1
|
Yun JH, Park JH, Jin Z, Ohki M, Wang Y, Lupala CS, Liu H, Park SY, Lee W. Structure-Based Functional Modification Study of a Cyanobacterial Chloride Pump for Transporting Multiple Anions. J Mol Biol 2020; 432:5273-5286. [PMID: 32721401 DOI: 10.1016/j.jmb.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
Understanding the structure and functional mechanisms of cyanobacterial halorhodopsin has become increasingly important, given the report that Synechocystis halorhodopsin (SyHR), a homolog of the cyanobacterial halorhodopsin from Mastigocladopsis repens (MrHR), can take up divalent ions, such as SO42-, as well as chloride ions. Here, the crystal structure of MrHR, containing a unique "TSD" chloride ion conduction motif, was determined as a homotrimer at a resolution of 1.9 Å. The detailed structure of MrHR revealed a unique trimeric topology of the light-driven chloride pump, with peculiar coordination of two water molecules and hydrogen-mediated bonds near the TSD motif, as well as a short B-C loop. Structural and functional analyses of MrHR revealed key residues responsible for the anion selectivity of cyanobacterial halorhodopsin and the involvement of two chloride ion-binding sites in the ion conduction pathway. Alanine mutant of Asn63, Pro118, and Glu182 locating in the anion inlet induce multifunctional uptake of chloride, nitrate, and sulfate ions. Moreover, the structure of N63A/P118A provides information on how SyHR promotes divalent ion transport. Our findings significantly advance the structural understanding of microbial rhodopsins with different motifs. They also provide insight into the general structural framework underlying the molecular mechanisms of the cyanobacterial chloride pump containing SyHR, the only molecule known to transport both sulfate and chloride ions.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Zeyu Jin
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Yang Wang
- Complex Systems Division, Beijing Computational Science Research Center, 10 E. Xibeiwang Rd., Haidian District, Beijing 100193, China
| | - Cecylia Severin Lupala
- Complex Systems Division, Beijing Computational Science Research Center, 10 E. Xibeiwang Rd., Haidian District, Beijing 100193, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, 10 E. Xibeiwang Rd., Haidian District, Beijing 100193, China; Department of Physics, Beijing Normal University, Haidian, Beijing, 100875, China
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Zahid NI, Ji L, Khyasudeen MF, Friedrich A, Hashim R, Marder TB, Abou-Zied OK. Evidence of Increased Hydrophobicity and Dynamics inside the Tail Region of Glycolipid Self-Assemblies Using 2- n-Alkyl-Pyrene Derivatives to Probe Different Locations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9584-9592. [PMID: 31287700 DOI: 10.1021/acs.langmuir.9b01767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
New designer biofluorophores are being increasingly used in the investigation of complex cellular processes. In this study, we utilized new derivatives of pyrene (Py), i.e., 2-n-alkyl-pyrenes (Py-C4 and Py-C8), in order to probe different regions inside the hydrophobic tail of n-dodecyl β-d-maltoside (βMal-C12) in two different phases (cubic ↔ lamellar). Although the sensitivity to the local environment is reduced compared to that of Py, attaching C4 and C8 at the 2-position of Py can provide a possible means to probe the local hydrophobicity in different parts of the tail region. The absence of excimer fluorescence and the ratio of the vibronic fluorescence peak intensities (I1/I3) in a lipid environment indicate the existence of Py as monomers in the hydrophobic region, similar to hydrophobic solvation, yet close to the headgroup region. When Py is replaced by Py-C4 and Py-C8, there is a small increase in hydrophobicity (reduction in I1/I3) as the Py moiety is pulled deeper inside the tail region of both cubic and lamellar phases. The larger space of the tail region in the lamellar phase is reflected as more local hydrophobicity measured by the probes which can penetrate deep inside, whereas the curved structure of the cubic phase limits the available space for the probes. Three fluorescence lifetime components were measured in lipid, indicating the heterogeneous nature of the hydrophobic region. In the lamellar phase, a large reduction in the average lifetime value, led by the long decay component, was measured for Py-C4 (reduction by 25%) and Py-C8 (45%) compared to that of the parent Py. This observation suggests the presence of a mechanism of interaction more collisional than static between the Py moiety and the tail region of the bilayer unit due to the ample space provided by the lamellar phase as the probe is buried deeper inside the hydrophobic region. A much smaller effect was observed in the cubic phase and was correlated with the tight environment around the probes, which stems from the increased curvature of the cubic phase. The current results provide a deeper understanding of the hydrophobic region during phase transition of lipid self-assembly which is important for better control during the process of membrane-protein crystallization.
