10.1021/acs.biochem.8b00145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phosphotriesterase from Sphingobium sp. TCM1 ( Sb-PTE) is notable for its ability to hydrolyze organophosphates that are not substrates for other enzymes. In an attempt to determine the catalytic properties of Sb-PTE for hydrolysis of chiral phosphotriesters, we discovered that multiple phosphodiester products are formed from a single substrate. For example, Sb-PTE catalyzes the hydrolysis of the RP-enantiomer of methyl cyclohexyl p-nitrophenyl phosphate with exclusive formation of methyl cyclohexyl phosphate. However, the enzyme catalyzes hydrolysis of the SP-enantiomer of this substrate to an equal mixture of methyl cyclohexyl phosphate and cyclohexyl p-nitrophenyl phosphate products. The ability of this enzyme to catalyze the hydrolysis of a methyl ester at the same rate as the hydrolysis of a p-nitrophenyl ester contained within the same substrate is remarkable. The overall scope of the stereoselective properties of this enzyme is addressed with a library of chiral and prochiral substrates.
Collapse
Affiliation(s)
- Andrew N Bigley
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Dao Feng Xiang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
11
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
12
|
Xia M, Zhuo C, Ma X, Zhang X, Sun H, Zhai Q, Zhang Y. Assembly of the active center of organophosphorus hydrolase in metal–organic frameworks via rational combination of functional ligands. Chem Commun (Camb) 2017; 53:11302-11305. [DOI: 10.1039/c7cc06270b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mimicking the total coordination sphere of the active center of organophosphorus hydrolase in MOFs to destruct nerve agents without co-catalysts.
Collapse
Affiliation(s)
- Mengfan Xia
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Caixia Zhuo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Xuejuan Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Xiaohong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Huaming Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- China
| | - Quanguo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- China
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| |
Collapse
|
13
|
Guan S, Zhao L, Jin H, Shan N, Han W, Wang S, Shan Y. Binding modes of phosphotriesterase-like lactonase complexed with δ-nonanoic lactone and paraoxon using molecular dynamics simulations. J Biomol Struct Dyn 2016; 35:273-286. [DOI: 10.1080/07391102.2016.1142899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shanshan Guan
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Li Zhao
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hanyong Jin
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ning Shan
- Editorial Department of Journal of Jilin University (Science Edition), Changchun, China
| | - Weiwei Han
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Song Wang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Yaming Shan
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
15
|
Zhan D, Guan S, Jin H, Han W, Wang S. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study. J Biomol Struct Dyn 2015; 34:600-11. [PMID: 25929154 DOI: 10.1080/07391102.2015.1046937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The bacterial enzyme phosphotriesterase (PTE) exhibits stereoselectivity toward hydrolysis of chiral substrates with a preference for the Sp enantiomer. In this work, docking analysis and two explicit-solvent molecular dynamics (MD) simulations were performed to characterize and differentiate the structural dynamics of PTE bound to the Sp and Rp paraoxon derivative enantiomers (Rp-1 and Sp-1) hydrolyzed with distinct catalytic efficiencies. Comparative analysis of the molecular trajectories for PTE bound to Rp-1 and Sp-1 suggested that substrate binding induced conformational changes in the loops near the active site. After 100 ns of MD simulation, the Zn β(2+) metal ion formed hexacoordinated- and tetracoordinated geometries in the Sp-1-PTE and Rp-1-PTE ensembles, respectively. Simulation results further showed that the hydrogen bond between Asp301 and His254 occurred with a higher probability after Sp-1 binding to PTE (47.5%) than that after Rp-1 binding (22.2%). These results provide a qualitative and molecular-level explanation for the 10 orders of magnitude increase in the catalytic efficiency of PTE toward the Sp enantiomer of paraoxon.
Collapse
Affiliation(s)
- Dongling Zhan
- a Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science , Jilin University , Changchun 130023 , China.,b College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , China
| | - Shanshan Guan
- c State Key Laboratory of Theoretical and Computational Chemistry , Institute of Theoretical Chemistry, Jilin University , Changchun 130023 , China
| | - Hanyong Jin
- a Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science , Jilin University , Changchun 130023 , China
| | - Weiwei Han
- a Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science , Jilin University , Changchun 130023 , China
| | - Song Wang
- c State Key Laboratory of Theoretical and Computational Chemistry , Institute of Theoretical Chemistry, Jilin University , Changchun 130023 , China
| |
Collapse
|
16
|
Xiang DF, Patskovsky Y, Nemmara VV, Toro R, Almo SC, Raushel FM. Function discovery and structural characterization of a methylphosphonate esterase. Biochemistry 2015; 54:2919-30. [PMID: 25873441 PMCID: PMC4477287 DOI: 10.1021/acs.biochem.5b00199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pmi1525, an enzyme of unknown function from Proteus mirabilis HI4320 and the amidohydrolase superfamily, was cloned, purified to homogeneity, and functionally characterized. The three-dimensional structure of Pmi1525 was determined with zinc and cacodylate bound in the active site (PDB id: 3RHG ). The structure was also determined with manganese and butyrate in the active site (PDB id: 4QSF ). Pmi1525 folds as a distorted (β/α)8-barrel that is typical for members of the amidohydrolase superfamily and cog1735. The substrate profile for Pmi1525 was determined via a strategy that marshaled the utilization of bioinformatics, structural characterization, and focused library screening. The protein was found to efficiently catalyze the hydrolysis of organophosphonate and carboxylate esters. The best substrates identified for Pmi1525 are ethyl 4-nitrophenylmethyl phosphonate (kcat and kcat/Km values of 580 s(-1) and 1.2 × 10(5) M(-1) s(-1), respectively) and 4-nitrophenyl butyrate (kcat and kcat/Km values of 140 s(-1) and 1.4 × 10(5) M(-1) s(-1), respectively). Pmi1525 is stereoselective for the hydrolysis of chiral methylphosphonate esters. The enzyme hydrolyzes the (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate 14 times faster than the corresponding (RP)-enantiomer. The catalytic properties of this enzyme make it an attractive template for the evolution of novel enzymes for the detection, destruction, and detoxification of organophosphonate nerve agents.
