1
|
Bollmeyer MM, Majer SH, Coleman RE, Lancaster KM. Outer coordination sphere influences on cofactor maturation and substrate oxidation by cytochrome P460. Chem Sci 2023; 14:8295-8304. [PMID: 37564409 PMCID: PMC10411619 DOI: 10.1039/d3sc02288a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023] Open
Abstract
Product selectivity of ammonia oxidation by ammonia-oxidizing bacteria (AOB) is tightly controlled by metalloenzymes. Hydroxylamine oxidoreductase (HAO) is responsible for the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO). The non-metabolic enzyme cytochrome (cyt) P460 also oxidizes NH2OH, but instead produces nitrous oxide (N2O). While both enzymes use a heme P460 cofactor, they selectively oxidize NH2OH to different products. Previously reported structures of Nitrosomonas sp. AL212 cyt P460 show that a capping phenylalanine residue rotates upon ligand binding, suggesting that this Phe may influence substrate and/or product binding. Here, we show via substitutions of the capping Phe in Nitrosomonas europaea cyt P460 that the bulky phenyl side-chain promotes the heme-lysine cross-link forming reaction operative in maturing the cofactor. Additionally, the Phe side-chain plays an important role in modulating product selectivity between N2O and NO during NH2OH oxidation under aerobic conditions. A picture emerges where the sterics and electrostatics of the side-chain in this capping position control the kinetics of N2O formation and NO binding affinity. This demonstrates how the outer coordination sphere of cyt P460 is tuned not only for selective NH2OH oxidation, but also for the autocatalytic cross-link forming reaction that imbues activity to an otherwise inactive protein.
Collapse
Affiliation(s)
- Melissa M Bollmeyer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Sean H Majer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Rachael E Coleman
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Kyle M Lancaster
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
2
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Estupiñán HY, Wang Q, Berglöf A, Schaafsma GCP, Shi Y, Zhou L, Mohammad DK, Yu L, Vihinen M, Zain R, Smith CIE. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia 2021; 35:1317-1329. [PMID: 33526860 PMCID: PMC8102192 DOI: 10.1038/s41375-021-01123-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the "gatekeeper" residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.
Collapse
Affiliation(s)
- H. Yesid Estupiñán
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
| | - Qing Wang
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Anna Berglöf
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Gerard C. P. Schaafsma
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Yuye Shi
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Litao Zhou
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Dara K. Mohammad
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden ,grid.444950.8College of Agricultural Engineering Sciences, Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region Iraq
| | - Liang Yu
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Mauno Vihinen
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Rula Zain
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| |
Collapse
|
4
|
Bhattacharya A, Paul A, Chakrabarti D, DasGupta M. Gatekeeper-Activation Loop Cross-Talk Determines Distinct Autoactivation States of Symbiosis Receptor Kinase. Biochemistry 2019; 58:2419-2431. [PMID: 31021099 DOI: 10.1021/acs.biochem.9b00071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant receptor-like kinases (RLKs) have a Tyr in the "gatekeeper" position adjacent to the hinge region. The gatekeeper is phosphorylated in several RLKs, including symbiosis receptor kinase (SYMRK), but the significance of this remains unknown. Gatekeeper substitution did not inactivate Arachis hypogaea SYMRK but affected autophosphorylation at selected sites. Herein, we show that nonphosphorylatable gatekeepers (Y670F and Y670A) restrict SYMRK to be a Ser/Thr kinase with a basal level of phosphorylation (∼5 P/polypeptide, termed state I) whereas phosphorylatable gatekeepers (Y670 and Y670T) allowed SYMRK to be dual specific (Ser/Thr/Tyr) with a maximal level of phosphorylation (∼10 P/polypeptide, termed state II). State II SYMRKs were phosphorylated on gatekeeper residues, and the phosphocode in their activation segment was distinct from state I. The kcat/ Km for substrate phosphorylation was ∼10-fold higher for state II, though for autophosphorylation, it was comparable with those of state I SYMRKs. To identify other determinants of state I features, we mutagenized all nine sites where phosphorylation was affected by nonphosphorylatable gatekeepers (Y670F and Y670A). Only two such mutants, S754A and S757A, located on the activation loop failed to phosphorylate gatekeeper Tyr and restricted SYMRK in state I. Double mutants like Y670F/S754A retained the features of state I, but Y670F/S757A was significantly inactivated, indicating a nonphosphorylatable gatekeeper can bypass phosphorylation of S754 but not S757 in the activation segment. We propose a working model for the hierarchical phosphorylation of SYMRK on gatekeeper and activation segments for its pS757-mediated activation as a Ser/Thr kinase in selfie mode (autophosphorylation) to a pS754/pY670-mediated activation as a Ser/Thr/Tyr kinase that functions in dual mode (both autophosphorylation and substrate phosphorylation).