Collapse
Affiliation(s)
- N Idayu Zahid
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, Postal Code 123 , Muscat , Sultanate of Oman
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - M Faisal Khyasudeen
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, Postal Code 123 , Muscat , Sultanate of Oman
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Rauzah Hashim
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, Postal Code 123 , Muscat , Sultanate of Oman
| |
Collapse
|
3
|
Ji L, Ma B, Meng Q, Li L, Liu K, Chen D. Detergent-resistant oligomeric Leptosphaeria rhodopsin is a promising bio-nanomaterial and an alternative to bacteriorhodopsin. Biochem Biophys Res Commun 2017; 493:352-357. [PMID: 28887035 DOI: 10.1016/j.bbrc.2017.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Bacteriorhodopsin has attracted remarkable attention as a photoactive bio-nanomaterial in the last decades. However, its instability in the presence of detergents has restricted the extent to which bacteriorhodopsin may be applied. In this study, we investigated the oligomerization of a eukaryotic light-driven H+-pump, Leptosphaeria rhodopsin, using circular dichroism spectroscopy and other biophysical and biochemical methods. Our findings revealed that Leptosphaeria rhodopsin assembled into oligomers in the cell membrane and also in 0.05% DDM detergent micelles. Moreover, unlike bacteriorhodopsin in purple membrane, Leptosphaeria rhodopsin retained its oligomeric structure in 1% Triton X-100 and demonstrated strong resistance to other common detergents. A maximal photocurrent density of ∼85 nA/cm2 was consistently generated, which was substantially larger than that of solubilized bacteriorhodopsin (∼10 nA/cm2). Therefore, oligomeric Leptosphaeria rhodopsin may be a promising bio-nanomaterial, and an alternative to bacteriorhodopsin, especially with the use of detergents.
Collapse
Affiliation(s)
- Liangliang Ji
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Meng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Sulaiman SAJ, Al-Rasbi GS, Abou-Zied OK. Photophysical properties of hydroxyphenyl benzazoles and their applications as fluorescent probes to study local environment in DNA, protein and lipid. LUMINESCENCE 2016; 31:614-25. [DOI: 10.1002/bio.3106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/01/2016] [Accepted: 01/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | - Ghalia S. Al-Rasbi
- Department of Chemistry; Sultan Qaboos University; Muscat Sultanate of Oman
| | - Osama K. Abou-Zied
- Department of Chemistry; Sultan Qaboos University; Muscat Sultanate of Oman
| |
Collapse
|
5
|
Burdíková J, Mravec F, Pekař M. The formation of mixed micelles of sugar surfactants and phospholipids and their interactions with hyaluronan. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3840-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Detecting local heterogeneity and ionization ability in the head group region of different lipidic phases using modified fluorescent probes. Sci Rep 2015; 5:8699. [PMID: 25731606 PMCID: PMC4346976 DOI: 10.1038/srep08699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022] Open
Abstract
Local heterogeneity in lipid self-assembly is important for executing the cellular membrane functions. In this work, we chemically modified 2-(2'-hydroxyphenyl)benzoxazole (HBO) and attached a C8 alkyl chain in two different locations to probe the microscopic environment of four lipidic phases of dodecyl β-maltoside. The fluorescence change in HBO and the new probes (HBO-1 and HBO-2) shows that in all phases (micellar, hexagonal, cubic and lamellar) three HBO tautomeric species (solvated syn-enol, anionic, and closed syn-keto) are stable. The formation of multi tautomers reflects the heterogeneity of the lipidic phases. The results indicate that HBO and HBO-1 reside in a similar location within the head group region, whereas HBO-2 is slightly pushed away from the sugar-dominated area. The stability of the solvated syn-enol tautomer is due to the formation of a hydrogen bond between the OH group of the HBO moiety and an adjacent oxygen atom of a sugar unit. The detected HBO anions was proposed to be a consequence of this solvation effect where a hydrogen ion abstraction by the sugar units is enhanced. Our results point to a degree of local heterogeneity and ionization ability in the head group region as a consequence of the sugar amphoterism.
Collapse
|
7
|
Busch AP, Neebe M, Hampp N. PEGylation of Membrane Proteins Like Bacteriorhodopsin as a Tool to Increase Their Stability toward Ethanol. J Phys Chem B 2012; 116:14613-7. [DOI: 10.1021/jp3075145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annegret P. Busch
- Department of Chemistry, Philipps University of Marburg, Hans-Meerwein-Str.
Building H, D-35032 Marburg, Germany
| | - Martin Neebe
- Department of Chemistry, Philipps University of Marburg, Hans-Meerwein-Str.
Building H, D-35032 Marburg, Germany
| | - Norbert Hampp
- Department of Chemistry, Philipps University of Marburg, Hans-Meerwein-Str.