Collapse
Affiliation(s)
- Dao Feng Xiang
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Yury Patskovsky
- Department of Biochemistry, Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| | - Venkatesh V. Nemmara
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Rafael Toro
- Department of Biochemistry, Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| | - Steven C. Almo
- Department of Biochemistry, Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461,To whom correspondence may be sent: (FMR) Telephone: 979-845-3373; , (SCA) Telephone: 718-430-2746;
| | - Frank M. Raushel
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012,To whom correspondence may be sent: (FMR) Telephone: 979-845-3373; , (SCA) Telephone: 718-430-2746;
| |
Collapse
|
17
|
Iyer R, Iken B. Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Reiter G, Müller S, Koller M, Thiermann H, Worek F. In vitro toxicokinetic studies of cyclosarin: Molecular mechanisms of elimination. Toxicol Lett 2014; 227:1-11. [DOI: 10.1016/j.toxlet.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/17/2022]
|
19
|
Zhan D, Zhou Z, Guan S, Han W. The effect of conformational variability of phosphotriesterase upon N-acyl-L-homoserine lactone and paraoxon binding: insights from molecular dynamics studies. Molecules 2013; 18:15501-18. [PMID: 24352010 PMCID: PMC6269825 DOI: 10.3390/molecules181215501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 11/16/2022] Open
Abstract
The organophosphorous hydrolase (PTE) from Brevundimonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. Although the natural substrate for PTE is unknown, its loop remodeling (loop 7-2/H254R) led to the emergence of a homoserine lactonase (HSL) activity that is undetectable in PTE (kcat/km values of up to 2 × 10(4)), with only a minor decrease in PTE paraoxonase activity. In this study, homology modeling and molecular dynamics simulations have been undertaken seeking to explain the reason for the substrate specificity for the wild-type and the loop 7-2/H254R variant. The cavity volume estimated results showed that the active pocket of the variant was almost two fold larger than that of the wild-type (WT) enzyme. pKa calculations for the enzyme (the WT and the variant) showed a significant pKa shift from WT standard values (ΔpKa = 3.5 units) for the His254 residue (in the Arg254 variant). Molecular dynamics simulations indicated that the displacement of loops 6 and 7 over the active site in loop 7-2/H254R variant is useful for N-acyl-L-homoserine lactone (C4-HSL) with a large aliphatic chain to site in the channels easily. Thence the expanding of the active pocket is beneficial to C4-HSL binding and has a little effect on paraoxon binding. Our results provide a new theoretical contribution of loop remodeling to the rapid divergence of new enzyme functions.
Collapse
Affiliation(s)
- Dongling Zhan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, China; E-Mail:
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhuan Zhou
- Jilin Provincial Research Institute of Population and Life sciences, Changchun 130041, China; E-Mail:
| | - Shanshan Guan
- State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China; E-Mail:
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-431-8515-5218
| |
Collapse
|
20
|
|
21
|
Muthukrishnan S, Shete VS, Sanan TT, Vyas S, Oottikkal S, Porter LM, Magliery TJ, Hadad CM. Mechanistic Insights into the Hydrolysis of Organophosphorus Compounds by Paraoxonase-1: Exploring the Limits of Substrate Tolerance in a Promiscuous Enzyme. J PHYS ORG CHEM 2012; 25:1247-1260. [PMID: 23946555 PMCID: PMC3740977 DOI: 10.1002/poc.3002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We designed, synthesized and screened a library of analogs of the organophosphate pesticide metabolite paraoxon against a recombinant variant of human serum paraoxonase-1. Alterations of both the aryloxy leaving group and the retained alkyl chains of paraoxon analogs resulted in substantial changes to binding and hydrolysis, as measured directly by spectrophotometric methods or in competition experiments with paraoxon. Increases or decreases in the steric bulk of the retained groups generally reduced the rate of hydrolysis, while modifications of the leaving group modulated both binding and turnover. Studies on the hydrolysis of phosphoryl azide analogs as well as amino-modified paraoxon analogs, the former being developed as photo-affinity labels, found enhanced tolerance of structural modifications, when compared with O-alkyl substituted molecules. Results from computational modeling predict a predominant active site binding mode for these molecules which is consistent with several proposed catalytic mechanisms in the literature, and from which a molecular-level explanation of the experimental trends is attempted. Overall, the results of this study suggest that while paraoxonase-1 is a promiscuous enzyme, there are substantial constraints in the active site pocket, which may relate to both the leaving group and the retained portion of paraoxon analogs.
Collapse
Affiliation(s)
| | - Vivekanand S. Shete
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Toby. T. Sanan
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Shubham Vyas
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Shameema Oottikkal
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Lauren M. Porter
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Thomas J. Magliery
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
- Department of Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Christopher M. Hadad
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| |
Collapse
|
22
|
Kim K, Tsay OG, Atwood DA, Churchill DG. Destruction and detection of chemical warfare agents. Chem Rev 2011; 111:5345-403. [PMID: 21667946 DOI: 10.1021/cr100193y] [Citation(s) in RCA: 569] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|