1
|
Tassone G, Pozzi C, Mangani S. Metal Ion Binding to Human Glutaminyl Cyclase: A Structural Perspective. Int J Mol Sci 2024; 25:8279. [PMID: 39125848 PMCID: PMC11312887 DOI: 10.3390/ijms25158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, I-50019 Sesto Fiorentino, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| |
Collapse
|
2
|
Chen D, Chen Q, Qin X, Tong P, Peng L, Zhang T, Xia C. Development and evolution of human glutaminyl cyclase inhibitors (QCIs): an alternative promising approach for disease-modifying treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1209863. [PMID: 37600512 PMCID: PMC10435661 DOI: 10.3389/fnagi.2023.1209863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-β. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD. In this review, we briefly summarize the discovery and evolution of hQC inhibitors, with a particular interest in classic Zinc binding group (ZBG)-containing chemicals reported in recent years. Additionally, we highlight several high-potency inhibitors and discuss new trends and challenges in the development of QC inhibitors as an alternative and promising disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Qingxiu Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Xiaofei Qin
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Peipei Tong
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liping Peng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Institute of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Chunli Xia
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
3
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
4
|
Functional Analysis of the GPI Transamidase Complex by Screening for Amino Acid Mutations in Each Subunit. Molecules 2021; 26:molecules26185462. [PMID: 34576938 PMCID: PMC8465894 DOI: 10.3390/molecules26185462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchor modification is a posttranslational modification of proteins that has been conserved in eukaryotes. The biosynthesis and transfer of GPI to proteins are carried out in the endoplasmic reticulum. Attachment of GPI to proteins is mediated by the GPI-transamidase (GPI-TA) complex, which recognizes and cleaves the C-terminal GPI attachment signal of precursor proteins. Then, GPI is transferred to the newly exposed C-terminus of the proteins. GPI-TA consists of five subunits: PIGK, GPAA1, PIGT, PIGS, and PIGU, and the absence of any subunit leads to the loss of activity. Here, we analyzed functionally important residues of the five subunits of GPI-TA by comparing conserved sequences among homologous proteins. In addition, we optimized the purification method for analyzing the structure of GPI-TA. Using purified GPI-TA, preliminary single particle images were obtained. Our results provide guidance for the structural and functional analysis of GPI-TA.
Collapse
|
5
|
Xu C, Zou H, Yu X, Xie Y, Cai J, Shang Q, Ouyang N, Wang Y, Xu P, He Z, Wu H. Repurposing FDA-Approved Compounds for the Discovery of Glutaminyl Cyclase Inhibitors as Drugs Against Alzheimer's Disease. ChemistryOpen 2021; 10:877-881. [PMID: 33377311 PMCID: PMC8409088 DOI: 10.1002/open.202000235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/07/2020] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative causes of dementia, the pathology of which is still not much clear. It's challenging to discover the disease modifying agents for the prevention and treatment of AD over the years. Emerging evidence has been accumulated to reveal the crucial role of up-regulated glutaminyl cyclase (QC) in the initiation of AD. In the current study, the QC inhibitory potency of a library consisting of 1621 FDA-approved compounds was assessed. A total of 54 hits, 3.33 % of the pool, exhibited QC inhibitory activities. The Ki of the top 5 compounds with the highest QC inhibitory activities were measured. Among these selected hits, compounds affecting neuronal signaling pathways and other mechanisms were recognized. Moreover, several polyphenol derivatives with QC inhibitory activities were also identified. Frameworks and subsets contained in these hits were analyzed. Taken together, our results may contribute to the discovery and development of novel QC inhibitors as potential anti-AD agents.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Haoman Zou
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Xi Yu
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Yazhou Xie
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Jiaxin Cai
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Qi Shang
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Na Ouyang
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Yinan Wang
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Pan Xu
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Zhendan He
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences Health Science CenterShenzhen University3688 Nanhai RoadShenzhen518055China
| |
Collapse
|
6
