1
|
Bhattacharjee R, Udgaonkar JB. Differentiating between the sequence of structural events on alternative pathways of folding of a heterodimeric protein. Protein Sci 2022; 31:e4513. [PMID: 36382901 PMCID: PMC9703597 DOI: 10.1002/pro.4513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Distinguishing between competing pathways of folding of a protein, on the basis of how they differ in their progress of structure acquisition, remains an important challenge in protein folding studies. A previous study had shown that the heterodimeric protein, double chain monellin (dcMN) switches between alternative folding pathways upon a change in guanidine hydrochloride (GdnHCl) concentration. In the current study, the folding of dcMN has been characterized by the pulsed hydrogen exchange (HX) labeling methodology used in conjunction with mass spectrometry. Quantification of the extent to which folding intermediates accumulate and then disappear with time of folding at both low and high GdnHCl concentrations, where the folding pathways are known to be different, shows that the folding mechanism is describable by a triangular three-state mechanism. Structural characterization of the productive folding intermediates populated on the alternative pathways has enabled the pathways to be differentiated on the basis of the progress of structure acquisition that occurs on them. The intermediates on the two pathways differ in the extent to which the α-helix and the rest of the β-sheet have acquired structure that is protective against HX. The major difference is, however, that β2 has not acquired any protective structure in the intermediate formed on one pathway, but it has acquired significant protective structure in the intermediate formed on the alternative pathway. Hence, the sequence of structural events is different on the two alternative pathways.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBengaluruKarnatakaIndia
- Indian Institute of Science Education and ResearchPuneMaharashtraIndia
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBengaluruKarnatakaIndia
- Indian Institute of Science Education and ResearchPuneMaharashtraIndia
| |
Collapse
|
2
|
Nishizaki SS, Boyle AP. SEMplMe: a tool for integrating DNA methylation effects in transcription factor binding affinity predictions. BMC Bioinformatics 2022; 23:317. [PMID: 35927613 PMCID: PMC9351228 DOI: 10.1186/s12859-022-04865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
MOTIVATION Aberrant DNA methylation in transcription factor binding sites has been shown to lead to anomalous gene regulation that is strongly associated with human disease. However, the majority of methylation-sensitive positions within transcription factor binding sites remain unknown. Here we introduce SEMplMe, a computational tool to generate predictions of the effect of methylation on transcription factor binding strength in every position within a transcription factor's motif. RESULTS SEMplMe uses ChIP-seq and whole genome bisulfite sequencing to predict effects of methylation within binding sites. SEMplMe validates known methylation sensitive and insensitive positions within a binding motif, identifies cell type specific transcription factor binding driven by methylation, and outperforms SELEX-based predictions for CTCF. These predictions can be used to identify aberrant sites of DNA methylation contributing to human disease. AVAILABILITY AND IMPLEMENTATION SEMplMe is available from https://github.com/Boyle-Lab/SEMplMe .
