1
|
Zhou TP, Deng WH, Wu Y, Liao RZ. QM/MM Calculations Suggested Concerted O‒O Bond Cleavage and Substrate Oxidation by Nonheme Diiron Toluene/o‐xylene Monooxygenase. Chem Asian J 2022; 17:e202200490. [DOI: 10.1002/asia.202200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tai-Ping Zhou
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Wen-Hao Deng
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and technology College of Chemistry and Chemical Engeneering Luoyulu 1037 430074 Wuhan CHINA
| |
Collapse
|
2
|
McBride MJ, Pope SR, Hu K, Okafor CD, Balskus EP, Bollinger JM, Boal AK. Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. Proc Natl Acad Sci U S A 2021; 118:e2015931118. [PMID: 33468680 PMCID: PMC7848743 DOI: 10.1073/pnas.2015931118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In biosynthesis of the pancreatic cancer drug streptozotocin, the tridomain nonheme-iron oxygenase SznF hydroxylates Nδ and Nω' of Nω-methyl-l-arginine before oxidatively rearranging the triply modified guanidine to the N-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the monoiron cofactor in the enzyme's C-terminal cupin domain, which promotes the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in the N-hydroxylating heme-oxygenase-like (HO-like) central domain. We leveraged our recent observation that the N-oxygenating µ-peroxodiiron(III/III) intermediate can form in the HO-like domain after the apo protein self-assembles its diiron(II/II) cofactor to solve structures of SznF with both of its iron cofactors bound. These structures of a biochemically validated member of the emerging heme-oxygenase-like diiron oxidase and oxygenase (HDO) superfamily with intact diiron cofactor reveal both the large-scale conformational change required to assemble the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability-a trait shared by the other validated HDOs. During cofactor (dis)assembly, a ligand-harboring core helix dynamically (un)folds. The diiron cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulations. The additional carboxylate ligand is conserved in another N-oxygenating HDO but not in two HDOs that cleave carbon-hydrogen and carbon-carbon bonds to install olefins. Among ∼9,600 sequences identified bioinformatically as members of the emerging HDO superfamily, ∼25% conserve this additional carboxylate residue and are thus tentatively assigned as N-oxygenases.
Collapse
Affiliation(s)
- Molly J McBride
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Sarah R Pope
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Kai Hu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
3
|
Wang J, Ma Y, Wang X, Zhang Y, Tan H, Li X, Chen G. Theoretical study on the catalytic mechanism of human deoxyhypusine hydroxylase. Phys Chem Chem Phys 2020; 22:22736-22745. [DOI: 10.1039/d0cp03598j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deoxyhypusine hydroxylase is a critical enzyme for hypusination of eukaryotic translation initiation factor 5A.
Collapse
Affiliation(s)
- Junkai Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yan Ma
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xixi Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
4
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Sekino M, Furutachi H, Tojo R, Hishi A, Kajikawa H, Suzuki T, Suzuki K, Fujinami S, Akine S, Sakata Y, Ohta T, Hayami S, Suzuki M. New mechanistic insights into intramolecular aromatic ligand hydroxylation and benzyl alcohol oxidation initiated by the well-defined (μ-peroxo)diiron(iii) complex. Chem Commun (Camb) 2018; 53:8838-8841. [PMID: 28726874 DOI: 10.1039/c7cc04382a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A (μ-peroxo)diiron(iii) complex [Fe2(LPh4)(O2)(Ph3CCO2)]2+ (1-O2) with a dinucleating ligand (LPh4), generated from the reaction of a carboxylate bridged diiron(ii) complex [Fe2(LPh4)(Ph3CCO2)]2+ (1) with dioxygen in CH2Cl2, provides a diiron(iv)-oxo species as an active oxidant which is involved in either aromatic ligand hydroxylation or benzyl alcohol oxidation.
Collapse
Affiliation(s)
- Mio Sekino
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rokob TA. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc 2016; 138:14623-14638. [PMID: 27682344 DOI: 10.1021/jacs.6b06987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygenation of aromatic rings using O2 is catalyzed by several non-heme carboxylate-bridged diiron enzymes. In order to provide a general mechanistic description for these reactions, computational studies were carried out at the ONIOM(B3LYP/BP86/Amber) level on the non-heme diiron enzyme benzoyl coenzyme A epoxidase, BoxB. The calculations revealed four possible pathways for attacking the aromatic ring: (a) electrophilic (2e-) attack by a bis(μ-oxo)-diiron(IV) species (Q pathway); (b) electrophilic (2e-) attack via the σ* orbital of a μ-η2:η2-peroxo-diiron(III) intermediate (Pσ* pathway); (c) radical (1e-) attack via the π*-orbital of a superoxo-diiron(II,III) species (Pπ* pathway); (d) radical (1e-) attack of a partially quenched bis(μ-oxo)-diiron(IV) intermediate (Q' pathway). The results allowed earlier work of de Visser on olefin epoxidation by diiron complexes and QM-cluster studies of Liao and Siegbahn on BoxB to be put into a broader perspective. Parallels with epoxidation using organic peracids were also examined. Specifically for the BoxB enzyme, the Q pathway was found to be the most preferred, but the corresponding bis(μ-oxo)-diiron(IV) species is significantly destabilized and not expected to be directly observable. Epoxidation via the Pσ* pathway represents an energetically somewhat higher lying alternative; possible strategies for experimental discrimination are discussed. The selectivity toward epoxidation is shown to stem from a combination of inherent electronic properties of the thioacyl substituent and enzymatic constraints. Possible implications of the results for toluene monooxygenases are considered as well.