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Lamers S, Feng Q, Cheng Y, Yu S, Sun B, Lukman M, Jiang J, Ruiz-Carrillo D. Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase. Biol Chem 2021; 402:759-768. [PMID: 33823093 DOI: 10.1515/hsz-2020-0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
Porphyromonas gingivalis is a bacterial species known to be involved in the pathogenesis of chronic periodontitis, that more recently has been as well associated with Alzheimer's disease. P. gingivalis expresses a glutaminyl cyclase (PgQC) whose human ortholog is known to participate in the beta amyloid peptide metabolism. We have elucidated the crystal structure of PgQC at 1.95 Å resolution in unbound and in inhibitor-complexed forms. The structural characterization of PgQC confirmed that PgQC displays a mammalian fold rather than a bacterial fold. Our biochemical characterization indicates that PgQC uses a mammalian-like catalytic mechanism enabled by the residues Asp149, Glu182, Asp183, Asp218, Asp267 and His299. In addition, we could observe that a non-conserved Trp193 may drive differences in the binding affinity of ligands which might be useful for drug development. With a screening of a small molecule library, we have identified a benzimidazole derivative rendering PgQC inhibition in the low micromolar range that might be amenable for further medicinal chemistry development.
Collapse
Affiliation(s)
- Sebastiaan Lamers
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Qiaoli Feng
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Yili Cheng
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Sihong Yu
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, China
| | - Maxwell Lukman
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - Jie Jiang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| | - David Ruiz-Carrillo
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, China
| |
Collapse
|
8
|
A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes. J Mol Biol 2021; 433:166960. [PMID: 33774034 DOI: 10.1016/j.jmb.2021.166960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
Proteins with sequence or structure similar to those of di-Zn exopeptidases are usually classified as the M28-family enzymes, including the mammalian-type glutaminyl cyclases (QCs). QC catalyzes protein N-terminal pyroglutamate formation, a posttranslational modification important under many physiological and pathological conditions, and is a drug target for treating neurodegenerative diseases, cancers and inflammatory disorders. Without functional characterization, mammalian QCs and their orthologs remain indistinguishable at the sequence and structure levels from other M28-family proteins, leading to few reported QCs. Here, we show that a low-barrier carboxylic-acid hydrogen-bond network (CAHBN) is required for QC activity and discriminates QCs from M28-family peptidases. We demonstrate that the CAHBN-containing M28 peptidases deposited in the PDB are indeed QCs. Our analyses identify several thousands of QCs from the three domains of life, and we enzymatically and structurally characterize several. For the first time, the interplay between a CAHBN and the binuclear metal-binding center of mammalian QCs is made clear. We found that the presence or absence of CAHBN is a key discriminator for the formation of either the mono-Zn QCs or the di-Zn exopeptidases. Our study helps explain the possible roles of QCs in life.
Collapse
|
9
|
Taudte N, Linnert M, Rahfeld JU, Piechotta A, Ramsbeck D, Buchholz M, Kolenko P, Parthier C, Houston JA, Veillard F, Eick S, Potempa J, Schilling S, Demuth HU, Stubbs MT. Mammalian-like type II glutaminyl cyclases in Porphyromonas gingivalis and other oral pathogenic bacteria as targets for treatment of periodontitis. J Biol Chem 2021; 296:100263. [PMID: 33837744 PMCID: PMC7948796 DOI: 10.1016/j.jbc.2021.100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer’s disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize the so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals. However, whether differences between these bacteroidal QCs and animal QCs are sufficient to enable development of selective inhibitors is not clear. To learn more, we recombinantly expressed all three QCs. They exhibit comparable catalytic efficiencies and are inhibited by metal chelators. Crystal structures of the enzymes from P. gingivalis (PgQC) and T. forsythia (TfQC) reveal a tertiary structure composed of an eight-stranded β-sheet surrounded by seven α-helices, typical of animal type II QCs. In each case, an active site Zn ion is tetrahedrally coordinated by conserved residues. Nevertheless, significant differences to mammalian enzymes are found around the active site of the bacteroidal enzymes. Application of a PgQC-selective inhibitor described here for the first time results in growth inhibition of two P. gingivalis clinical isolates in a dose-dependent manner. The insights gained by these studies will assist in the development of highly specific small-molecule bacteroidal QC inhibitors, paving the way for alternative therapies against periodontitis and associated diseases.