Collapse
Affiliation(s)
- Avisek Bhattacharya
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | - Anindita Paul
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | | | - Maitrayee DasGupta
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| |
Collapse
|
5
|
Lin AW, Gill KK, Castañeda MS, Matucci I, Eder N, Claxton S, Flynn H, Snijders AP, George R, Ultanir SK. Chemical genetic identification of GAK substrates reveals its role in regulating Na +/K +-ATPase. Life Sci Alliance 2018; 1:e201800118. [PMID: 30623173 PMCID: PMC6312924 DOI: 10.26508/lsa.201800118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
Novel GAK phosphorylation targets are identified using chemical genetic methods. One of the substrates is the α subunit of the Na+/K+-ATPase, phosphorylation of which is necessary for its surface trafficking from endosomes. Conserved functions of NAK family kinases are described. Cyclin G–associated kinase (GAK) is a ubiquitous serine/threonine kinase that facilitates clathrin uncoating during vesicle trafficking. GAK phosphorylates a coat adaptor component, AP2M1, to help achieve this function. GAK is also implicated in Parkinson's disease through genome-wide association studies. However, GAK's role in mammalian neurons remains unclear, and insight may come from identification of further substrates. Employing a chemical genetics method, we show here that the sodium potassium pump (Na+/K+-ATPase) α-subunit Atp1a3 is a GAK target and that GAK regulates Na+/K+-ATPase trafficking to the plasma membrane. Whole-cell patch clamp recordings from CA1 pyramidal neurons in GAK conditional knockout mice show a larger change in resting membrane potential when exposed to the Na+/K+-ATPase blocker ouabain, indicating compromised Na+/K+-ATPase function in GAK knockouts. Our results suggest a modulatory role for GAK via phosphoregulation of substrates such as Atp1a3 during cargo trafficking.
Collapse
Affiliation(s)
- Amy W Lin
- Kinase and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| | - Kalbinder K Gill
- Kinase and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| | | | - Irene Matucci
- Kinase and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| | - Noreen Eder
- Kinase and Brain Development Lab, The Francis Crick Institute, London, United Kingdom.,Mass Spectrometry Platform, The Francis Crick Institute, London, United Kingdom
| | - Suzanne Claxton
- Kinase and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| | - Helen Flynn
- Mass Spectrometry Platform, The Francis Crick Institute, London, United Kingdom
| | | | - Roger George
- Protein Purification Facility, The Francis Crick Institute, London, United Kingdom
| | - Sila K Ultanir
- Kinase and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
6
|
Fan LL, Huang H, Jin JY, Li JJ, Chen YQ, Zhao SP, Xiang R. Whole exome sequencing identifies a novel mutation (c.333 + 2T > C) of TNNI3K in a Chinese family with dilated cardiomyopathy and cardiac conduction disease. Gene 2018; 648:63-67. [PMID: 29355681 DOI: 10.1016/j.gene.2018.01.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/27/2022]
Abstract
Dilated Cardiomyopathy (DCM) and cardiac conduction disease (CCD) are two kinds if diseases that can induce heart failure, syncope and even sudden cardiac death (SCD). DCM patients can experience CCD at the same time. In recent research, some disease-causing genes and variants have been identified in patients with DCM and CCD, such as Alpha-Actinin-2 and TNNI3 Interacting Kinase (TNNI3K). In this study, we employed whole-exome sequencing (WES) to explore the potential causative genes in a Chinese family with DCM and CCD. A novel splice site mutation (c.333 + 2 T > C) of TNNI3K was identified and co-segregated with the affected family members. This novel mutation was also absent in 200 healthy local controls and predicted to be disease-causing by Mutationtaster. The splice site mutation (c.333 + 2 T > C) may result in a premature stop codon in exon 4 of the TNNI3K gene and can induce nonsense-mediated mRNA decay. Real-time qPCR also confirmed that the level of TNNI3K mRNA expression was decreased significantly compared with the controls, which may lead to myocardial structural disorder and arrhythmia. In this study we reported the third novel mutation of TNNI3K in DCM and CCD patients which further supported the important role of TNNI3K in heart development and expanded the spectrum of TNNI3K mutations. The results may contribute to the genetic diagnosis and counseling of families with DCM and CCD.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Hao Huang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Jie-Yuan Jin
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Jing-Jing Li
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China
| | - Ya-Qin Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Shui-Ping Zhao
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Xiang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China; Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Kannan A, Lee Y, Qi Q, Huang W, Jeong AR, Ohnigian S, August A. Allele-sensitive mutant, Itkas, reveals that Itk kinase activity is required for Th1, Th2, Th17, and iNKT-cell cytokine production. Eur J Immunol 2015; 45:2276-85. [PMID: 25989458 DOI: 10.1002/eji.201445087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022]
Abstract
Itk(-/-) mice exhibit defects in the activation, development, and function of CD4(+) and CD8(+) T cells and iNKT cells. These and other defects in these mice make it difficult to uncouple the developmental versus functional requirement of Itk signaling. Here, we report an allele-sensitive mutant of Itk (Itkas) whose catalytic activity can be selectively inhibited by analogs of the PP1 kinase inhibitor. We show that Itkas behaves like WT Itk in the absence of the inhibitor and can rescue the development of Itk(-/-) T cells in mice. Using mice carrying Itkas, we show using its inhibitor that Itk activity is required not only for Th2, Th17, and iNKT-cell cytokine production, but also surprisingly, for Th1 cytokine production. This work has important implications for understanding the role of Itk signaling in the development versus function of iNKT cells, Th1, Th2, and Th17 cells.