Collapse
Affiliation(s)
- Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
7
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Liang AD, Lippard SJ. Single Turnover Reveals Oxygenated Intermediates in Toluene/o-Xylene Monooxygenase in the Presence of the Native Redox Partners. J Am Chem Soc 2015; 137:10520-3. [PMID: 26267757 DOI: 10.1021/jacs.5b07055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Toluene/o-xylene monooxygenase (ToMO) is a non-heme diiron protein that activates O2 for subsequent arene oxidation. ToMO utilizes four protein components, a catalytic hydroxylase, a regulatory protein, a Rieske protein, and a reductase. O2 activation and substrate hydroxylation in the presence of all four protein components is examined. These studies demonstrate the importance of native reductants by revealing reactivity unobserved when dithionite and mediators are used as the reductant. This reactivity is compared with that of other O2-activating diiron enzymes.
Collapse
Affiliation(s)
- Alexandria Deliz Liang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Han Z, Sakai N, Böttger LH, Klinke S, Hauber J, Trautwein AX, Hilgenfeld R. Crystal Structure of the Peroxo-diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination. Structure 2015; 23:882-892. [PMID: 25865244 DOI: 10.1016/j.str.2015.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Deoxyhypusine hydroxylase (DOHH) is a non-heme diiron enzyme involved in the posttranslational modification of a critical lysine residue of eukaryotic translation initiation factor 5A (eIF-5A) to yield the unusual amino acid residue hypusine. This modification is essential for the role of eIF-5A in translation and in nuclear export of a group of specific mRNAs. The diiron center of human DOHH (hDOHH) forms a peroxo-diiron(III) intermediate (hDOHHperoxo) when its reduced form reacts with O2. hDOHHperoxo has a lifetime exceeding that of the peroxo intermediates of other diiron enzymes by several orders of magnitude. Here we report the 1.7-Å crystal structures of hDOHHperoxo and a complex with glycerol. The structure of hDOHHperoxo reveals the presence of a μ-1,2-peroxo-diiron(III) species at the active site. Augmented by UV/Vis and Mössbauer spectroscopic studies, the crystal structures offer explanations for the extreme longevity of hDOHHperoxo and illustrate how the enzyme specifically recognizes its only substrate, deoxyhypusine-eIF-5A.
Collapse
Affiliation(s)
- Zhenggang Han
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Naoki Sakai
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Lars H Böttger
- Institute of Physics, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Sebastián Klinke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany; German Center for Infection Research (DZIF) c/o Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Alfred X Trautwein
- Institute of Physics, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF) c/o Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
10
|
Nichol T, Murrell JC, Smith TJ. Controlling the Activities of the Diiron Centre in Bacterial Monooxygenases: Lessons from Mutagenesis and Biodiversity. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tim Nichol
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK, http://www.shu.ac.uk/research/bmrc/staff/professor‐tom‐smith
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Thomas J. Smith
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK, http://www.shu.ac.uk/research/bmrc/staff/professor‐tom‐smith
| |
Collapse
|
11
|
Makris TM, Vu VV, Meier KK, Komor AJ, Rivard BS, Münck E, Que L, Lipscomb JD. An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway. J Am Chem Soc 2015; 137:1608-17. [PMID: 25564306 PMCID: PMC4318726 DOI: 10.1021/ja511649n] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomyces venezuelae CmlI catalyzes the six-electron oxygenation of the arylamine precursor of chloramphenicol in a nonribosomal peptide synthetase (NRPS)-based pathway to yield the nitroaryl group of the antibiotic. Optical, EPR, and Mössbauer studies show that the enzyme contains a nonheme dinuclear iron cluster. Addition of O(2) to the diferrous state of the cluster results in an exceptionally long-lived intermediate (t(1/2) = 3 h at 4 °C) that is assigned as a peroxodiferric species (CmlI-peroxo) based upon the observation of an (18)O(2)-sensitive resonance Raman (rR) vibration. CmlI-peroxo is spectroscopically distinct from the well characterized and commonly observed cis-μ-1,2-peroxo (μ-η(1):η(1)) intermediates of nonheme diiron enzymes. Specifically, it exhibits a blue-shifted broad absorption band around 500 nm and a rR spectrum with a ν(O-O) that is at least 60 cm(-1) lower in energy. Mössbauer studies of the peroxo state reveal a diferric cluster having iron sites with small quadrupole splittings and distinct isomer shifts (0.54 and 0.62 mm/s). Taken together, the spectroscopic comparisons clearly indicate that CmlI-peroxo does not have a μ-η(1):η(1)-peroxo ligand; we propose that a μ-η(1):η(2)-peroxo ligand accounts for its distinct spectroscopic properties. CmlI-peroxo reacts with a range of arylamine substrates by an apparent second-order process, indicating that CmlI-peroxo is the reactive species of the catalytic cycle. Efficient production of chloramphenicol from the free arylamine precursor suggests that CmlI catalyzes the ultimate step in the biosynthetic pathway and that the precursor is not bound to the NRPS during this step.