Collapse
Affiliation(s)
- Nadine Taudte
- Periotrap Pharmaceuticals GmbH, Halle (Saale), Germany
| | - Miriam Linnert
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Mirko Buchholz
- Periotrap Pharmaceuticals GmbH, Halle (Saale), Germany; Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Petr Kolenko
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Parthier
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - John A Houston
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Florian Veillard
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany; Angewandte Biowissenschaften und Prozesstechnik, Hochschule Anhalt, Köthen, Germany
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Milton T Stubbs
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany; ZIK HALOmem, Charles-Tanford-Proteinzentrum, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
10
|
Su CTT, Sinha S, Eisenhaber B, Eisenhaber F. Structural modelling of the lumenal domain of human GPAA1, the metallo-peptide synthetase subunit of the transamidase complex, reveals zinc-binding mode and two flaps surrounding the active site. Biol Direct 2020; 15:14. [PMID: 32993792 PMCID: PMC7522609 DOI: 10.1186/s13062-020-00266-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
Background The transamidase complex is a molecular machine in the endoplasmic reticulum of eukaryotes that attaches a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins after cleaving a C-terminal propeptide with a defined sequence signal. Its five subunits are very hydrophobic; thus, solubility, heterologous expression and complex reconstruction are difficult. Therefore, theoretical approaches are currently the main source of insight into details of 3D structure and of the catalytic process. Results In this work, we generated model 3D structures of the lumenal domain of human GPAA1, the M28-type metallo-peptide-synthetase subunit of the transamidase, including zinc ion and model substrate positions. In comparative molecular dynamics (MD) simulations of M28-type structures and our GPAA1 models, we estimated the metal ion binding energies with evolutionary conserved amino acid residues in the catalytic cleft. We find that canonical zinc binding sites 2 and 3 are strongest binders for Zn1 and, where a second zinc is available, sites 2 and 4 for Zn2. Zinc interaction of site 5 with Zn1 enhances upon substrate binding in structures with only one zinc. Whereas a previously studied glutaminyl cyclase structure, the best known homologue to GPAA1, binds only one zinc ion at the catalytic site, GPAA1 can sterically accommodate two. The M28-type metallopeptidases segregate into two independent branches with regard to one/two zinc ion binding modality in a phylogenetic tree where the GPAA1 family is closer to the joint origin of both groups. For GPAA1 models, MD studies revealed two large loops (flaps) surrounding the active site being involved in an anti-correlated, breathing-like dynamics. Conclusions In the light of combined sequence-analytic and phylogenetic arguments as well as 3D structural modelling results, GPAA1 is most likely a single zinc ion metallopeptidase. Two large flaps environ the catalytic site restricting access to large substrates. Reviewers This article was reviewed by Thomas Dandekar (MD) and Michael Gromiha.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, # 07-01, Matrix, Singapore, 138671, Singapore
| | - Swati Sinha
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, # 07-01, Matrix, Singapore, 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, # 07-01, Matrix, Singapore, 138671, Singapore.