Collapse
Affiliation(s)
- Arun Kannan
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - YongChan Lee
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Qian Qi
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Ah-Reum Jeong
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Sarah Ohnigian
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Avery August
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Xi Y, Honeywell C, Zhang D, Schwartzentruber J, Beaulieu CL, Tetreault M, Hartley T, Marton J, Vidal SM, Majewski J, Aravind L, Gollob M, Boycott KM, Gow RM. Whole exome sequencing identifies the TNNI3K gene as a cause of familial conduction system disease and congenital junctional ectopic tachycardia. Int J Cardiol 2015; 185:114-6. [PMID: 25791106 DOI: 10.1016/j.ijcard.2015.03.130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/07/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Yanwei Xi
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Honeywell
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Chandree L Beaulieu
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Martine Tetreault
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Taila Hartley
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Jennifer Marton
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael Gollob
- Toronto General Hospital, Department of Cardiology, University of Toronto, Toronto, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| | - Robert M Gow
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Boyken SE, Chopra N, Xie Q, Joseph RE, Wales TE, Fulton DB, Engen JR, Jernigan RL, Andreotti AH. A conserved isoleucine maintains the inactive state of Bruton's tyrosine kinase. J Mol Biol 2014; 426:3656-69. [PMID: 25193673 DOI: 10.1016/j.jmb.2014.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/22/2022]
Abstract
Despite high level of homology among non-receptor tyrosine kinases, different kinase families employ a diverse array of regulatory mechanisms. For example, the catalytic kinase domains of the Tec family kinases are inactive without assembly of the adjacent regulatory domains, whereas the Src kinase domains are autoinhibited by the assembly of similar adjacent regulatory domains. Using molecular dynamics simulations, biochemical assays, and biophysical approaches, we have uncovered an isoleucine residue in the kinase domain of the Tec family member Btk that, when mutated to the closely related leucine, leads to a shift in the conformational equilibrium of the kinase domain toward the active state. The single amino acid mutation results in measureable catalytic activity for the Btk kinase domain in the absence of the regulatory domains. We suggest that this isoleucine side chain in the Tec family kinases acts as a "wedge" that restricts the conformational space available to key regions in the kinase domain, preventing activation until the kinase domain associates with its regulatory subunits and overcomes the energetic barrier to activation imposed by the isoleucine side chain.