Collapse
Affiliation(s)
- Thomas M. Makris
- Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of
Minnesota, Minneapolis, MN 55455
| | - Van V. Vu
- Center for Metals in Biocatalysis, University of
Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis,
Minnesota 55455, United States
| | - Katlyn K. Meier
- Department of Chemistry, Carnegie Mellon University,
Pittsburgh, PA 15213, United States
| | - Anna J. Komor
- Center for Metals in Biocatalysis, University of
Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis,
Minnesota 55455, United States
| | - Brent S. Rivard
- Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of
Minnesota, Minneapolis, MN 55455
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University,
Pittsburgh, PA 15213, United States
| | - Lawrence Que
- Center for Metals in Biocatalysis, University of
Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis,
Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of
Minnesota, Minneapolis, MN 55455
| |
Collapse
|
12
|
Chalupský J, Rokob TA, Kurashige Y, Yanai T, Solomon EI, Rulíšek L, Srnec M. Reactivity of the binuclear non-heme iron active site of Δ⁹ desaturase studied by large-scale multireference ab initio calculations. J Am Chem Soc 2014; 136:15977-91. [PMID: 25313991 DOI: 10.1021/ja506934k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The results of density matrix renormalization group complete active space self-consistent field (DMRG-CASSCF) and second-order perturbation theory (DMRG-CASPT2) calculations are presented on various structural alternatives for the O-O and first C-H activating step of the catalytic cycle of the binuclear nonheme iron enzyme Δ(9) desaturase. This enzyme is capable of inserting a double bond into an alkyl chain by double hydrogen (H) atom abstraction using molecular O2. The reaction step studied here is presumably associated with the highest activation barrier along the full pathway; therefore, its quantitative assessment is of key importance to the understanding of the catalysis. The DMRG approach allows unprecedentedly large active spaces for the explicit correlation of electrons in the large part of the chemically important valence space, which is apparently conditio sine qua non for obtaining well-converged reaction energetics. The derived reaction mechanism involves protonation of the previously characterized 1,2-μ peroxy Fe(III)Fe(III) (P) intermediate to a 1,1-μ hydroperoxy species, which abstracts an H atom from the C10 site of the substrate. An Fe(IV)-oxo unit is generated concomitantly, supposedly capable of the second H atom abstraction from C9. In addition, several popular DFT functionals were compared to the computed DMRG-CASPT2 data. Notably, many of these show a preference for heterolytic C-H cleavage, erroneously predicting substrate hydroxylation. This study shows that, despite its limitations, DMRG-CASPT2 is a significant methodological advancement toward the accurate computational treatment of complex bioinorganic systems, such as those with the highly open-shell diiron active sites.
Collapse
Affiliation(s)
- Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
13
|
Liang AD, Wrobel AT, Lippard SJ. A flexible glutamine regulates the catalytic activity of toluene o-xylene monooxygenase. Biochemistry 2014; 53:3585-92. [PMID: 24873259 PMCID: PMC4059525 DOI: 10.1021/bi500387y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Toluene/o-xylene
monooxygenase (ToMO) is a bacterial
multicomponent monooxygenase capable of oxidizing aromatic substrates.
