1
|
Cowell IG, Austin CA. Myeloperoxidase inhibition protects bone marrow mononuclear cells from DNA damage induced by the TOP2 poison anti-cancer drug etoposide. FEBS Open Bio 2024; 14:1001-1010. [PMID: 38531625 PMCID: PMC11148113 DOI: 10.1002/2211-5463.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Myeloperoxidase (MPO) is found almost exclusively in granulocytes and immature myeloid cells. It plays a key role in the innate immune system, catalysing the formation of reactive oxygen species that are important in anti-microbial action, but MPO also oxidatively transforms the topoisomerase II (TOP2) poison etoposide to chemical forms that have elevated DNA damaging properties. TOP2 poisons such as etoposide are widely used anti-cancer drugs, but they are linked to cases of secondary acute myeloid leukaemias through a mechanism that involves DNA damage and presumably erroneous repair leading to leukaemogenic chromosome translocations. This leads to the possibility that myeloperoxidase inhibitors could reduce the rate of therapy-related leukaemia by protecting haematopoietic cells from TOP2 poison-mediated genotoxic damage while preserving the anti-cancer efficacy of the treatment. We show here that myeloperoxidase inhibition reduces etoposide-induced TOP2B-DNA covalent complexes and resulting DNA double-strand break formation in primary ex vivo expanded CD34+ progenitor cells and unfractionated bone marrow mononuclear cells. Since MPO inhibitors are currently being developed as anti-inflammatory agents this raises the possibility that repurposing of these potential new drugs could provide a means of suppressing secondary acute myeloid leukaemias associated with therapies containing TOP2 poisons.
Collapse
|
2
|
Rana R, Vellanki RN, Wouters BG, Nitz M. Tellurophene-tagging of teniposide facilitates monitoring by mass cytometry. Chembiochem 2022; 23:e202200284. [PMID: 36040838 DOI: 10.1002/cbic.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Target engagement and the biodistribution of exogenously administered small molecules is rarely homogenous. Methods to determine the biodistribution at the cellular level are limited by the ability to detect the small molecule and simultaneously identify the cell types or tissue structures with which it is associated. The highly multiplexed nature of mass cytometry could facilitate these studies provided a heavy isotope label was available in the molecule of interest. Here we show it is possible to append a tellurophene to a known chemotherapeutic, teniposide, to follow this molecule in vivo . A semi-synthetic approach offers an efficient route to the teniposide analogue which is found to have indistinguishable characteristics when compared with the parent teniposide in vitro . Using mass cytometry and imaging mass cytometry we find the teniposide analogue has significant non-specific binding to cells. In vivo the tellurium bearing teniposide produces the expected DNA damage in a PANC-1 xenograft model. The distribution of Te in the tissue is near the limits of detection and further work will be required to characterize the localization of this analogue with respect to cell type distributions.
Collapse
Affiliation(s)
- Rahul Rana
- University of Toronto - St George Campus: University of Toronto, Chemistry, CANADA
| | - Ravi N Vellanki
- University Health Network, Departments of Radiation Oncology and Medical Biophysics, CANADA
| | - Bradly G Wouters
- UHN: University Health Network, Departments of Radiation Oncology and Medical Biophysics, CANADA
| | - Mark Nitz
- University of Toronto, Chemistry, 80 St. George Street, M5S3H6, Toronto, CANADA
| |
Collapse
|
3
|
Li X, Lu H, Ji M, Sun K, Pu F, Ding Y, Hu A. Synthesis and biological properties of maleimide-based macrocyclic lactone enediynes. Org Biomol Chem 2022; 20:5481-5488. [PMID: 35775821 DOI: 10.1039/d2ob00571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural enediyne antibiotics are powerful DNA-cleavage agents due to the presence of the highly reactive hex-3-ene-1,5-diyne units. However, the complicated chemical structure and thermal instability make their synthesis, derivatization, and storage challenging. Heterocycle-fused enediynes, which exhibit strong antineoplastic activity, are promising analogues of natural enediynes for medicinal applications. To this end, a series of maleimide-based enediynes with macrocyclic lactone moieties were synthesized through the Sonagashira coupling reaction. Differential scanning calorimetry and electron paramagnetic resonance results showed that these macrocyclic enediynes exhibited a rather low onset temperature and the ability to generate radicals at physiological temperature. In addition, the structure-activity relationship of enediynes was analyzed by changing the ring size and the substituents on the propargyl group. Cellular experiments indicated that the diradicals produced by these enediynes efficiently cleaved DNA and disrupted the cell cycle distribution, and consequently induced tumor cell death via an apoptosis pathway at low half inhibitory concentrations. Computational studies suggested that the maleimide moiety promoted the propargyl-allenyl rearrangement of the cyclic enediyne, enabling the generation of diradical species through the Myers-Saito cyclization, and then abstracted hydrogen atoms from the H-donors.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Mingming Ji
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ke Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fangxu Pu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Deng X, Luo T, Li Z, Wen H, Zhang H, Yang X, Lei F, Liu D, Shi T, Zhao Q, Wang Z. Design, synthesis and anti-hepatocellular carcinoma activity of 3-arylisoquinoline alkaloids. Eur J Med Chem 2022; 228:113985. [PMID: 34802836 DOI: 10.1016/j.ejmech.2021.113985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
This article describes the syntheses and biological activity of five 3-arylisoquinoline natural products corydamine (1), N-formyl Corydamine (2), hypecumine (3), Decumbenine B (XW) and 2-(1,3-dioxolo [4,5-h]isoquinolin-7-yl)-4,5-dimethoxy-N-methyl-Benzeneethanamine (A), and twelve analogues. Among them, 1, 2, and A were synthesized for the first time. In vitro screening for anti-proliferative activity showed that derivative 1a could significantly inhibit the proliferation of HCC cells (IC50 = 9.82 μM on Huh7 cells and 6.83 μM on LM9 cells), and arrest cell cycle at G2/M phase. The mechanistic studies further suggested compound 1a was a dual inhibitor of Topo I and Topo II, and Topo II inhibitory activity was superior to etoposide. In addition, 1a could significantly inhibit the invasion and migration of cancer cells by inhibiting the expression of MMP-9, and induce apoptosis through inhibiting the activation of the PI3K/Akt/mTOR signaling pathway. Moreover, in vivo studies demonstrated 1a could obviously reduce the growth of xenograft tumor and possessed good pharmacokinetic parameters, which indicated the potential value of 1a in treating liver cancer.