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Bhattacharjee R, Udgaonkar JB. Structural Characterization of the Cooperativity of Unfolding of a Heterodimeric Protein using Hydrogen Exchange-Mass Spectrometry. J Mol Biol 2021; 433:167268. [PMID: 34563547 DOI: 10.1016/j.jmb.2021.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Little is known about how the sequence of structural changes in one chain of a heterodimeric protein is coupled to those in the other chain during protein folding and unfolding reactions, and whether individual secondary structural changes in the two chains occur in one or many coordinated steps. Here, the unfolding mechanism of a small heterodimeric protein, double chain monellin, has been characterized using hydrogen exchange-mass spectrometry. Transient structure opening, which enables HX, was found to be describable by a five state N ↔ I1 ↔ I2 ↔ I3 ↔ U mechanism. Structural changes occur gradually in the first three steps, and cooperatively in the last step. β strands 2, 4 and 5, as well as the α-helix undergo transient unfolding during all three non-cooperative steps, while β1 and the two loops on both sides of the helix undergo transient unfolding during the first two steps. In the absence of GdnHCl, only β3 in chain A of the protein unfolds during the last cooperative step, while in the presence of 1 M GdnHCl, not only β3, but also β2 in chain B unfolds cooperatively. Hence, the extent of cooperative structural change and size of the cooperative unfolding unit increase when the protein is destabilized by denaturant. The naturally evolved two-chain variant of monellin folds and unfolds in a more cooperative manner than does a single chain variant created artificially, suggesting that increasing folding cooperativity, even at the cost of decreasing stability, may be a driving force in the evolution of proteins.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India. https://twitter.com/Rupam_B01
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
4
|
Delfi M, Leone S, Emendato A, Ami D, Borriello M, Natalello A, Iannuzzi C, Picone D. Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. Int J Biol Macromol 2020; 152:21-29. [PMID: 32088237 DOI: 10.1016/j.ijbiomac.2020.02.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Alessandro Emendato
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
5
|
Nishizaki SS, Ng N, Dong S, Porter RS, Morterud C, Williams C, Asman C, Switzenberg JA, Boyle AP. Predicting the effects of SNPs on transcription factor binding affinity. Bioinformatics 2019; 36:364-372. [PMID: 31373606 PMCID: PMC7999143 DOI: 10.1093/bioinformatics/btz612] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Genome-wide association studies have revealed that 88% of disease-associated single-nucleotide polymorphisms (SNPs) reside in noncoding regions. However, noncoding SNPs remain understudied, partly because they are challenging to prioritize for experimental validation. To address this deficiency, we developed the SNP effect matrix pipeline (SEMpl). RESULTS SEMpl estimates transcription factor-binding affinity by observing differences in chromatin immunoprecipitation followed by deep sequencing signal intensity for SNPs within functional transcription factor-binding sites (TFBSs) genome-wide. By cataloging the effects of every possible mutation within the TFBS motif, SEMpl can predict the consequences of SNPs to transcription factor binding. This knowledge can be used to identify potential disease-causing regulatory loci. AVAILABILITY AND IMPLEMENTATION SEMpl is available from https://github.com/Boyle-Lab/SEM_CPP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie Ng
- Department of Human Genetics, Stanford University, Stanford, CA 94305, USA
| | - Shengcheng Dong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert S Porter
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cody Morterud
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colten Williams
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Courtney Asman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
6
|
Baliga C, Selmke B, Worobiew I, Borbat P, Sarma SP, Trommer WE, Varadarajan R, Aghera N. CcdB at pH 4 Forms a Partially Unfolded State with a Dry Core. Biophys J 2019; 116:807-817. [PMID: 30777307 DOI: 10.1016/j.bpj.2019.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
pH is an important factor that affects the protein structure, stability, and activity. Here, we probe the nature of the low-pH structural form of the homodimeric CcdB (controller of cell death B) protein. Characterization of CcdB protein at pH 4 and 300 K using circular dichroism spectroscopy, 8-anilino-1-naphthalene-sulphonate binding, and Trp solvation studies suggests that it forms a partially unfolded state with a dry core at equilibrium under these conditions. CcdB remains dimeric at pH 4 as shown by multiple techniques, such as size-exclusion chromatography coupled to multiangle light scattering, analytical ultracentrifugation, and electron paramagnetic resonance. Comparative analysis using two-dimensional 15N-1H heteronuclear single-quantum coherence NMR spectra of CcdB at pH 4 and 7 suggests that the pH 4 and native state have similar but nonidentical structures. Hydrogen-exchange-mass-spectrometry studies demonstrate that the pH 4 state has substantial but anisotropic changes in local stability with core regions close to the dimer interface showing lower protection but some other regions showing higher protection relative to pH 7.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Benjamin Selmke
