1
|
Tombling BJ, Wang CK, Craik DJ. EGF‐artige und andere disulfidreiche Mikrodomänen als therapeutische Molekülgerüste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin J. Tombling
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - Conan K. Wang
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
2
|
Tombling BJ, Wang CK, Craik DJ. EGF-like and Other Disulfide-rich Microdomains as Therapeutic Scaffolds. Angew Chem Int Ed Engl 2020; 59:11218-11232. [PMID: 31867866 DOI: 10.1002/anie.201913809] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Disulfide bonds typically introduce conformational constraints into peptides and proteins, conferring improved biopharmaceutical properties and greater therapeutic potential. In our opinion, disulfide-rich microdomains from proteins are potentially a rich and under-explored source of drug leads. A survey of the UniProt protein database shows that these domains are widely distributed throughout the plant and animal kingdoms, with the EGF-like domain being the most abundant of these domains. EGF-like domains exhibit large diversity in their disulfide bond topologies and calcium binding modes, which we classify in detail here. We found that many EGF-like domains are associated with disease phenotypes, and the interactions they mediate are potential therapeutic targets. Indeed, EGF-based therapeutic leads have been identified, and we further propose that these domains can be optimized to expand their therapeutic potential using chemical design strategies. This Review highlights the potential of disulfide-rich microdomains as future peptide therapeutics.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Abstract
Laminins are large cell-adhesive glycoproteins that are required for the formation and function of basement membranes in all animals. Structural studies by electron microscopy in the early 1980s revealed a cross-shaped molecule, which subsequently was shown to consist of three distinct polypeptide chains. Crystallographic studies since the mid-1990s have added atomic detail to all parts of the laminin heterotrimer. The three short arms of the cross are made up of continuous arrays of disulphide-rich domains. The globular domains at the tips of the short arms mediate laminin polymerization; the surface regions involved in this process have been identified by structure-based mutagenesis. The long arm of the cross is an α-helical coiled coil of all three chains, terminating in a cell-adhesive globular region. The molecular basis of cell adhesion to laminins has been revealed by recent structures of heterotrimeric integrin-binding fragments and of a laminin fragment bound to the carbohydrate modification of dystroglycan. The structural characterization of the laminin molecule is essentially complete, but we still have to find ways of imaging native laminin polymers at molecular resolution.
Collapse
|
4
|
Del Campo Milan M, Zuroff L, Jimenez CR, Scheltens P, Teunissen CE. Can agrin cerebrospinal fluid concentration be used as an early biomarker for Alzheimer's disease? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2015; 1:75-80. [PMID: 27239494 PMCID: PMC4876904 DOI: 10.1016/j.dadm.2014.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The need for effective treatments halting Alzheimer's disease (AD) urges the discovery of the earliest possible biomarkers. Agrin is increased in the early stages of AD and is involved in amyloid-β (Aβ) fibrillation and synaptogenesis. We investigated the potential of agrin as an early AD cerebrospinal fluid (CSF) biomarker. We analyzed the agrin CSF concentration in nondemented controls (n = 20) and those with mild (n = 20) and severe (n = 20) AD. The levels of agrin CSF were not significantly divergent among the different patient groups and did not correlate with the concentration of Aβ42, total tau, phosphorylated tau, or the Mini Mental State Examination scores. However, agrin strongly correlated with age in those with dementia. The results indicate that agrin cannot be used as an early AD CSF biomarker using the current immunoassay. However, our population was relatively young; thus, the correlation between agrin and age suggests that stronger differences in agrin concentrations might be found in older groups with more heterogeneous AD pathologic features.
Collapse
Affiliation(s)
- Marta Del Campo Milan
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Leah Zuroff
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Arch 2014; 467:121-32. [PMID: 24981693 PMCID: PMC4281363 DOI: 10.1007/s00424-014-1563-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/23/2023]
Abstract
Sensory cells specialized to detect extremely small mechanical changes are common to the auditory and somatosensory systems. It is widely accepted that mechanosensitive channels form the core of the mechanoelectrical transduction in hair cells as well as the somatic sensory neurons that underlie the sense of touch and mechanical pain. Here, we will review how the activation of such channels can be measured in a meaningful physiological context. In particular, we will discuss the idea that mechanosensitive channels normally occur in transmembrane complexes that are anchored to extracellular matrix components (ECM) both in vitro and in vivo. One component of such complexes in sensory neurons is the integral membrane scaffold protein STOML3 which is a robust physiological regulator of native mechanosensitive currents. In order to better characterize such channels in transmembrane complexes, we developed a new electrophysiological method that enables the quantification of mechanosensitive current amplitude and kinetics when activated by a defined matrix movement in cultured cells. The results of such studies strongly support the idea that ion channels in transmembrane complexes are highly tuned to detect movement of the cell membrane in relation to the ECM.