Collapse
Affiliation(s)
- Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhao Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huaixiu Wen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining, 810008, PR China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fang Lei
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Zhang W, Gou P, Dupret JM, Chomienne C, Rodrigues-Lima F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl Oncol 2021; 14:101169. [PMID: 34243013 PMCID: PMC8273223 DOI: 10.1016/j.tranon.2021.101169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023] Open
Abstract
Etoposide is a semi-synthetic glycoside derivative of podophyllotoxin, also known as VP-16. It is a widely used anticancer medicine in clinics. Unfortunately, high doses or long-term etoposide treatment can induce therapy-related leukemia. The mechanism by which etoposide induces secondary hematopoietic malignancies is still unclear. In this article, we review the potential mechanisms of etoposide induced therapy-related leukemia. Etoposide related leukemogenesis is known to depend on reactive oxidative metabolites of etoposide, notably etoposide quinone, which interacts with cellular proteins such as topoisomerases II (TOP2), CREB-binding protein (CREBBP), and T-Cell Protein Tyrosine Phosphatase (TCPTP). CYP3A4 and CYP3A5 metabolize etoposide to etoposide catechol, which readily oxidizes to etoposide quinone. As a poison of TOP2 enzymes, etoposide and its metabolites induce DNA double-stranded breaks (DSB), and the accumulation of DSB triggers cell apoptosis. If the cell survives, the DSB gives rise to the likelihood of faulty DNA repair events. The gene translocation could occur in mixed-lineage leukemia (MLL) gene, which is well-known in leukemogenesis. Recently, studies have revealed that etoposide metabolites, especially etoposide quinone, can covalently bind to cysteines residues of CREBBP and TCPTP enzymes, . This leads to enzyme inhibition and further affects histone acetylation and phosphorylation of the JAK-STAT pathway, thus putatively altering the proliferation and differentiation of hematopoietic stem cells (HSC). In brief, current studies suggest that etoposide and its metabolites contribute to etoposide therapy-related leukemia through TOP2 mediated DSB and impairs specific enzyme activity, such as CREBBP and TCPTP.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, Paris F-75013, France.
| | - Panhong Gou
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France
| | | | - Christine Chomienne
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|
6
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
7
|
Flor A, Wolfgeher D, Li J, Hanakahi LA, Kron SJ. Lipid-derived electrophiles mediate the effects of chemotherapeutic topoisomerase I poisons. Cell Chem Biol 2021; 28:776-787.e8. [PMID: 33352117 PMCID: PMC8206239 DOI: 10.1016/j.chembiol.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Topoisomerase 1 (Top1) reversibly nicks chromosomal DNA to relax strain accumulated during transcription, replication, chromatin assembly, and chromosome condensation. The Top1 poison camptothecin targets cancer cells by trapping the enzyme in the covalent complex Top1cc, tethered to cleaved DNA by a tyrosine-3'-phosphate bond. In vitro mechanistic studies point to interfacial inhibition, where camptothecin binding to the Top1-DNA interface stabilizes Top1cc. Here we present a complementary covalent mechanism that is critical in vivo. We observed that camptothecins induce oxidative stress, leading to lipid peroxidation, lipid-derived electrophile accumulation, and Top1 poisoning via covalent modification. The electrophile 4-hydroxy-2-nonenal can induce Top1cc on its own and forms a Michael adduct to a cysteine thiol in the Top1 active site, potentially blocking tyrosine dephosphorylation and 3' DNA phosphate release. Thereby, camptothecins may leverage a physiological cysteine-based redox switch in Top1 to mediate their selective toxicity to rapidly proliferating cancer cells.
Collapse
Affiliation(s)
- Amy Flor
- University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago IL 60637, USA,Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Amy Flor ()
| | - Donald Wolfgeher
- University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago IL 60637, USA
| | - Jing Li
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, Rockford IL 61107, USA
| | - Leslyn A. Hanakahi
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, Rockford IL 61107, USA
| | - Stephen J. Kron
- University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago IL 60637, USA,Corresponding author: 929 E. 57th St. W522A, Chicago IL 60637, USA;
| |
Collapse
|
8
|
Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021; 60:1630-1641. [PMID: 34008964 PMCID: PMC8209676 DOI: 10.1021/acs.biochem.1c00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
9
|
Abstract
1,2-Naphthoquinone, a secondary metabolite of naphthalene, is an environmental pollutant found in diesel exhaust particles that displays cytotoxic and genotoxic properties. Because many quinones have been shown to act as topoisomerase II poisons, the effects of this compound on DNA cleavage mediated by human topoisomerase IIα and IIβ were examined. The compound increased the levels of double-stranded DNA breaks generated by both enzyme isoforms and did so better than a series of naphthoquinone derivatives. Furthermore, 1,2-naphthoquinone was a more efficacious poison against topoisomerase IIα than IIβ. Topoisomerase II poisons can be classified as interfacial (which interact noncovalently at the enzyme-DNA interface and increase DNA cleavage by blocking ligation) or covalent (which adduct the protein and increase DNA cleavage by closing the N-terminal gate of the enzyme). Therefore, experiments were performed to determine the mechanistic basis for the actions of 1,2-naphthoquinone. In contrast to results with etoposide (an interfacial poison), the activity of 1,2-naphthoquinone against topoisomerase IIα was abrogated in the presence of sulfhydryl and reducing agents. Moreover, the compound inhibited cleavage activity when incubated with the enzyme prior to the addition of DNA and induced virtually no cleavage with the catalytic core of the enzyme. It also induced stable covalent topoisomerase IIα-DNA cleavage complexes and was a partial inhibitor of DNA ligation. Findings were also consistent with 1,2-naphthoquinone acting as a covalent poison of topoisomerase IIβ; however, mechanistic studies with this isoform were less conclusive. Whereas the activity of 1,2-naphthoquinone was blocked in the presence of a sulfhydryl reagent, it was much less sensitive to the presence of a reducing agent. Furthermore, the reduced form of 1,2-naphthoquinone, 1,2-dihydroxynaphthalene, displayed high activity against the β isoform. Taken together, results suggest that 1,2-naphthoquinone increases topoisomerase II-mediated double-stranded DNA scission (at least in part) by acting as a covalent poison of the human type II enzymes.