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, # 07-01, Matrix, Singapore, 138671, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
11
|
Vijayan DK, Zhang KY. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacol Res 2019; 147:104342. [DOI: 10.1016/j.phrs.2019.104342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
12
|
Lin W, Zheng X, Fang D, Zhou S, Wu W, Zheng K. Identifying hQC Inhibitors of Alzheimer's Disease by Effective Customized Pharmacophore-Based Virtual Screening, Molecular Dynamic Simulation, and Binding Free Energy Analysis. Appl Biochem Biotechnol 2018; 187:1173-1192. [PMID: 30187344 DOI: 10.1007/s12010-018-2780-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023]
Abstract
Human glutaminyl cyclase (hQC) appeared as a promising new target with its inhibitors attracted much attention for the treatment of Alzheimer's disease (AD) in recent years. But so far, only a few compounds have been reported as hQC inhibitors. To find novel and potent hQC inhibitors, a high-specificity ZBG (zinc-binding groups)-based pharmacophore model comprising customized ZBG feature was first generated using HipHop algorithm in Discovery Studio software for screening out hQC inhibitors from the SPECS database. After purification by docking studies and drug-like ADMET properties filters, four potential hit compounds were retrieved. Subsequently, these hit compounds were subjected to 30-ns molecular dynamic (MD) simulations to explore their binding modes at the active side of hQC. MD simulations demonstrated that these hit compounds formed a chelating interaction with the zinc ion, which was consistent with the finding that the electrostatic interaction was the major driving force for binding to hQC confirmed with MMPBSA energy decomposition. Higher binding affinities of these compounds were also verified by the binding free energy calculations comparing with the references. Thus, these identified compounds might be potential hQC candidates and could be used for further investigation.
Collapse
Affiliation(s)
- Weicong Lin
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaojie Zheng
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Danqing Fang
- Department of Cardiothoracic Surgery, Affiliated Second Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shengfu Zhou
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenjuan Wu
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Kangcheng Zheng
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
13
|
Li M, Dong Y, Yu X, Li Y, Zou Y, Zheng Y, He Z, Liu Z, Quan J, Bu X, Wu H. Synthesis and Evaluation of Diphenyl Conjugated Imidazole Derivatives as Potential Glutaminyl Cyclase Inhibitors for Treatment of Alzheimer's Disease. J Med Chem 2017; 60:6664-6677. [PMID: 28700245 DOI: 10.1021/acs.jmedchem.7b00648] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High expression of glutaminyl cyclase (QC) contributes to the initiation of Alzheimer's disease (AD) by catalyzing the generation of neurotoxic pyroglutamate (pE)-modified β-amyloid (Aβ) peptides. Preventing the generation of pE-Aβs by QC inhibition has been suggested as a novel approach to a disease-modifying therapy for AD. In this work, a series of diphenyl conjugated imidazole derivatives (DPCIs) was rationally designed and synthesized. Analogues with this scaffold exhibited potent inhibitory activity against human QC (hQC) and good in vitro blood-brain barrier (BBB) permeability. Further assessments corroborated that the selected hQC inhibitor 28 inhibits the activity of hQC, dramatically reduces the generation of pE-Aβs in cultured cells and in vivo, and improves the behavior of AD mice.