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Irina Worobiew
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Peter Borbat
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
7
|
pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis. Biochim Biophys Acta Gen Subj 2018; 1862:808-815. [DOI: 10.1016/j.bbagen.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022]
|
8
|
Mascarenhas NM, Terse VL, Gosavi S. Intrinsic Disorder in a Well-Folded Globular Protein. J Phys Chem B 2018; 122:1876-1884. [PMID: 29304275 DOI: 10.1021/acs.jpcb.7b12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folded structure of the heterodimeric sweet protein monellin mimics single-chain proteins with topology β1-α1-β2-β3-β4-β5 (chain A: β3-β4-β5; chain B: β1-α1-β2). Furthermore, like naturally occurring single-chain proteins of a similar size, monellin folds cooperatively with no detectable intermediates. However, the two monellin chains, A and B, are marginally structured in isolation and fold only upon binding to each other. Thus, monellin presents a unique opportunity to understand the design of intrinsically disordered proteins that fold upon binding. Here, we study the folding of a single-chain variant of monellin (scMn) using simulations of an all heavy-atom structure-based model. These simulations can explain mechanistic details derived from scMn experiments performed using several different structural probes. scMn folds cooperatively in our structure-based simulations, as is also seen in experiments. We find that structure formation near the transition-state ensemble of scMn is not uniformly distributed but is localized to a hairpin-like structure which contains one strand from each chain (β2, β3). Thus, the sequence and the underlying energetics of heterodimeric monellin promote the early formation of the interchain interface (β2-β3). By studying computational scMn mutants whose "interchain" interactions are deleted, we infer that this energy distribution allows the two protein chains to remain largely disordered when this interface is not folded. From these results, we suggest that cutting the protein backbone of a globular protein between residues which lie within its folding nucleus may be one way to construct two disordered fragments which fold upon binding.
Collapse
Affiliation(s)
| | - Vishram L Terse
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| |
Collapse
|
9
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Site-specific time-resolved FRET reveals local variations in the unfolding mechanism in an apparently two-state protein unfolding transition. Phys Chem Chem Phys 2018; 20:3216-3232. [DOI: 10.1039/c7cp06214a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Using multi-site time-resolved FRET, it is shown that equilibrium unfolding of monellin is not only heterogeneous, but that the degree of non-cooperativity differs between the sole α-helix and different parts of the β-sheet.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bengaluru 560065
- India
| | | | - Jayant B. Udgaonkar
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bengaluru 560065
- India
| |
Collapse
|
10
|
Miele NA, Cabisidan EK, Blaiotta G, Leone S, Masi P, Di Monaco R, Cavella S. Rheological and sensory performance of a protein-based sweetener (MNEI), sucrose, and aspartame in yogurt. J Dairy Sci 2017; 100:9539-9550. [DOI: 10.3168/jds.2017-12894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/09/2017] [Indexed: 11/19/2022]
|
11
|
Tyagi A, Kumar A, Aparna SV, Mallappa RH, Grover S, Batish VK. Synthetic Biology: Applications in the Food Sector. Crit Rev Food Sci Nutr 2017; 56:1777-89. [PMID: 25365334 DOI: 10.1080/10408398.2013.782534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.
Collapse
Affiliation(s)
- Ashish Tyagi
- a Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Ashwani Kumar
- b Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur, Yamuna Nagar , Haryana , India
| | - S V Aparna
- a Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Rashmi H Mallappa
- a Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Sunita Grover
- a Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Virender Kumar Batish
- a Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
12
|
Spadaccini R, Leone S, Rega MF, Richter C, Picone D. Influence of pH on the structure and stability of the sweet protein MNEI. FEBS Lett 2016; 590:3681-3689. [DOI: 10.1002/1873-3468.12437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Roberta Spadaccini
- Dipartimento di Scienze e Tecnologie; Università del Sannio; Benevento Italy
| | - Serena Leone
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II; Naples Italy
| | | | | | - Delia Picone
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II; Naples Italy
| |
Collapse
|
13
|
Leone S, Pica A, Merlino A, Sannino F, Temussi PA, Picone D. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design. Sci Rep 2016; 6:34045. [PMID: 27658853 PMCID: PMC5034325 DOI: 10.1038/srep34045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022] Open
Abstract
Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction.