Collapse
Affiliation(s)
- Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
10
|
Kim SS, Sattely ES. Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues. J Am Chem Soc 2021; 143:5011-5021. [PMID: 33780244 DOI: 10.1021/jacs.0c13164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylpropanoids are a class of abundant building blocks found in plants and derived from phenylalanine and tyrosine. Phenylpropanoid polymerization leads to the second most abundant biopolymer lignin while stereo- and site-selective coupling generates an array of lignan natural products with potent biological activity, including the topoisomerase inhibitor and chemotherapeutic etoposide. A key step in etoposide biosynthesis involves a plant dirigent protein that promotes selective dimerization of coniferyl alcohol, a common phenylpropanoid, to form (+)-pinoresinol, a critical C2 symmetric pathway intermediate. Despite the power of this coupling reaction for the elegant and rapid assembly of the etoposide scaffold, dirigent proteins have not been utilized to generate other complex lignan natural products. Here, we demonstrate that dirigent proteins from Podophyllum hexandrum in combination with a laccase guide the heterocoupling of natural and synthetic coniferyl alcohol analogues for the enantioselective synthesis of pinoresinol analogues. This route for complexity generation is remarkably direct and efficient: three new bonds and four stereocenters are produced from two different achiral monomers in a single step. We anticipate our results will enable biocatalytic routes to difficult-to-access non-natural lignan analogues and etoposide derivatives. Furthermore, these dirigent protein and laccase-promoted reactions of coniferyl alcohol analogues represent new regio- and enantioselective oxidative heterocouplings for which no other chemical methods have been reported.
Collapse
Affiliation(s)
- Stacie S Kim
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Elizabeth S Sattely
- Department of Chemical Engineering and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Zhang W, Berthelet J, Michail C, Bui LC, Gou P, Liu R, Duval R, Renault J, Dupret JM, Guidez F, Chomienne C, Rodrigues Lima F. Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues. Free Radic Biol Med 2021; 162:27-37. [PMID: 33278510 DOI: 10.1016/j.freeradbiomed.2020.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Etoposide is an extensively prescribed anticancer drug that, unfortunately, causes therapy-related leukemia. The mechanisms by which etoposide induces secondary hematopoietic malignancies are poorly documented. However, etoposide-related leukemogenesis is known to depend on oxidative metabolites of etoposide, notably etoposide quinone, that can react with protein cysteine residues such as in topoisomerases II. CREBBP is a major histone acetyltransferase that functions mainly as a transcriptional co-activator. This epigenetic enzyme is considered as a tumor suppressor that plays a major role in hematopoiesis. Genetic alterations affecting CREBBP activity are highly common in hematopoietic malignancies. We report here that CREBBP is impaired by etoposide quinone. Molecular and kinetic analyses show that this inhibition occurs through the rapid and covalent (kinhib = 16.102 M-1. s-1) adduction of etoposide quinone with redox sensitive cysteine residues within the RING and PHD Zn2+-fingers of CREBBP catalytic core leading to subsequent release of Zn2+. In agreement with these findings, experiments conducted in cells and in mice treated with etoposide showed irreversible inhibition of endogenous CREBBP activity and decreased H3K18 and H3K27 acetylation. As shown for topoisomerases II, our work thus suggests that the leukemogenic metabolite etoposide quinone can impair the epigenetic CREBBP acetyltransferase through reaction with redox sensitive cysteine residues.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France; Université de Paris, CEDC, UMR 7216, CNRS, F-75013, Paris, France
| | | | - Linh-Chi Bui
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Panhong Gou
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Rongxing Liu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Romain Duval
- Université de Paris, BIGR, UMRS 1134, INSERM, F-75015, Paris, France
| | - Justine Renault
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | | | - Fabien Guidez
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Christine Chomienne
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|
12
|
Murphy MB, Kumar P, Bradley AM, Barton CE, Deweese JE, Mercer SL. Synthesis and evaluation of etoposide and podophyllotoxin analogs against topoisomerase IIα and HCT-116 cells. Bioorg Med Chem 2020; 28:115773. [PMID: 33035756 DOI: 10.1016/j.bmc.2020.115773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Etoposide is a widely-used anticancer agent that targets human type II topoisomerases. Evidence suggests that metabolism of etoposide in myeloid progenitor cells is associated with translocations involved in leukemia development. Previous studies suggest halogenation at the C-2' position of etoposide reduces metabolism. Halogens were introduced into the C-2' position by electrophilic aromatic halogenation onto etoposide (ETOP, 1), podophyllotoxin (PPT, 2), and 4-dimethylepipodophyllotoxin (DMEP, 3), and to bridge the gap of knowledge regarding the activity of these metabolically stable analogs. Five halogenated analogs (6-10) were synthesized. Analogs 8-10 displayed variable ability to inhibit DNA relaxation. Analog 9 was the only analog to show concentration-dependent enhancement of Top2-mediated DNA cleavage. Dose response assay results indicated that 8 and 10 were most effective at decreasing the viability of HCT-116 and A549 cancer cell lines in culture. Flow cytometry with 8 and 10 in HCT-116 cells provide evidence of sub-G1 cell populations indicative of apoptosis. Taken together, these results indicate C-2' halogenation of etoposide and its precursors, although metabolically stable, decreases overall activity relative to etoposide.
Collapse
Affiliation(s)
- Matthew B Murphy
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA
| | - Priyanka Kumar
- Department of Biology, Belmont University, 1900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Amber M Bradley
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA
| | - Christopher E Barton
- Department of Biology, Belmont University, 1900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Joseph E Deweese
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA; Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Susan L Mercer
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA; Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA.
| |
Collapse
|
13
|
Arencibia JM, Brindani N, Franco-Ulloa S, Nigro M, Kuriappan JA, Ottonello G, Bertozzi SM, Summa M, Girotto S, Bertorelli R, Armirotti A, De Vivo M. Design, Synthesis, Dynamic Docking, Biochemical Characterization, and in Vivo Pharmacokinetics Studies of Novel Topoisomerase II Poisons with Promising Antiproliferative Activity. J Med Chem 2020; 63:3508-3521. [PMID: 32196342 PMCID: PMC7997578 DOI: 10.1021/acs.jmedchem.9b01760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We
previously reported a first set of hybrid topoisomerase II (topoII)
poisons whose chemical core merges key pharmacophoric elements of
etoposide and merbarone, which are two well-known topoII blockers.
Here, we report on the expansion of this hybrid molecular scaffold
and present 16 more hybrid derivatives that have been designed, synthesized,
and characterized for their ability to block topoII and for their
overall drug-like profile. Some of these compounds act as topoII poison
and exhibit good solubility, metabolic (microsomal) stability, and
promising cytotoxicity in three cancer cell lines (DU145, HeLa, A549).