Collapse
Affiliation(s)
- Scott E Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Nikita Chopra
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Qian Xie
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Norman P. Inducible tyrosine kinase inhibitors: a review of the patent literature (2010 - 2013). Expert Opin Ther Pat 2014; 24:979-91. [PMID: 24990480 DOI: 10.1517/13543776.2014.936381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The non-receptor tyrosine kinase, inducible tyrosine kinase (Itk), plays an important role in thymus(T)-cell signalling and the production of pro-inflammatory cytokines. Itk, and the other Tec family members, Rlk and Tec, are viewed as attractive drug targets for new agents for the treatment of autoimmune and inflammatory diseases. Interest in Itk inhibitors is still modest compared to other kinases such as the Janus kinase (JAK) family or Syk. AREAS COVERED This article reviews the patent filings published from January 2010 to April 2014 that claim Itk inhibitors. It first considers those applications that claim selective, or apparently selective, Itk inhibitors. It then considers those applications that claim less-selective Itk inhibitors. The recent interest in irreversible Itk inhibitors is also discussed. EXPERT OPINION There is a difference of opinion as to the preferred utility for Itk inhibitors. Progress has been made in designing selective Itk inhibitors but little clinical progress. Until clinical data are available, it remains difficult to assess how well Itk inhibitors compare with JAK inhibitors as potential treatments for rheumatoid arthritis. However, animal data suggest that irreversible Itk inhibitors could be useful in treating asthma, whereas dual Itk inhibitors may have more utility in treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Peter Norman
- Norman Consulting , 18 Pink Lane, Burnham, Bucks, SL1 8JW , UK
| |
Collapse
|
11
|
Meharena HS, Chang P, Keshwani MM, Oruganty K, Nene AK, Kannan N, Taylor SS, Kornev AP. Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol 2013; 11:e1001680. [PMID: 24143133 PMCID: PMC3797032 DOI: 10.1371/journal.pbio.1001680] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
Biochemical and structural analysis of two features of kinase structure, the “R-spine” and “Shell,” afford a detailed insight into the regulation of eukaryotic protein kinases. Eukaryotic protein kinases (EPKs) regulate numerous signaling processes by phosphorylating targeted substrates through the highly conserved catalytic domain. Our previous computational studies proposed a model stating that a properly assembled nonlinear motif termed the Regulatory (R) spine is essential for catalytic activity of EPKs. Here we define the required intramolecular interactions and biochemical properties of the R-spine and the newly identified “Shell” that surrounds the R-spine using site-directed mutagenesis and various in vitro phosphoryl transfer assays using cyclic AMP-dependent protein kinase as a representative of the entire kinome. Analysis of the 172 available Apo EPK structures in the protein data bank (PDB) revealed four unique structural conformations of the R-spine that correspond with catalytic inactivation of various EPKs. Elucidating the molecular entities required for the catalytic activation of EPKs and the identification of these inactive conformations opens new avenues for the design of efficient therapeutic EPK inhibitors. Eukaryotic protein kinases (EPKs) have a highly conserved enzymatic kinase core that is involved in the regulation of numerous cell signaling processes through the transfer of a phosphate group from adenosine triphosphate (ATP) to more than 30% of human proteins. EPKs have been implicated in numerous human diseases, including cancer, cardiovascular diseases, and diabetes, making them one of the most sought-after therapeutic drug targets. The lack of structural diversity of the active kinase core has created a bottle-neck for designing successful therapeutic inhibitors. Here we describe the intramolecular interactions required for differentiating between the active and inactive states of EPKs. Kinases contain a hydrophobic regulatory spine (“R-spine”) that is disassembled in inactive kinases, and here we define an additional hydrophobic “Shell” that surrounds one end of the R-spine. Biochemical analysis of the five nonconsecutive R-spine residues and three nonconsecutive Shell residues shows that proper assembly of the R-spine and Shell is essential for maintaining kinase activity. Structural analysis of the 172 known structures of EPKs without bound ligands led to the identification of four inactive conformations that correlate with the disassembly of the R-spine. Understanding the molecular elements involved in the regulation of kinase activity and the identification of these diverse groups of inactive conformations should aid the design of more specific therapeutic EPK inhibitors.
Collapse
Affiliation(s)
- Hiruy S Meharena
- Biomedical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Oruganty K, Kannan N. Design principles underpinning the regulatory diversity of protein kinases. Philos Trans R Soc Lond B Biol Sci 2012; 367:2529-39. [PMID: 22889905 PMCID: PMC3415841 DOI: 10.1098/rstb.2012.0015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation in eukaryotes is carried out by a large and diverse family of protein kinases, which display remarkable diversity and complexity in their modes of regulation. The complex modes of regulation have evolved as a consequence of natural selection operating on protein kinase sequences for billions of years. Here we describe how quantitative comparisons of protein kinase sequences from diverse organisms, in particular prokaryotes, have contributed to our understanding of the structural organization and evolution of allosteric regulation in the protein kinase domain. An emerging view from these studies is that regulatory diversity and complexity in the protein kinase domain evolved in a ‘modular’ fashion through elaboration of an ancient core component, which existed before the emergence of eukaryotes. The core component provided the conformational flexibility required for ATP binding and phosphoryl transfer in prokaryotic kinases, but evolved into a highly regulatable domain in eukaryotes through the addition of exaggerated structural features that facilitated tight allosteric control. Family and group-specific features are built upon the core component in eukaryotes to provide additional layers of control. We propose that ‘modularity’ and ‘conformational flexibility’ are key evolvable traits of the protein kinase domain that contributed to its extensive regulatory diversity and complexity.
Collapse
Affiliation(s)
- Krishnadev Oruganty
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|