1
|
Chen Y, Li TL, Lin X, Li X, Li XD, Guo Z. Crystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode. J Biol Chem 2017; 292:12296-12310. [PMID: 28559280 DOI: 10.1074/jbc.m117.790410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/25/2017] [Indexed: 02/03/2023] Open
Abstract
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (MenE) is an essential enzyme in bacterial vitamin K biosynthesis and an important target in the development of new antibiotics. It is a member of the adenylating enzymes (ANL) family, which reconfigure their active site in two different active conformations, one for the adenylation half-reaction and the other for a thioesterification half-reaction, in a domain-alternation catalytic mechanism. Although several aspects of the adenylating mechanism in MenE have recently been uncovered, its thioesterification conformation remains elusive. Here, using a catalytically competent Bacillus subtilis mutant protein complexed with an OSB-CoA analogue, we determined MenE high-resolution structures to 1.76 and 1.90 Å resolution in a thioester-forming conformation. By comparison with the adenylation conformation, we found that MenE's C-domain rotates around the Ser-384 hinge by 139.5° during domain-alternation catalysis. The structures also revealed a thioesterification active site specifically conserved among MenE orthologues and a substrate-binding mode distinct from those of many other acyl/aryl-CoA synthetases. Of note, using site-directed mutagenesis, we identified several residues that specifically contribute to the thioesterification half-reaction without affecting the adenylation half-reaction. Moreover, we observed a substantial movement of the activated succinyl group in the thioesterification half-reaction. These findings provide new insights into the domain-alternation catalysis of a bacterial enzyme essential for vitamin K biosynthesis and of its adenylating homologues in the ANL enzyme family.
Collapse
Affiliation(s)
- Yaozong Chen
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tin Lok Li
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xingbang Lin
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xin Li
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhihong Guo
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Chen Y, Jiang Y, Guo Z. Mechanistic Insights from the Crystal Structure of Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase Complexed with the Adenylate Intermediate. Biochemistry 2016; 55:6685-6695. [PMID: 27933791 DOI: 10.1021/acs.biochem.6b00889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase, or MenE, catalyzes an essential step in vitamin K biosynthesis and is a valuable drug target. Like many other adenylating enzymes, it changes its structure to accommodate substrate binding, catalysis, and product release along the path of a domain alternation catalytic mechanism. We have determined the crystal structure of its complex with the adenylation product, o-succinylbenzoyl-adenosine monophosphate (OSB-AMP), and captured a new postadenylation state. This structure presents unique features such as a strained conformation for the bound adenylate intermediate to indicate that it represents the enzyme state after completion of the adenylation reaction but before release of the C domain in its transition to the thioesterification conformation. By comparison to the ATP-bound preadenylation conformation, structural changes are identified in both the reactants and the active site to allow inference about how these changes accommodate and facilitate the adenylation reaction and to directly support an in-line backside attack nucleophilic substitution mechanism for the first half-reaction. Mutational analysis suggests that the conserved His196 plays an important role in desolvation of the active site rather than stabilizing the transition state of the adenylation reaction. In addition, comparison of the new structure with a previously determined OSB-AMP-bound structure of the same enzyme allows us to propose a release mechanism of the C domain in its alteration to form the thioesterification conformation. These findings allow us to better understand the domain alternation catalytic mechanism of MenE as well as many other adenylating enzymes.
Collapse
Affiliation(s)
- Yaozong Chen
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yiping Jiang
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Chen Y, Sun Y, Song H, Guo Z. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase. J Biol Chem 2015; 290:23971-83. [PMID: 26276389 DOI: 10.1074/jbc.m115.676304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
o-Succinylbenzoyl-CoA synthetase, or MenE, is an essential adenylate-forming enzyme targeted for development of novel antibiotics in the menaquinone biosynthesis. Using its crystal structures in a ligand-free form or in complex with nucleotides, a conserved pattern is identified in the interaction between ATP and adenylating enzymes, including acyl/aryl-CoA synthetases, adenylation domains of nonribosomal peptide synthetases, and luciferases. It involves tight gripping interactions of the phosphate-binding loop (P-loop) with the ATP triphosphate moiety and an open-closed conformational change to form a compact adenylation active site. In MenE catalysis, this ATP-enzyme interaction creates a new binding site for the carboxylate substrate, allowing revelation of the determinants of substrate specificities and in-line alignment of the two substrates for backside nucleophilic substitution reaction by molecular modeling. In addition, the ATP-enzyme interaction is suggested to play a crucial catalytic role by mutation of the P-loop residues hydrogen-bonded to ATP. Moreover, the ATP-enzyme interaction has also clarified the positioning and catalytic role of a conserved lysine residue in stabilization of the transition state. These findings provide new insights into the adenylation half-reaction in the domain alteration catalytic mechanism of the adenylate-forming enzymes.
Collapse
Affiliation(s)
- Yaozong Chen
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yueru Sun
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haigang Song
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- From the Department of Chemistry and State Key Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Song H, Sung HP, Tse YS, Jiang M, Guo Z. Ligand-dependent active-site closure revealed in the crystal structure of Mycobacterium tuberculosis MenB complexed with product analogues. ACTA ACUST UNITED AC 2014; 70:2959-69. [PMID: 25372686 DOI: 10.1107/s1399004714019440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/27/2014] [Indexed: 12/23/2022]
Abstract
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase catalyzes an essential intramolecular Claisen condensation in menaquinone biosynthesis and is an important target for the development of new antibiotics. This enzyme in Mycobacterium tuberculosis is cofactor-free and is classified as a type II DHNA-CoA synthase, differing from type I enzymes, which rely on exogenous bicarbonate for catalysis. Its crystal structures in complex with product analogues have been determined at high resolution to reveal ligand-dependent structural changes, which include the ordering of a 27-residue active-site loop (amino acids 107-133) and the reorientation of the carboxy-terminal helix (amino acids 289-301) that forms part of the active site from the opposing subunit across the trimer-trimer interface. These structural changes result in closure of the active site to the bulk solution, which is likely to take place through an induced-fit mechanism, similar to that observed for type I DHNA-CoA synthases. These findings demonstrate that the ligand-dependent conformational changes are a conserved feature of all DHNA-CoA synthases, providing new insights into the catalytic mechanism of this essential tubercular enzyme.