Compound 3f (ARN24139) is the most promising drug-like
candidate, with a good pharmacokinetics profile in vivo. Our results indicate that this hybrid new chemical class of topoII
poisons deserves further exploration and that 3f is a
favorable lead candidate as a topoII poison, meriting future studies
to test its efficacy in in vivo tumor models.
Collapse
Affiliation(s)
- Jose M Arencibia
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicoletta Brindani
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Michela Nigro
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Giuliana Ottonello
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Stefania Girotto
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
14
|
Nian Q, Berthelet J, Zhang W, Bui LC, Liu R, Xu X, Duval R, Ganesan S, Leger T, Chomienne C, Busi F, Guidez F, Dupret JM, Rodrigues Lima F. T-Cell Protein Tyrosine Phosphatase Is Irreversibly Inhibited by Etoposide-Quinone, a Reactive Metabolite of the Chemotherapy Drug Etoposide. Mol Pharmacol 2019; 96:297-306. [DOI: 10.1124/mol.119.116319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022] Open
|
15
|
Ting CP, Tschanen E, Jang E, Maimone TJ. Total synthesis of podophyllotoxin and select analog designs via C–H activation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Morris WH, Ngo L, Wilson JT, Medawala W, Brown AR, Conner JD, Fabunmi F, Cashman DJ, Lisic EC, Yu T, Deweese JE, Jiang X. Structural and Metal Ion Effects on Human Topoisomerase IIα Inhibition by α-(N)-Heterocyclic Thiosemicarbazones. Chem Res Toxicol 2018; 32:90-99. [DOI: 10.1021/acs.chemrestox.8b00204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- William H. Morris
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Lana Ngo
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - James T. Wilson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204-3951, United States
| | - Wathsala Medawala
- Department of Chemistry, Georgia College, Milledgeville, Georgia 31061, United States
| | - Anthony R. Brown
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Jennifer D. Conner
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Florence Fabunmi
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Derek J. Cashman
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Edward C. Lisic
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Tao Yu
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Joseph E. Deweese
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204-3951, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Xiaohua Jiang
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
17
|
Association of nephrotoxicity during platinum-etoposide doublet therapy with UGT1A1 polymorphisms in small cell lung cancer patients. Lung Cancer 2018; 126:156-161. [PMID: 30527181 DOI: 10.1016/j.lungcan.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Etoposide is a key agent in the treatment of small cell lung cancer (SCLC). Uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) is thought to be largely responsible for the glucuronidation of etoposide as well as that of irinotecan, suggesting that polymorphisms of UGT1A1 might be predictive of etoposide toxicity. We therefore examined the relation between UGT1A1 polymorphisms and toxicity profile during platinum-etoposide doublet therapy in SCLC patients. MATERIALS AND METHODS SCLC patients who underwent platinum-etoposide doublet therapy and molecular testing for UGT1A1 genotype were reviewed for the occurrence of adverse events during treatment. RESULTS A total of 41 SCLC patients received platinum-etoposide doublet therapy and were genotyped for UGT1A1*6 and UGT1A1*28 alleles. These alleles were detected in 15 (36.6%) patients, with the genotypes of *6/-, *6/*6, *28/-, *28/*28, or *6/*28 being observed in 9 (22.0%), 2 (4.9%), 2 (4.9%), 1 (2.4%), and 1 (2.4%) patients, respectively. The presence of these alleles was significantly associated with an increase in serum creatinine concentration of grade ≥2 (incidence of 66.7% for patients with the alleles versus 11.5% for those without, P < 0.001). Multivariate analysis also showed that these UGT1A1 alleles were significantly associated with therapy-induced nephrotoxicity (odds ratio of 19.30, 95% confidence interval of 2.50-149.00, P < 0.005). Although the differences did not achieve statistical significance, the incidence of other severe toxicities including febrile neutropenia was also slightly higher in patients with the UGT1A1*6 or UGT1A1*28 alleles than in those without them. CONCLUSION Our results reveal an association between UGT1A1 polymorphisms and toxicity of platinum-etoposide doublet therapy in SCLC patients, suggesting that close monitoring for toxicity, especially nephrotoxicity, is warranted for patients with such variant alleles receiving this treatment.
Collapse
|
18
|
Cysteine modifiers suggest an allosteric inhibitory site on the CAL PDZ domain. Biosci Rep 2018; 38:BSR20180231. [PMID: 29472314 PMCID: PMC6435542 DOI: 10.1042/bsr20180231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 01/28/2023] Open
Abstract
Protein-protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL). We develop and validate biochemical screens and identify methyl-3,4-dephostatin (MD) and its analog ethyl-3,4-dephostatin (ED) as CAL PDZ inhibitors. Depending on conditions, MD can bind either covalently or non-covalently. Crystallographic and NMR data confirm that MD attacks a pocket at a site distinct from the canonical peptide-binding groove, and suggests an allosteric connection between target residue Cys319 and the conserved Leu291 in the GLGI motif. MD and ED thus appear to represent the first examples of small-molecule allosteric regulation of PDZ:peptide affinity. Their mechanism of action may exploit the known conformational plasticity of the PDZ domains and suggests that allosteric modulation may represent a strategy for targeting of this family of protein-protein binding modules.
Collapse
|
19
|
Flor AC, Wolfgeher D, Wu D, Kron SJ. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov 2017; 3:17075. [PMID: 29090099 PMCID: PMC5661608 DOI: 10.1038/cddiscovery.2017.75] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/01/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
At their proliferative limit, normal cells arrest and undergo replicative senescence, displaying large cell size, flat morphology, and senescence-associated beta-galactosidase (SA-β-Gal) activity. Normal or tumor cells exposed to genotoxic stress undergo therapy-induced senescence (TIS), displaying a similar phenotype. Senescence is considered a DNA damage response, but cellular heterogeneity has frustrated identification of senescence-specific markers and targets. To explore the senescent cell proteome, we treated tumor cells with etoposide and enriched SA-β-GalHI cells by fluorescence-activated cell sorting (FACS). The enriched TIS cells were compared to proliferating or quiescent cells by label-free quantitative LC-MS/MS proteomics and systems analysis, revealing activation of multiple lipid metabolism pathways. Senescent cells accumulated lipid droplets and imported lipid tracers, while treating proliferating cells with specific lipids induced senescence. Senescent cells also displayed increased lipid aldehydes and upregulation of aldehyde detoxifying enzymes. These results place deregulation of lipid metabolism alongside genotoxic stress as factors regulating cellular senescence.