Collapse
|
6
|
Goyder MS, Rebeaud F, Pfeifer ME, Kálmán F. Strategies in mass spectrometry for the assignment of Cys-Cys disulfide connectivities in proteins. Expert Rev Proteomics 2013; 10:489-501. [PMID: 24087910 DOI: 10.1586/14789450.2013.837663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Elucidating disulfide linkage patterns is a crucial part of protein characterization, for which mass spectrometry (MS) is now an indispensable analytical tool. In many cases, MS-based disulfide connectivity assignment is straightforwardly achieved using one-step protein fragmentation in the unreduced form followed by mass measurement of bridged fragments. By contrast, venom proteins, which are receiving increasing interest as potential therapeutics, are a challenge for MS-based disulfide assignment due to their numerous closely spaced cysteines and knotted disulfide structure, requiring creative strategies to determine their connectivity. Today, these include the use of an array of reagents for enzymatic and/or chemical cleavage, partial reduction, differential cysteine labeling and tandem MS. This review aims to describe the toolkit of techniques available to MS users approaching both straightforward and complex disulfide bridge assignments, with a particular focus on strategies utilizing standard instrumentation found in a well-equipped analytical or proteomics laboratory.
Collapse
Affiliation(s)
- Miriam S Goyder
- Institute of Life Technologies, University of Applied Sciences Western Switzerland (HES-SO Valais/Wallis), 1950 Sion, Switzerland
| | | | | | | |
Collapse
|
7
|
Crystal structures of the network-forming short-arm tips of the laminin β1 and γ1 chains. PLoS One 2012; 7:e42473. [PMID: 22860131 PMCID: PMC3409155 DOI: 10.1371/journal.pone.0042473] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/06/2012] [Indexed: 01/11/2023] Open
Abstract
The heterotrimeric laminins are a defining component of basement membranes and essential for tissue formation and function in all animals. The three short arms of the cross-shaped laminin molecule are composed of one chain each and their tips mediate the formation of a polymeric network. The structural basis for laminin polymerisation is unknown. We have determined crystal structures of the short-arm tips of the mouse laminin β1 and γ1 chains, which are grossly similar to the previously determined structure of the corresponding α5 chain region. The short-arm tips consist of a laminin N-terminal (LN) domain that is attached like the head of a flower to a rod-like stem formed by tandem laminin-type epidermal growth factor-like (LE) domains. The LN domain is a β-sandwich with elaborate loop regions that differ between chains. The γ1 LN domain uniquely contains a calcium binding site. The LE domains have little regular structure and are stabilised by cysteines that are disulphide-linked 1–3, 2–4, 5–6 and 7–8 in all chains. The LN surface is not conserved across the α, β and γ chains, but within each chain subfamily there is a striking concentration of conserved residues on one face of the β-sandwich, while the opposite face invariably is shielded by glycans. We propose that the extensive conserved patches on the β and γ LN domains mediate the binding of these two chains to each other, and that the α chain LN domain subsequently binds to the composite β-γ surface. Mutations in the laminin β2 LN domain causing Pierson syndrome are likely to impair the folding of the β2 chain or its ability to form network interactions.
Collapse
|
8
|
Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kühn U, Sinz A. StavroX--a software for analyzing crosslinked products in protein interaction studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:76-87. [PMID: 22038510 DOI: 10.1007/s13361-011-0261-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/03/2023]
Abstract
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets. The StavroX software was evaluated for three diverse biological systems: (1) the complex between calmodulin and a peptide derived from Munc13, (2) an N-terminal ß-laminin fragment, and (3) the complex between guanylyl cyclase activating protein-2 and a peptide derived from retinal guanylyl cyclase. We show that the StavroX software is advantageous for analyzing crosslinked products due to its easy-to-use graphical user interface and the highly automated analysis of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data resulting in short times for analysis. StavroX is expected to give a further push to the chemical crosslinking approach as a routine technique for protein interaction studies.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuhfahl S, Hauburger A, Thieme T, Groppe J, Ihling C, Tomic S, Schutkowski M, Sinz A, Schwarz E. Identification of a core domain within the proregion of bone morphogenetic proteins that interacts with the dimeric, mature domain. Biochem Biophys Res Commun 2011; 408:300-5. [DOI: 10.1016/j.bbrc.2011.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 04/04/2011] [Indexed: 01/18/2023]
|
10
|
Kodali VK, Gannon SA, Paramasivam S, Raje S, Polenova T, Thorpe C. A novel disulfide-rich protein motif from avian eggshell membranes. PLoS One 2011; 6:e18187. [PMID: 21479176 PMCID: PMC3068167 DOI: 10.1371/journal.pone.0018187] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022] Open
Abstract
Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM) has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP) that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X(4)-C-X(5)-C-X(8)-C-X(6) pattern (where X represents intervening non-cysteine residues). These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata) and in the oviparous green anole lizard (Anolis carolinensis). In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern) from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact ESM fibers.
Collapse
Affiliation(s)
- Vamsi K. Kodali
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Shawn A. Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Sivakumar Paramasivam
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Sonali Raje
- Department of Chemistry, Towson University, Towson, Maryland, United States of America
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|