Collapse
Affiliation(s)
- Manman Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yao Dong
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Xi Yu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yue Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Yongdong Zou
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yizhi Zheng
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Zhigang Liu
- School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Junmin Quan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School , Shenzhen 518055, China
| | - Xianzhang Bu
- School of Pharmaceutical Science, Sun Yat-sen University , Guangzhou, 510006, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Identification of potential glutaminyl cyclase inhibitors from lead-like libraries by in silico and in vitro fragment-based screening. Mol Divers 2017; 21:175-186. [DOI: 10.1007/s11030-016-9717-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 02/05/2023]
|
15
|
Li M, Dong Y, Yu X, Zou Y, Zheng Y, Bu X, Quan J, He Z, Wu H. Inhibitory effect of flavonoids on human glutaminyl cyclase. Bioorg Med Chem 2016; 24:2280-6. [DOI: 10.1016/j.bmc.2016.03.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
|
16
|
DiPisa F, Pozzi C, Benvenuti M, Andreini M, Marconi G, Mangani S. The soluble Y115E-Y117E variant of human glutaminyl cyclase is a valid target for X-ray and NMR screening of inhibitors against Alzheimer disease. Acta Crystallogr F Struct Biol Commun 2015; 71:986-92. [PMID: 26249687 PMCID: PMC4528929 DOI: 10.1107/s2053230x15010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/30/2015] [Indexed: 11/10/2022] Open
Abstract
Recent developments in molecular pathology and genetics have allowed the identification of human glutaminyl cyclase (hQC) among the abnormal proteins involved in many neurodegenerative disorders. Difficulties in obtaining large quantities of pure protein may limit the use of crystallographic screening for drug development on this target. Site-directed mutagenesis experiments have led to the identification of some solvent-exposed residues that are absolutely critical to achieve increased solubility and to avoid precipitation of the enzyme in inclusion bodies when expressed in Escherichia coli. The designed variant Y115E-Y117E has been found to be able to provide large amounts of monodisperse, pure hQC from an E. coli expression system. To validate the use of the artificial construct as a target for large-scale X-ray and NMR screening campaigns in the search for new inhibitors of hQC, the X-ray crystal structures of the hQC Y115E-Y117E variant and of its adduct with the inhibitor PBD-150 were determined.
Collapse
Affiliation(s)
- Flavio DiPisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Manuela Benvenuti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Matteo Andreini
- Siena Biotech S.p.A., Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Guido Marconi
- Siena Biotech S.p.A., Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
17
|
Jimenez-Sanchez M, Lam W, Hannus M, Sönnichsen B, Imarisio S, Fleming A, Tarditi A, Menzies F, Dami TE, Xu C, Gonzalez-Couto E, Lazzeroni G, Heitz F, Diamanti D, Massai L, Satagopam VP, Marconi G, Caramelli C, Nencini A, Andreini M, Sardone GL, Caradonna NP, Porcari V, Scali C, Schneider R, Pollio G, O’Kane CJ, Caricasole A, Rubinsztein DC. siRNA screen identifies QPCT as a druggable target for Huntington's disease. Nat Chem Biol 2015; 11:347-354. [PMID: 25848931 PMCID: PMC4696152 DOI: 10.1038/nchembio.1790] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/05/2015] [Indexed: 11/09/2022]
Abstract
Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.
Collapse
Affiliation(s)
- Maria Jimenez-Sanchez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Wun Lam
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Michael Hannus
- Cenix BioScience GmbH, Tatzberg 47, 01307 Dresden, Germany
| | | | - Sara Imarisio
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EG
| | - Alessia Tarditi
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Fiona Menzies
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Teresa Ed Dami
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EG
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Catherine Xu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EG
| | | | - Giulia Lazzeroni
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Freddy Heitz
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Daniela Diamanti
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Luisa Massai
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Venkata P. Satagopam
- Structural and Computational Biology, EMBL, Meyerhofstr.1, 69117, Heidelberg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of Biomedicine, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Guido Marconi