Collapse
Affiliation(s)
- Amy C Flor
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Don Wolfgeher
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Ding Wu
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer. Cancers (Basel) 2017; 9:cancers9060063. [PMID: 28587258 PMCID: PMC5483882 DOI: 10.3390/cancers9060063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022] Open
Abstract
Indocyanine green (ICG) has been reported as a potential near-infrared (NIR) photosensitizer for photodynamic therapy (PDT) of cancer. However the application of ICG-mediated PDT is both intrinsically and physiologically limited. Here we report a combination of ICG-PDT with a chemotherapy drug etoposide (VP-16), aiming to enhance the anticancer efficacy, to circumvent limitations of PDT using ICG, and to reduce side effects of VP-16. We found in controlled in vitro cell-based assays that this combination is effective in killing non-small-cell lung cancer cells (NSCLC, A549 cell line). We also found that the combination of ICG-PDT and VP-16 exhibits strong synergy in killing non-small-cell lung cancer cells partially through inducing more DNA double-strand breaks (DSBs), while it has a much weaker synergy in killing human normal cells (GM05757). Furthermore, by studying the treatment sequence dependence and the cytotoxicity of laser-irradiated mixtures of ICG and VP-16, we found that the observed synergy involves direct/indirect reactions between ICG and VP-16. We further propose that there exists an electron transfer reaction between ICG and VP-16 under irradiation. This study therefore shows the anticancer efficacy of ICG-PDT combined with VP-16. These findings suggest that ICG-mediated PDT may be applied in combination with the chemotherapy drug VP-16 to treat some cancers, especially the non-small-cell lung cancer.
Collapse
|
21
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
22
|
|
23
|
Atwal M, Lishman EL, Austin CA, Cowell IG. Myeloperoxidase Enhances Etoposide and Mitoxantrone-Mediated DNA Damage: A Target for Myeloprotection in Cancer Chemotherapy. Mol Pharmacol 2016; 91:49-57. [PMID: 27974636 PMCID: PMC5198516 DOI: 10.1124/mol.116.106054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023] Open
Abstract
Myeloperoxidase is expressed exclusively in granulocytes and immature myeloid cells and transforms the topoisomerase II (TOP2) poisons etoposide and mitoxantrone to chemical forms that have altered DNA damaging properties. TOP2 poisons are valuable and widely used anticancer drugs, but they are associated with the occurrence of secondary acute myeloid leukemias. These factors have led to the hypothesis that myeloperoxidase inhibition could protect hematopoietic cells from TOP2 poison-mediated genotoxic damage and, therefore, reduce the rate of therapy-related leukemia. We show here that myeloperoxidase activity leads to elevated accumulation of etoposide- and mitoxantrone-induced TOP2A and TOP2B-DNA covalent complexes in cells, which are converted to DNA double-strand breaks. For both drugs, the effect of myeloperoxidase activity was greater for TOP2B than for TOP2A. This is a significant finding because TOP2B has been linked to genetic damage associated with leukemic transformation, including etoposide-induced chromosomal breaks at the MLL and RUNX1 loci. Glutathione depletion, mimicking in vivo conditions experienced during chemotherapy treatment, elicited further MPO-dependent increase in TOP2A and especially TOP2B-DNA complexes and DNA double-strand break formation. Together these results support targeting myeloperoxidase activity to reduce genetic damage leading to therapy-related leukemia, a possibility that is enhanced by the recent development of novel specific myeloperoxidase inhibitors for use in inflammatory diseases involving neutrophil infiltration.
Collapse
Affiliation(s)
- Mandeep Atwal
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| | - Emma L Lishman
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| |
Collapse
|
24
|
Gibson EG, King MM, Mercer SL, Deweese JE. Two-Mechanism Model for the Interaction of Etoposide Quinone with Topoisomerase IIα. Chem Res Toxicol 2016; 29:1541-8. [DOI: 10.1021/acs.chemrestox.6b00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elizabeth G. Gibson
- Department
of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - McKenzie M. King
- Department
of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Susan L. Mercer
- Department
of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Joseph E. Deweese
- Department
of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| |
Collapse
|
25
|
Sahoo AK, Goswami U, Dutta D, Banerjee S, Chattopadhyay A, Ghosh SS. Silver Nanocluster Embedded Composite Nanoparticles for Targeted Prodrug Delivery in Cancer Theranostics. ACS Biomater Sci Eng 2016; 2:1395-1402. [DOI: 10.1021/acsbiomaterials.6b00334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amaresh Kumar Sahoo
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Upashi Goswami
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Deepanjalee Dutta
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Subhamoy Banerjee
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
26
|
Abstract
Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence.
Collapse
Affiliation(s)
- A C Flor
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - A P Doshi
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - S J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Wilson JT, Jiang X, McGill BC, Lisic EC, Deweese JE. Examination of the Impact of Copper(II) α-(N)-Heterocyclic Thiosemicarbazone Complexes on DNA Topoisomerase IIα. Chem Res Toxicol 2016; 29:649-58. [DOI: 10.1021/acs.chemrestox.5b00471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- James T. Wilson
- Department
of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204-3951, United States
| | - Xiaohua Jiang
- Department
of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Bradley C. McGill
- Department
of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Edward C. Lisic
- Department
of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Joseph E. Deweese
- Department
of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204-3951, United States
- Department
of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
28
|
Wang X, Yang P, Li J, Ihsan A, Liu Q, Cheng G, Tao Y, Liu Z, Yuan Z. Genotoxic risk of quinocetone and its possible mechanism in in vitro studies. Toxicol Res (Camb) 2016; 5:446-460. [PMID: 30090359 PMCID: PMC6062406 DOI: 10.1039/c5tx00341e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022] Open
Abstract