Building H, D-35032 Marburg, Germany
- Material Science Center, D-35032 Marburg, Germany
| |
Collapse
|
8
|
Manickam Achari V, Nguan HS, Heidelberg T, Bryce RA, Hashim R. Molecular Dynamics Study of Anhydrous Lamellar Structures of Synthetic Glycolipids: Effects of Chain Branching and Disaccharide Headgroup. J Phys Chem B 2012; 116:11626-34. [DOI: 10.1021/jp302292s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Hock Seng Nguan
- Department
of Chemistry, University of Malaya, 50603
Kuala Lumpur, Malaysia
| | | | - Richard A. Bryce
- School of Pharmacy and Pharmaceutical
Sciences, University of Manchester, Manchester,
M13 9PT, U.K
| | - Rauzah Hashim
- Department
of Chemistry, University of Malaya, 50603
Kuala Lumpur, Malaysia
- Kavli Institute
of Theoretical
Physics China, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Homotrimer formation and dissociation of pharaonis halorhodopsin in detergent system. Biophys J 2012; 102:2906-15. [PMID: 22735541 DOI: 10.1016/j.bpj.2012.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
Halorhodopsin from NpHR is a light-driven Cl(-) pump that forms a trimeric NpHR-bacterioruberin complex in the native membrane. In the case of NpHR expressed in Escherichia coli cell, NpHR forms a robust homotrimer in a detergent DDM solution. To identify the important residue for the homotrimer formation, we carried out mutation experiments on the aromatic amino acids expected to be located at the molecular interface. The results revealed that Phe(150) was essential to form and stabilize the NpHR trimer in the DDM solution. Further analyses for examining the structural significance of Phe(150) showed the dissociation of the trimer in F150A (dimer) and F150W (monomer) mutants. Only the F150Y mutant exhibited dissociation into monomers in an ionic strength-dependent manner. These results indicated that spatial positions and interactions between F150-aromatic side chains were crucial to homotrimer stabilization. This finding was supported by QM calculations. In a functional respect, differences in the reaction property in the ground and photoexcited states were revealed. The analysis of photointermediates revealed a decrease in the accumulation of O, which is important for Cl(-) release, and the acceleration of the decay rate in L1 and L2, which are involved in Cl(-) transfer inside the molecule, in the trimer-dissociated mutants. Interestingly, the affinity of them to Cl(-) in the photoexcited state increased rather than the trimer, whereas that in the ground state was almost the same without relation to the oligomeric state. It was also observed that the efficient recovery of the photocycle to the ground state was inhibited in the mutants. In addition, a branched pathway that was not included in Cl(-) transportation was predicted. These results suggest that the trimer assembly may contribute to the regulation of the dynamics in the excited state of NpHR.
Collapse
|
10
|
Sasaki T, Razak NWA, Kato N, Mukai Y. Characteristics of halorhodopsin-bacterioruberin complex from Natronomonas pharaonis membrane in the solubilized system. Biochemistry 2012; 51:2785-94. [PMID: 22369627 DOI: 10.1021/bi201876p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Halorhodopsin is a retinal protein with a seven-transmembrane helix and acts as an inward light-driven Cl(-) pump. In this study, structural state of the solubilized halorhodopsin (NpHR) from the biomembrane of mutant strain KM-1 of Natronomonas pharaonis in nonionic detergent was investigated. A gel filtration chromatography monitored absorbances at 280 and 504 nm corresponding to the protein and a lipid soluble pigment of bacterioruberin (BR), respectively, has clearly detected an oligomer formation of the NpHRs and a complex formation between the NpHR and BR in the solubilized system. A molar ratio of NpHR:BR in the solubilized complex was close to 1:1. Further SDS-PAGE analysis of the solubilized NpHR cross-linked by 1% glutaraldehyde has revealed that the NpHR forms homotrimer in detergent system. Although this trimeric structure was stable in the presence of NaCl, it was dissociated to the monomer by the heat treatment at 45 °C in the desalted condition. The same tendency has been reported in the case of trimeric NpHR expressed heterologously on the E. coli membrane, leading to a conclusion that the change of strength of the trimeric association dependent on the ion binding is a universal feature of the NpHR. Interestingly, the trimer dissociation on the NpHR was accompanied by the complete dissociation of the BR molecule from the protein, indicated that the cavity formed by the NpHR protomers in the trimeric conformation is important for tight binding of the BR. Because the binding affinity for Cl(-) and the resistance to hydroxylamine under light illumination showed only minor differences between the NpHR in the solubilized state and that on the biomembrane, the influences of solubilization to the tertiary structure and function of the protein are thought to be minor. This NpHR-BR complex in the solubilized system has a potential to be a good model system to investigate the intermolecular interaction between the membrane protein and lipid.
Collapse
Affiliation(s)
- Takanori Sasaki
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan.
| | | | | | | |
Collapse
|
11
|
Koh GCKW, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein-protein interaction networks. J Proteome Res 2012; 11:2014-31. [PMID: 22385417 DOI: 10.1021/pr201211w] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of the "omics" era in biology research has brought new challenges and requires the development of novel strategies to answer previously intractable questions. Molecular interaction networks provide a framework to visualize cellular processes, but their complexity often makes their interpretation an overwhelming task. The inherently artificial nature of interaction detection methods and the incompleteness of currently available interaction maps call for a careful and well-informed utilization of this valuable data. In this tutorial, we aim to give an overview of the key aspects that any researcher needs to consider when working with molecular interaction data sets and we outline an example for interactome analysis. Using the molecular interaction database IntAct, the software platform Cytoscape, and its plugins BiNGO and clusterMaker, and taking as a starting point a list of proteins identified in a mass spectrometry-based proteomics experiment, we show how to build, visualize, and analyze a protein-protein interaction network.
Collapse
Affiliation(s)
- Gavin C K W Koh
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|