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Chiara Caramelli
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Arianna Nencini
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Matteo Andreini
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Gian Luca Sardone
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | | | - Valentina Porcari
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Carla Scali
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Reinhard Schneider
- Structural and Computational Biology, EMBL, Meyerhofstr.1, 69117, Heidelberg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of Biomedicine, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Giuseppe Pollio
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Andrea Caricasole
- Siena Biotech. Strada del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
18
|
Wang YM, Huang KF, Tsai IH. Snake venom glutaminyl cyclases: Purification, cloning, kinetic study, recombinant expression, and comparison with the human enzyme. Toxicon 2014; 86:40-50. [DOI: 10.1016/j.toxicon.2014.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022]
|
19
|
Eisenhaber B, Eisenhaber S, Kwang TY, Grüber G, Eisenhaber F. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Cell Cycle 2014; 13:1912-7. [PMID: 24743167 PMCID: PMC4111754 DOI: 10.4161/cc.28761] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transamidase subunit GAA1/GPAA1 is predicted to be the enzyme that catalyzes the attachment of the glycosylphosphatidyl (GPI) lipid anchor to the carbonyl intermediate of the substrate protein at the ω-site. Its ~300-amino acid residue lumenal domain is a M28 family metallo-peptide-synthetase with an α/β hydrolase fold, including a central 8-strand β-sheet and a single metal (most likely zinc) ion coordinated by 3 conserved polar residues. Phosphoethanolamine is used as an adaptor to make the non-peptide GPI lipid anchor look chemically similar to the N terminus of a peptide.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore
| | - Stephan Eisenhaber
- Department of Physical Chemistry; University of Vienna; Wien/Vienna, Republic of Austria
| | - Toh Yew Kwang
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore; Nanyang Technological University; School of Biological Sciences; Singapore, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII); A*STAR; Singapore, Republic of Singapore; Department of Biological Sciences (DBS); National University of Singapore (NUS); Singapore, Republic of Singapore; School of Computer Engineering (SCE); Nanyang Technological University (NTU); Singapore, Republic of Singapore
| |
Collapse
|
20
|
Brister M, Pandey AK, Bielska AA, Zondlo NJ. OGlcNAcylation and phosphorylation have opposing structural effects in tau: phosphothreonine induces particular conformational order. J Am Chem Soc 2014; 136:3803-16. [PMID: 24559475 PMCID: PMC4004249 DOI: 10.1021/ja407156m] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 01/12/2023]
Abstract
Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is associated with protein misfolding and aggregation as the neurofibrillary tangles of Alzheimer's disease, whereas OGlcNAcylation stabilizes the soluble form of tau. A series of peptides derived from the proline-rich domain (residues 174-251) of tau was synthesized, with free Ser/Thr hydroxyls, phosphorylated Ser/Thr (pSer/pThr), OGlcNAcylated Ser/Thr, and diethylphosphorylated Ser/Thr. Phosphorylation and OGlcNAcylation were found by CD and NMR to have opposing structural effects on polyproline helix (PPII) formation, with phosphorylation favoring PPII, OGlcNAcylation opposing PPII, and the free hydroxyls intermediate in structure, and with phosphorylation structural effects greater than OGlcNAcylation. For tau196-209, phosphorylation and OGlcNAcylation had similar structural effects, opposing a nascent α-helix. Phosphomimic Glu exhibited PPII-favoring structural effects. Structural changes due to Thr phosphorylation were greater than those of Ser phosphorylation or Glu, with particular conformational restriction as the dianion, with mean (3)JαN = 3.5 Hz (pThr) versus 5.4 Hz (pSer), compared to 7.2, 6.8, and 6.2 Hz for Thr, Ser, and Glu, respectively, values that correlate with the backbone torsion angle ϕ. Dianionic phosphothreonine induced strong phosphothreonine amide protection and downfield amide chemical shifts (δmean = 9.63 ppm), consistent with formation of a stable phosphate-amide hydrogen bond. These data suggest potentially greater structural importance of threonine phosphorylation than serine phosphorylation due to larger induced structural effects.