Quinoxalines possessing the quinoxaline-1,4-dioxide (QdNOs) basic structure are used for their antibacterial action, although their mechanism of genotoxicity is not clear. After comparing the sensitivity of V79 cells and HepG2 cells to quinocetone (QCT) and other QdNOs, it was found that HepG2 cells are more sensitive. The results show that QCT induces the generation of O2˙- and OH˙ during metabolism. Free radicals could then attack guanine and induce 8-hydroxy-deoxyguanine (8-OHdG) generation, causing DNA strand breakage, the inhibition of topoisomerase II (topo II) activity, and alter PCNA, Gadd45 and topo II gene expression. QCT also caused mutations in the mtDNA genes COX1, COX3 and ATP6, which might affect the function of the mitochondrial respiratory chain and increase the production of reactive oxygen species (ROS). Nuclear extracts from HepG2 cells treated with QCT had markedly reduced topo II activity, as judged by the inability to convert pBR322 DNA from the catenated to the decatenated form by producing stable DNA-topo II complexes. This study suggests that QCT electrostatically bound to DNA in a groove, affecting the dissociation of topo II from DNA and impacting DNA replication. Taken together, these data reveal that DNA damage induced by QCT resulted from O2˙- and OH˙ generated in the metabolism process. This data throws new light onto the genotoxicity of quinoxalines.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
| | - Panpan Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Juan Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Awais Ihsan
- Department of Biosciences , COMSATS Institute of Information Technology , Sahiwal , Pakistan
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Yanfei Tao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zhengli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| |
Collapse
|
29
|
Sinha BK, Mason RP. IS METABOLIC ACTIVATION OF TOPOISOMERASE II POISONS IMPORTANT IN THE MECHANISM OF CYTOTOXICITY? ACTA ACUST UNITED AC 2015; 6. [PMID: 31171989 DOI: 10.4172/2157-7609.1000186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antitumor drugs doxorubicin and etoposide, a phodophyllotoxin derivative, are clinically active for the treatment of human malignancies. Because of their extreme effectiveness in the clinic, their modes of actions have been the subject of intense research for over several decades both in the laboratory and in the clinic. It has been found that both doxorubicin and etoposide (VP-16) act on topoisomerase II, induce DNA cleavage, and form double-strand breaks, causing tumor cell death. However, both of these drugs also undergo extensive metabolism in tumor cells and in vivo to various reactive intermediates that bind covalently to cellular DNA and proteins. Moreover, both drugs are metabolized to reactive free radicals that induce lipid peroxidation and DNA damage. However, the role of drug activation in the mechanism of cytotoxicity remains poorly defined. In this review, we critically evaluate the significance of metabolic activation of doxorubicin and etoposide in the mechanism of tumor cytotoxicity.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle, Park, North Carolina, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle, Park, North Carolina, USA
| |
Collapse
|
30
|
Chiriac AI, Kloss F, Krämer J, Vuong C, Hertweck C, Sahl HG. Mode of action of closthioamide: the first member of the polythioamide class of bacterial DNA gyrase inhibitors. J Antimicrob Chemother 2015; 70:2576-88. [PMID: 26174721 DOI: 10.1093/jac/dkv161] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/23/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The spread of MDR bacteria represents a serious threat to human society and novel antibiotic drugs, preferably from new chemical classes, are urgently needed. Closthioamide was isolated from the strictly anaerobic bacterium Clostridium cellulolyticum and belongs to a new class of natural products, the polythioamides. Here, we investigated the antimicrobial activity and mechanism of action of closthioamide. METHODS For assessing the antimicrobial activity of closthioamide, MIC values and killing kinetics were determined. To identify its target pathway, whole-cell-based assays were used including analysis of macromolecular synthesis and recording the susceptibility profile of a library of clones with down-regulated potential target genes. Subsequently, the inhibitory effect of closthioamide on the activity of isolated target enzymes, e.g. DNA gyrase and topoisomerase IV, was evaluated. RESULTS Closthioamide had broad-spectrum activity against Gram-positive bacteria. Notably, closthioamide was very potent against MRSA and VRE strains. Closthioamide impaired DNA replication and inhibited DNA gyrase activity, in particular the ATPase function of gyrase and of topoisomerase IV, whereas there was little effect on the cleavage-rejoining function. Closthioamide also inhibited the relaxation activity of DNA gyrase, which does not require ATP hydrolysis, and thus may allosterically rather than directly interfere with the ATPase activity of gyrase. Cross-resistance to ciprofloxacin and novobiocin could not be detected in experimental mutants and clinical isolates. CONCLUSIONS Closthioamide, a member of an unprecedented class of antibiotics, is a potent inhibitor of bacterial DNA gyrase; however, its molecular mechanism differs from that of the quinolones and aminocoumarins.
Collapse
Affiliation(s)
- Alina Iulia Chiriac
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Florian Kloss
- Biomolecular Chemistry Department, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Jonas Krämer
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Cuong Vuong
- Department of Bacteriology, AiCuris GmbH & Co. KG, Wuppertal, Germany
| | - Christian Hertweck
- Biomolecular Chemistry Department, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Kamal A, Ali Hussaini SM, Rahim A, Riyaz S. Podophyllotoxin derivatives: a patent review (2012 - 2014). Expert Opin Ther Pat 2015; 25:1025-34. [PMID: 26027947 DOI: 10.1517/13543776.2015.1051727] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Podophyllotoxin (PPT) is a naturally occurring antimitotic agent and an interesting lead in the development of anticancer agents. Its optimization led to the development of etoposide and teniposide used in combination chemotherapy with other anticancer drugs; unlike PPT these drugs act by inhibiting topoisomerases. Clinical success and toxicity issues at later stages of etoposide usage inclined researchers to develop structurally modified PPT derivatives. Some of the compounds obtained are under clinical investigations and are anticipated to reach the market. AREAS COVERED The present review summarizes the attempts made by researchers across the globe to find out newer anticancer agents based on the PPT structure. It brings out the outline of the inventions filed in the form of patents during the years 2012 - 2014. EXPERT OPINION After the successful development of etoposide and teniposide there has been considerable interest in the PPT skeleton to develop newer chemotherapeutic agents. In this regard, several PPT derivatives such as TOP53, GL331, NK611, F11782, and so on, have been developed and are undergoing clinical trials. However, its low natural abundance is a major problem in carrying out research on PPT skeleton. This issue is expected to be addressed with the development of newer synthetic strategies to access structurally modified PPTs.