Collapse
Affiliation(s)
- Haigang Song
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Hoi Pang Sung
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Yuk Sing Tse
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Ming Jiang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Zhihong Guo
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
5
|
Chen M, Ma X, Chen X, Jiang M, Song H, Guo Z. Identification of a hotdog fold thioesterase involved in the biosynthesis of menaquinone in Escherichia coli. J Bacteriol 2013; 195:2768-75. [PMID: 23564174 PMCID: PMC3697248 DOI: 10.1128/jb.00141-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is used as a model organism for elucidation of menaquinone biosynthesis, for which a hydrolytic step from 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) to 1,4-dihydroxy-2-naphthoate is still unaccounted for. Recently, a hotdog fold thioesterase has been shown to catalyze this conversion in phylloquinone biosynthesis, suggesting that its closest homolog, YbgC in Escherichia coli, may be the DHNA-CoA thioesterase in menaquinone biosynthesis. However, this possibility is excluded by the involvement of YbgC in the Tol-Pal system and its complete lack of hydrolytic activity toward DHNA-CoA. To identify the hydrolytic enzyme, we have performed an activity-based screen of all nine Escherichia coli hotdog fold thioesterases and found that YdiI possesses a high level of hydrolytic activity toward DHNA-CoA, with high substrate specificity, and that another thioesterase, EntH, from siderophore biosynthesis exhibits a moderate, much lower DHNA-CoA thioesterase activity. Deletion of the ydiI gene from the bacterial genome results in a significant decrease in menaquinone production, which is little affected in ΔybgC and ΔentH mutants. These results support the notion that YdiI is the DHNA-CoA thioesterase involved in the biosynthesis of menaquinone in the model bacterium.
Collapse
Affiliation(s)
- Minjiao Chen
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
6
|
Sun Y, Song H, Li J, Li Y, Jiang M, Zhou J, Guo Z. Structural basis of the induced-fit mechanism of 1,4-dihydroxy-2-naphthoyl coenzyme A synthase from the crotonase fold superfamily. PLoS One 2013; 8:e63095. [PMID: 23658663 PMCID: PMC3637252 DOI: 10.1371/journal.pone.0063095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/28/2013] [Indexed: 01/25/2023] Open
Abstract
1, 4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase fold enzyme with an implicated role of conformational changes in catalysis. We have identified these conformational changes by determining the structures of its Escherichia coli and Synechocystis sp. PCC6803 orthologues in complex with a product analog. The structural changes include the folding of an active-site loop into a β-hairpin and significant reorientation of a helix at the carboxy terminus. Interestingly, a new interface is formed between the ordered loop and the reoriented helix, both of which also form additional interactions with the coenzyme A moiety of the ligand. Site-directed mutation of the amino acid residues involved in these ligand-induced interactions significantly diminishes the enzyme activity. These results suggest a catalytically essential induced-fit that is likely initiated by the enzyme-ligand interactions at the active site.
Collapse
Affiliation(s)
- Yueru Sun
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haigang Song
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jie Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ming Jiang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (ZG); (JZ)
| | - Zhihong Guo
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- * E-mail: (ZG); (JZ)
| |
Collapse
|
7
|
Herschlag D, Natarajan A. Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes. Biochemistry 2013; 52:2050-67. [PMID: 23488725 DOI: 10.1021/bi4000113] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multifaceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine , Stanford, California 94305, United States
| | | |
Collapse
|
8
|
Sun Y, Song H, Li J, Jiang M, Li Y, Zhou J, Guo Z. Active site binding and catalytic role of bicarbonate in 1,4-dihydroxy-2-naphthoyl coenzyme A synthases from vitamin K biosynthetic pathways. Biochemistry 2012; 51:4580-9. [PMID: 22606952 DOI: 10.1021/bi300486j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes a carbon-carbon bond formation reaction in the biosynthesis of both vitamin K1 and K2. Bicarbonate is crucial to the activity of a large subset of its orthologues but lacks a clearly defined structural and mechanistic role. Here we determine the crystal structure of the holoenzymes from Escherichia coli at 2.30 Å and Synechocystis sp. PCC6803 at 2.04 Å, in which the bicarbonate cofactor is bound to the enzyme active site at a position equivalent to that of the side chain carboxylate of an aspartate residue conserved among bicarbonate-insensitive DHNA-CoA synthases. Binding of the planar anion involves both nonspecific electrostatic attraction and specific hydrogen bonding and hydrophobic interactions. In the absence of bicarbonate, the anion binding site is occupied by a chloride ion or nitrate, an inhibitor directly competing with bicarbonate. These results provide a solid structural basis for the bicarbonate dependence of the enzymatic activity of type I DHNA-CoA synthases. The unique location of the bicarbonate ion in relation to the expected position of the substrate α-proton in the enzyme's active site suggests a critical catalytic role for the anionic cofactor as a catalytic base in enolate formation.
Collapse
Affiliation(s)
- Yueru Sun
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Song H, Guo Z. Characterization of 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase (MenB) in phylloquinone biosynthesis of Synechocystis sp. PCC 6803. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4448-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|