Collapse
Affiliation(s)
| | | | - Agata A. Bielska
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Huang KF, Hsu HL, Karim S, Wang AHJ. Structural and functional analyses of a glutaminyl cyclase from Ixodes scapularis reveal metal-independent catalysis and inhibitor binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:789-801. [PMID: 24598748 PMCID: PMC8494195 DOI: 10.1107/s1399004713033488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/10/2013] [Indexed: 11/10/2022]
Abstract
Glutaminyl cyclases (QCs) from mammals and Drosophila are zinc-dependent enzymes that catalyze N-terminal pyroglutamate formation of numerous proteins and peptides. These enzymes have been found to be critical for the oviposition and embryogenesis of ticks, implying that they are possible physiological targets for tick control. Here, 1.10-1.15 Å resolution structures of a metal-independent QC from the black-legged tick Ixodes scapularis (Is-QC) are reported. The structures exhibit the typical scaffold of mammalian QCs but have two extra disulfide bridges that stabilize the central β-sheet, resulting in an increased thermal stability. Is-QC contains ~0.5 stoichiometric zinc ions, which could be removed by 1 mM EDTA. Compared with the Zn-bound form, apo-Is-QC has a nearly identical active-site structure and stability, but unexpectedly possesses significantly increased QC activities towards both synthetic and physiological substrates. Enzyme-kinetic analysis revealed that apo-Is-QC has a stronger substrate-binding affinity, suggesting that bound zinc interferes with substrate binding during catalysis. The structures of Is-QC bound to the inhibitor PBD150 revealed similar binding modes to both forms of Is-QC, with the exception of the inhibitor imidazole ring, which is consistent with the comparable inhibition activities of the inhibitor towards both forms of Is-QC. These findings have implications for the design of new QC inhibitors.
Collapse
Affiliation(s)
- Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Ling Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan
| | - Shahid Karim
- Department of Biological Sciences, The University of Southern Mississippi, 18 College Drive #5018, Hattiesburg, MS 39406, USA
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
22
|
Adamson SW, Browning RE, Chao CC, Bateman RC, Ching WM, Karim S. Molecular characterization of tick salivary gland glutaminyl cyclase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:781-93. [PMID: 23770496 PMCID: PMC3740044 DOI: 10.1016/j.ibmb.2013.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 05/26/2023]
Abstract
Glutaminyl cyclase (QC) catalyzes the cyclization of N-terminal glutamine residues into pyroglutamate. This post-translational modification extends the half-life of peptides and, in some cases, is essential in binding to their cognate receptor. Due to its potential role in the post-translational modification of tick neuropeptides, we report the molecular, biochemical and physiological characterization of salivary gland QC during the prolonged blood feeding of the black-legged tick (Ixodes scapularis) and the gulf-coast tick (Amblyomma maculatum). QC sequences from I. scapularis and A. maculatum showed a high degree of amino acid identity to each other and other arthropods and residues critical for zinc binding/catalysis (D159, E202, and H330) or intermediate stabilization (E201, W207, D248, D305, F325, and W329) are conserved. Analysis of QC transcriptional gene expression kinetics depicts an upregulation during the bloodmeal of adult female ticks prior to fast-feeding phases in both I. scapularis and A. maculatum suggesting a functional link with bloodmeal uptake. QC enzymatic activity was detected in saliva and extracts of tick salivary glands and midguts. Recombinant QC was shown to be catalytically active. Furthermore, knockdown of QC transcript by RNA interference resulted in lower enzymatic activity, and small, unviable egg masses in both studied tick species as well as lower engorged tick weights for I. scapularis. These results suggest that the post-translational modification of neurotransmitters and other bioactive peptides by QC is critical to oviposition and potentially other physiological processes. Moreover, these data suggest that tick-specific QC-modified neurotransmitters/hormones or other relevant parts of this system could potentially be used as novel physiological targets for tick control.
Collapse
Affiliation(s)
- Steven W. Adamson
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| | - Rebecca E. Browning
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892
| | - Robert C. Bateman
- College of Osteopathic Medicine, William Carey University, 498 Tuscan Avenue, Hattiesburg, MS 39401, USA
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892
| | - Shahid Karim
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| |
Collapse
|
23
|
Ramsbeck D, Buchholz M, Koch B, Böhme L, Hoffmann T, Demuth HU, Heiser U. Structure–Activity Relationships of Benzimidazole-Based Glutaminyl Cyclase Inhibitors Featuring a Heteroaryl Scaffold. J Med Chem 2013; 56:6613-25. [DOI: 10.1021/jm4001709] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Ramsbeck
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Mirko Buchholz
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Birgit Koch
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Livia Böhme
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Torsten Hoffmann
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Hans-Ulrich Demuth
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Ulrich Heiser
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| |
Collapse
|
24
|
Abstract
Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of 1H-15N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer’s disease.