Collapse
Affiliation(s)
- Ahmed Kamal
- a 1 CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry and Pharmacology , Hyderabad 500007, India +91 40 27193157 ; +91 40 27193189 ;
| | | | | | | |
Collapse
|
32
|
Regal KM, Mercer SL, Deweese JE. HU-331 is a catalytic inhibitor of topoisomerase IIα. Chem Res Toxicol 2014; 27:2044-51. [PMID: 25409338 DOI: 10.1021/tx500245m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Topoisomerases are essential enzymes that are involved in DNA metabolism. Topoisomerase II generates transient DNA strand breaks that are stabilized by anticancer drugs, such as doxorubicin, causing an accumulation of DNA damage. However, doxorubicin causes cardiac toxicity and, like etoposide and other topoisomerase II-targeted agents, can induce DNA damage, resulting in secondary cancers. The cannabinoid quinone HU-331 has been identified as a potential anticancer drug that demonstrates more potency in cancer cells with less off-target toxicity than that of doxorubicin. Reports indicate that HU-331 does not promote cell death via apoptosis, cell cycle arrest, caspase activation, or DNA strand breaks. However, the precise mechanism of action is poorly understood. We employed biochemical assays to study the mechanism of action of HU-331 against purified topoisomerase IIα. These assays examined DNA binding, cleavage, ligation, relaxation, and ATPase activities of topoisomerase IIα. Our results demonstrate that HU-331 inhibits topoisomerase IIα-mediated DNA relaxation at micromolar levels. We find that HU-331 does not induce DNA strand breaks in vitro. When added prior to the DNA substrate, HU-331 blocks DNA cleavage and relaxation activities of topoisomerase IIα in a redox-sensitive manner. The action of HU-331 can be blocked, but not reversed, by the presence of dithiothreitol. Our results also show that HU-331 inhibits the ATPase activity of topoisomerase IIα using a noncompetitive mechanism. Preliminary binding studies also indicate that HU-331 decreases the ability of topoisomerase IIα to bind DNA. In summary, HU-331 inhibits relaxation activity without poisoning DNA cleavage. This action is sensitive to reducing agents and appears to involve noncompetitive inhibition of the ATPase activity and possibly inhibition of DNA binding. These studies provide a promising foundation for the exploration of HU-331 as a catalytic inhibitor of topoisomerase IIα.
Collapse
Affiliation(s)
- Kellie M Regal
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences , Nashville, Tennessee 37204-3951, United States
| | | | | |
Collapse
|
33
|
Lindsey RH, Pendleton M, Ashley RE, Mercer SL, Deweese JE, Osheroff N. Catalytic core of human topoisomerase IIα: insights into enzyme-DNA interactions and drug mechanism. Biochemistry 2014; 53:6595-602. [PMID: 25280269 PMCID: PMC4204876 DOI: 10.1021/bi5010816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coordination between the N-terminal gate and the catalytic core of topoisomerase II allows the proper capture, cleavage, and transport of DNA during the catalytic cycle. Because the activities of these domains are tightly linked, it has been difficult to discern their individual contributions to enzyme-DNA interactions and drug mechanism. To further address the roles of these domains, we analyzed the activity of the catalytic core of human topoisomerase IIα. The catalytic core and the wild-type enzyme both maintained higher levels of cleavage with negatively (as compared to positively) supercoiled plasmid, indicating that the ability to distinguish supercoil handedness is embedded within the catalytic core. However, the catalytic core alone displayed little ability to cleave DNA substrates that did not intrinsically provide the enzyme with a transport segment (i.e., substrates that did not contain crossovers). Finally, in contrast to interfacial topoisomerase II poisons, covalent poisons did not enhance DNA cleavage mediated by the catalytic core. This distinction allowed us to further characterize the mechanism of etoposide quinone, a drug metabolite that functions primarily as a covalent poison. Etoposide quinone retained some ability to enhance DNA cleavage mediated by the catalytic core, indicating that it still can function as an interfacial poison. These results further define the distinct contributions of the N-terminal gate and the catalytic core to topoisomerase II function. The catalytic core senses the handedness of DNA supercoils during cleavage, while the N-terminal gate is critical for capturing the transport segment and for the activity of covalent poisons.
Collapse
Affiliation(s)
- R Hunter Lindsey
- Department of Biochemistry, ‡Department of Pharmacology, and §Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | |
Collapse
|
34
|
Prachayasittikul V, Pingaew R, Worachartcheewan A, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur J Med Chem 2014; 84:247-63. [DOI: 10.1016/j.ejmech.2014.07.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 07/05/2014] [Indexed: 11/24/2022]
|
35
|
Gao R, Schellenberg MJ, Huang SYN, Abdelmalak M, Marchand C, Nitiss KC, Nitiss JL, Williams RS, Pommier Y. Proteolytic degradation of topoisomerase II (Top2) enables the processing of Top2·DNA and Top2·RNA covalent complexes by tyrosyl-DNA-phosphodiesterase 2 (TDP2). J Biol Chem 2014; 289:17960-9. [PMID: 24808172 DOI: 10.1074/jbc.m114.565374] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic type II topoisomerases (Top2α and Top2β) are homodimeric enzymes; they are essential for altering DNA topology by the formation of normally transient double strand DNA cleavage. Anticancer drugs (etoposide, doxorubicin, and mitoxantrone) and also Top2 oxidation and DNA helical alterations cause potentially irreversible Top2·DNA cleavage complexes (Top2cc), leading to Top2-linked DNA breaks. Top2cc are the therapeutic mechanism for killing cancer cells. Yet Top2cc can also generate recombination, translocations, and apoptosis in normal cells. The Top2 protein-DNA covalent complexes are excised (in part) by tyrosyl-DNA-phosphodiesterase 2 (TDP2/TTRAP/EAP2/VPg unlinkase). In this study, we show that irreversible Top2cc induced in suicidal substrates are not processed by TDP2 unless they first undergo proteolytic processing or denaturation. We also demonstrate that TDP2 is most efficient when the DNA attached to the tyrosyl is in a single-stranded configuration and that TDP2 can efficiently remove a tyrosine linked to a single misincorporated ribonucleotide or to polyribonucleotides, which expands the TDP2 catalytic profile with RNA substrates. The 1.6-Å resolution crystal structure of TDP2 bound to a substrate bearing a 5'-ribonucleotide defines a mechanism through which RNA can be accommodated in the TDP2 active site, albeit in a strained conformation.
Collapse
Affiliation(s)
- Rui Gao
- From the Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew J Schellenberg
- the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Shar-Yin N Huang
- From the Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Monica Abdelmalak
- From the Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Christophe Marchand
- From the Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Karin C Nitiss
- the Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, Illinois 61107
| | - John L Nitiss
- the Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, Illinois 61107
| | - R Scott Williams
- the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Yves Pommier
- From the Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
36
|
Smith NA, Byl JAW, Mercer SL, Deweese JE, Osheroff N. Etoposide quinone is a covalent poison of human topoisomerase IIβ. Biochemistry 2014; 53:3229-36. [PMID: 24766193 PMCID: PMC4033626 DOI: 10.1021/bi500421q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Etoposide is a topoisomerase II poison
that is utilized to treat
a broad spectrum of human cancers. Despite its wide clinical use,
2–3% of patients treated with etoposide eventually develop
treatment-related acute myeloid leukemias (t-AMLs) characterized by
rearrangements of the MLL gene. The molecular basis
underlying the development of these t-AMLs is not well understood;
however, previous studies have implicated etoposide metabolites (i.e.,
etoposide quinone) and topoisomerase IIβ in the leukemogenic
process. Although interactions between etoposide quinone and topoisomerase
IIα have been characterized, the effects of the drug metabolite
on the activity of human topoisomerase IIβ have not been reported.