The carboxylate-rich diiron active site is located in the hydroxylase
component of ToMO (ToMOH), buried 12 Å from the surface of the
protein. A small, hydrophilic pore is the shortest pathway between
the diiron active site and the protein exterior. In this study of
ToMOH from Pseudomonas sp. OX1, the
functions of two residues lining this pore, N202 and Q228, were investigated
using site-directed mutagenesis. Steady-state characterization of
WT and the three mutant enzymes demonstrates that residues N202 and
Q228 are critical for turnover. Kinetic isotope effects and pH profiles
reveal that these residues govern the kinetics of water egress and
prevent quenching of activated oxygen intermediates formed at the
diiron active site. We propose that this activity arises from movement
of these residues, opening and closing the pore during catalysis,
as seen in previous X-ray crystallographic studies. In addition, N202
and Q228 are important for the interactions of the reductase and regulatory
components to ToMOH, suggesting that they bind competitively to the
hydroxylase. The role of the pore in the hydroxylase components of
other bacterial multicomponent monooxygenases within the superfamily
is discussed in light of these conclusions.
Collapse
Affiliation(s)
- Alexandria Deliz Liang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
14
|
Gelalcha FG. Biomimetic Iron-Catalyzed Asymmetric Epoxidations: Fundamental Concepts, Challenges and Opportunities. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300716] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Kodera M, Tsuji T, Yasunaga T, Kawahara Y, Hirano T, Hitomi Y, Nomura T, Ogura T, Kobayashi Y, Sajith PK, Shiota Y, Yoshizawa K. Roles of carboxylate donors in O–O bond scission of peroxodi-iron(iii) to high-spin oxodi-iron(iv) with a new carboxylate-containing dinucleating ligand. Chem Sci 2014. [DOI: 10.1039/c3sc51541a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Carboxylate donor stabilizes the peroxo state in dioxygen activation via reversible O–O bond scission of peroxodi-iron(iii) to high spin oxodi-iron(iv).
Collapse
Affiliation(s)
- Masahito Kodera
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Tomokazu Tsuji
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Tomohiro Yasunaga
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Yuka Kawahara
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Tomoya Hirano
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry
- Doshisha University
- Kyotanabe Kyoto 610-0321, Japan
| | - Takashi Nomura
- Department of Life Science
- University of Hyogo
- Hyogo 678-1297, Japan
| | - Takashi Ogura
- Department of Life Science
- University of Hyogo
- Hyogo 678-1297, Japan
| | - Yoshio Kobayashi
- Graduate School of Informatics and Engineering
- The University of Electro-Communications
- Tokyo 182-8585, Japan
| | - P. K. Sajith
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Srnec M, Rokob TA, Schwartz JK, Kwak Y, Rulíšek L, Solomon EI. Structural and Spectroscopic Properties of the Peroxodiferric Intermediate of Ricinus communis Soluble Δ9 Desaturase. Inorg Chem 2012; 51:2806-20. [DOI: 10.1021/ic2018067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Martin Srnec
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Tibor András Rokob
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Jennifer K. Schwartz
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| | - Yeonju Kwak
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080,
United States
| |
Collapse
|
17
|
Song WJ, Gucinski G, Sazinsky MH, Lippard SJ. Tracking a defined route for O₂ migration in a dioxygen-activating diiron enzyme. Proc Natl Acad Sci U S A 2011; 108:14795-800. [PMID: 21859951 PMCID: PMC3169157 DOI: 10.1073/pnas.1106514108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For numerous enzymes reactive toward small gaseous compounds, growing evidence indicates that these substrates diffuse into active site pockets through defined pathways in the protein matrix. Toluene/o-xylene monooxygenase hydroxylase is a dioxygen-activating enzyme. Structural analysis suggests two possible pathways for dioxygen access through the α-subunit to the diiron center: a channel or a series of hydrophobic cavities. To distinguish which is utilized as the O(2) migration pathway, the dimensions of the cavities and the channel were independently varied by site-directed mutagenesis and confirmed by X-ray crystallography. The rate constants for dioxygen access to the diiron center were derived from the formation rates of a peroxodiiron(III) intermediate, generated upon treatment of the diiron(II) enzyme with O(2). This reaction depends on the concentration of dioxygen to the first order. Altering the dimensions of the cavities, but not the channel, changed the rate of dioxygen reactivity with the enzyme. These results strongly suggest that voids comprising the cavities in toluene/o-xylene monooxygenase hydroxylase are not artifacts of protein packing/folding, but rather programmed routes for dioxygen migration through the protein matrix. Because the cavities are not fully connected into the diiron active center in the enzyme resting state, conformational changes will be required to facilitate dioxygen access to the diiron center. We propose that such temporary opening and closing of the cavities may occur in all bacterial multicomponent monooxygenases to control O(2) consumption for efficient catalysis. Our findings suggest that other gas-utilizing enzymes may employ similar structural features to effect substrate passage through a protein matrix.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Grant Gucinski
- Department of Chemistry, Pomona College, Claremont, CA 91711
| | | | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| |
Collapse
|