Collapse
|
25
|
Kolenko P, Koch B, Rahfeld JU, Schilling S, Demuth HU, Stubbs MT. Structure of glutaminyl cyclase from Drosophila melanogaster in space group I4. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:358-61. [PMID: 23545638 PMCID: PMC3614157 DOI: 10.1107/s1744309113005575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/26/2013] [Indexed: 05/06/2024]
Abstract
The structure of ligand-free glutaminyl cyclase (QC) from Drosophila melanogaster (DmQC) has been determined in a novel crystal form. The protein crystallized in space group I4, with unit-cell parameters a = b = 122.3, c = 72.7 Å. The crystal diffracted to a resolution of 2 Å at the home source. The structure was solved by molecular replacement and was refined to an R factor of 0.169. DmQC exhibits a typical α/β-hydrolase fold. The electron density of three monosaccharides could be localized. The accessibility of the active site will facilitate structural studies of novel inhibitor-binding modes.
Collapse
Affiliation(s)
- Petr Kolenko
- Department of Physical Biochemistry, Institute of Biochemistry and Biotechnology, MLU, Kurt-Mothes-Strasse 3, 06120 Halle, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Koch B, Buchholz M, Wermann M, Heiser U, Schilling S, Demuth HU. Probing Secondary Glutaminyl Cyclase (QC) Inhibitor Interactions Applying an in silico-Modeling/Site-Directed Mutagenesis Approach: Implications for Drug Development. Chem Biol Drug Des 2012; 80:937-46. [DOI: 10.1111/cbdd.12046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Koch B, Kolenko P, Buchholz M, Carrillo DR, Parthier C, Wermann M, Rahfeld JU, Reuter G, Schilling S, Stubbs MT, Demuth HU. Crystal structures of glutaminyl cyclases (QCs) from Drosophila melanogaster reveal active site conservation between insect and mammalian QCs. Biochemistry 2012; 51:7383-92. [PMID: 22897232 DOI: 10.1021/bi300687g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutaminyl cyclases (QCs), which catalyze the formation of pyroglutamic acid (pGlu) at the N-terminus of a variety of peptides and proteins, have attracted particular attention for their potential role in Alzheimer's disease. In a transgenic Drosophila melanogaster (Dm) fruit fly model, oral application of the potent competitive QC inhibitor PBD150 was shown to reduce the burden of pGlu-modified Aβ. In contrast to mammals such as humans and rodents, there are at least three DmQC species, one of which (isoDromeQC) is localized to mitochondria, whereas DromeQC and an isoDromeQC splice variant possess signal peptides for secretion. Here we present the recombinant expression, characterization, and crystal structure determination of mature DromeQC and isoDromeQC, revealing an overall fold similar to that of mammalian QCs. In the case of isoDromeQC, the putative extended substrate binding site might be affected by the proximity of the N-terminal residues. PBD150 inhibition of DromeQC is roughly 1 order of magnitude weaker than that of the human and murine QCs. The inhibitor binds to isoDromeQC in a fashion similar to that observed for human QCs, whereas it adopts alternative binding modes in a DromeQC variant lacking the conserved cysteines near the active center and shows a disordered dimethoxyphenyl moiety in wild-type DromeQC, providing an explanation for the lower affinity. Our biophysical and structural data suggest that isoDromeQC and human QC are similar with regard to functional aspects. The two Dm enzymes represent a suitable model for further in-depth analysis of the catalytic mechanism of animal QCs, and isoDromeQC might serve as a model system for the structure-based design of potential AD therapeutics.
Collapse
Affiliation(s)
- Birgit Koch
- Probiodrug AG, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|