Collapse
Affiliation(s)
- Serena Leone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Andrea Pica
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Filomena Sannino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Piero Andrea Temussi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy.,Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Delia Picone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
14
|
Leone S, Picone D. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein. PLoS One 2016; 11:e0158372. [PMID: 27340829 PMCID: PMC4920389 DOI: 10.1371/journal.pone.0158372] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.
Collapse
Affiliation(s)
- Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Goluguri RR, Udgaonkar JB. Rise of the Helix from a Collapsed Globule during the Folding of Monellin. Biochemistry 2015; 54:5356-65. [DOI: 10.1021/acs.biochem.5b00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
16
|
Sabareesan AT, Udgaonkar JB. Amyloid Fibril Formation by the Chain B Subunit of Monellin Occurs by a Nucleation-Dependent Polymerization Mechanism. Biochemistry 2014; 53:1206-17. [DOI: 10.1021/bi401467p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. T. Sabareesan
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
17
|
Aghera N, Dasgupta I, Udgaonkar JB. A Buried Ionizable Residue Destabilizes the Native State and the Transition State in the Folding of Monellin. Biochemistry 2012; 51:9058-66. [DOI: 10.1021/bi3008017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nilesh Aghera
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065,
India
| | - Ishita Dasgupta
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065,
India
| | - Jayant B. Udgaonkar
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065,
India
| |
Collapse
|
18
|
Aghera N, Udgaonkar JB. Kinetic Studies of the Folding of Heterodimeric Monellin: Evidence for Switching between Alternative Parallel Pathways. J Mol Biol 2012; 420:235-50. [DOI: 10.1016/j.jmb.2012.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
|
19
|
House RP, Pozzuto M, Patel P, Dulyaninova NG, Li ZH, Zencheck WD, Vitolo MI, Weber DJ, Bresnick AR. Two functional S100A4 monomers are necessary for regulating nonmuscle myosin-IIA and HCT116 cell invasion. Biochemistry 2011; 50:6920-32. [PMID: 21721535 DOI: 10.1021/bi200498q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
S100A4, a member of the Ca(2+)-activated S100 protein family, regulates the motility and invasiveness of cancer cells. Moreover, high S100A4 expression levels correlate with poor patient survival in several cancers. Although biochemical, biophysical, and structural data indicate that S100A4 is a noncovalent dimer, it is unknown if two functional S100A4 monomers are required for the productive recognition of protein targets and the promotion of cell invasion. To address this question, we created covalently linked S100A4 dimers using a glycine rich flexible linker. The single-chain S100A4 (sc-S100A4) proteins exhibited wild-type affinities for calcium and nonmuscle myosin-IIA, retained the ability to regulate nonmuscle myosin-IIA assembly, and promoted tumor cell invasion when expressed in S100A4-deficient colon carcinoma cells. Mutation of the two calcium-binding EF-hands in one monomer, while leaving the other monomer intact, caused a 30-60-fold reduction in binding affinity for nonmuscle myosin-IIA concomitant with a weakened ability to regulate the monomer-polymer equilibrium of nonmuscle myosin-IIA. Moreover, sc-S100A4 proteins with one monomer deficient in calcium responsiveness did not support S100A4-mediated colon carcinoma cell invasion. Cross-linking and titration data indicate that the S100A4 dimer binds a single myosin-IIA target peptide. These data are consistent with a model in which a single peptide forms interactions in the vicinity of the canonical target binding cleft of each monomer in such a manner that both target binding sites are required for the efficient interaction with myosin-IIA.
Collapse
Affiliation(s)
- Reniqua P House
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | | | | | | | | | | | |
Collapse
|