Thus, we examined the ability of etoposide quinone to poison human
topoisomerase IIβ. The quinone induced ∼4 times more
enzyme-mediated DNA cleavage than did the parent drug. Furthermore,
the potency of etoposide quinone was ∼2 times greater against
topoisomerase IIβ than it was against topoisomerase IIα,
and the drug reacted ∼2–4 times faster with the β
isoform. Etoposide quinone induced a higher ratio of double- to single-stranded
breaks than etoposide, and its activity was less dependent on ATP.
Whereas etoposide acts as an interfacial topoisomerase II poison,
etoposide quinone displayed all of the hallmarks of a covalent poison:
the activity of the metabolite was abolished by reducing agents, and
the compound inactivated topoisomerase IIβ when it was incubated
with the enzyme prior to the addition of DNA. These results are consistent
with the hypothesis that etoposide quinone contributes to etoposide-related
leukemogenesis through an interaction with topoisomerase IIβ.
Collapse
Affiliation(s)
- Nicholas A Smith
- Departments of †Biochemistry, ‡Medicine (Hematology/Oncology), and §Pharmacology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | |
Collapse
|
37
|
Ashley RE, Osheroff N. Natural products as topoisomerase II poisons: effects of thymoquinone on DNA cleavage mediated by human topoisomerase IIα. Chem Res Toxicol 2014; 27:787-93. [PMID: 24650156 PMCID: PMC4033629 DOI: 10.1021/tx400453v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
seeds of Nigella sativa (often
referred to as black seed) have long been utilized as a medicinal
herb in Middle Eastern, Northern African, and Indian cultures. Historically,
black seed has been used to treat a variety of illnesses associated
with inflammation. More recent studies have found that it induces
apoptosis and displays anticancer activity in animal and cellular
models. The major bioactive compound of black seed is thymoquinone,
which shares structural features with 1,4-benzoquinone and other covalent
topoisomerase II poisons. Because a number of anticancer drugs target
type II topoisomerases, we determined the effects of thymoquinone
and a series of related quinones on human topoisomerase IIα.
Thymoquinone enhanced enzyme-mediated DNA cleavage ∼5-fold,
which is similar to the increase seen with the anticancer drug etoposide.
In order to enhance cleavage, compounds had to have at least two positions
available for acylation. Furthermore, activity was decreased by the
inclusion of electron-donating groups or bulky substituents. As predicted
for a covalent topoisomerase II poison, the activity of thymoquinone
(and related compounds) was abrogated by the addition of a reducing
agent. Also, thymoquinone inhibited topoisomerase IIα activity
when incubated with the enzyme prior to the addition of DNA. Cleavage
complexes formed in the presence of the compound were stable for at
least 8 h. Lastly, black seed extract and black seed oil both increased
levels of enzyme-mediated DNA cleavage, suggesting that thymoquinone
is active even in more complex herbal formulations. These findings
indicate that thymoquinone can be added to the growing list of dietary
and medicinal natural products with activity against human type II
topoisomerases.
Collapse
Affiliation(s)
- Rachel E Ashley
- Departments of †Biochemistry and ‡Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | |
Collapse
|
38
|
Pendleton M, Lindsey RH, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci 2014; 1310:98-110. [PMID: 24495080 DOI: 10.1111/nyas.12358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use also is associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II-active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential.
Collapse
Affiliation(s)
- Maryjean Pendleton
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
39
|
Jacob DA, Gibson EG, Mercer SL, Deweese JE. Etoposide catechol is an oxidizable topoisomerase II poison. Chem Res Toxicol 2013; 26:1156-8. [PMID: 23863110 DOI: 10.1021/tx400205n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Topoisomerase II regulates DNA topology by generating transient double-stranded breaks. The anticancer drug etoposide targets topoisomerase II and is associated with the formation of secondary leukemias in patients. The quinone and catechol metabolites of etoposide may contribute to strand breaks that trigger leukemic translocations. To further analyze the characteristics of etoposide metabolites, we extend our previous analysis of etoposide quinone to the catechol. We demonstrate that the catechol is ∼2-3-fold more potent than etoposide and under oxidative reaction conditions induces high levels of double-stranded DNA cleavage. These results support a role for etoposide catechol in contributing to therapy-induced DNA damage.
Collapse
Affiliation(s)
- David A Jacob
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204-3951, USA
| | | | | | | |
Collapse
|
40
|
Karkare S, Chung TTH, Collin F, Mitchenall LA, McKay AR, Greive SJ, Meyer JJM, Lall N, Maxwell A. The naphthoquinone diospyrin is an inhibitor of DNA gyrase with a novel mechanism of action. J Biol Chem 2012; 288:5149-56. [PMID: 23275348 PMCID: PMC3576119 DOI: 10.1074/jbc.m112.419069] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.
Collapse
Affiliation(s)
- Shantanu Karkare
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fimognari C, Ferruzzi L, Turrini E, Carulli G, Lenzi M, Hrelia P, Cantelli-Forti G. Metabolic and toxicological considerations of botanicals in anticancer therapy. Expert Opin Drug Metab Toxicol 2012; 8:819-32. [PMID: 22540949 DOI: 10.1517/17425255.2012.685717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Cancer is a complex disease, characterized by redundant aberrant signaling pathways as a result of genetic perturbations at different levels. Botanicals consist of a complex mixture of constituents and exhibit pharmacological effects by the interaction of many phytochemicals. The multitarget nature of botanicals could, therefore, be a relevant strategy to address the biological complexity that characterizes tumors. AREAS COVERED This article reviews the current status of botanicals in the oncological field and the challenges associated with their complex nature. EXPERT OPINION Botanicals are an important new pharmacological strategy, which are potentially exploitable in the oncological area but are characterized by a number of problems still unresolved. Content variation of products is one of the primary problems with botanicals and, consequently, there is a concern about the therapeutic consistency in marketed batches. Furthermore, metabolic interactions with antineoplastic drugs and the genotoxic potential of botanicals need to be properly addressed throughout the various phases of botanical drug development. These issues not only pose a serious problem to the approvability of those botanical products as new drugs but also present as a limitation to their post-approval clinical use.
Collapse
Affiliation(s)
- Carmela Fimognari
- Alma Mater Studiorum-University of Bologna, Department of Pharmacology, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|