1
|
Mahdi S, Lim S, Bezsonova I, Beuning PJ, Korzhnev DM. The backbone NMR resonance assignments of the stabilized E. coli β clamp. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:293-297. [PMID: 39269602 DOI: 10.1007/s12104-024-10202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The 81 kDa E. coli β clamp is a ring-shaped head-to-tail homodimer that encircles DNA and plays a central role in bacterial DNA replication by serving as a processivity factor for DNA polymerases and a binding platform for other DNA replication and repair proteins. Here we report the backbone 1H, 15N, and 13C NMR resonance assignments of the stabilized T45R/S107R β clamp variant obtained using standard TROSY-based triple-resonance experiments (BMRB 52548). The backbone assignments were aided by 13C and 15N edited NOESY experiments, allowing us to utilize our previously reported assignments of the β clamp ILV side-chain methyl groups (BMRB 51430, 51431). The backbone assignments of the T45R/S107R β clamp variant were transferred to the wild-type β clamp using a minimal set of TROSY-based 15N edited NOESY, NHCO and NHCA experiments (BMRB 52549). The reported backbone and previous ILV side-chain resonance assignments will enable NMR studies of the β clamp interactions and dynamics using amide and methyl groups as probes.
Collapse
Affiliation(s)
- Sam Mahdi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Socheata Lim
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
3
|
Simonsen S, Søgaard CK, Olsen JG, Otterlei M, Kragelund BB. The bacterial DNA sliding clamp, β-clamp: structure, interactions, dynamics and drug discovery. Cell Mol Life Sci 2024; 81:245. [PMID: 38814467 PMCID: PMC11139829 DOI: 10.1007/s00018-024-05252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, β-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. β -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, β-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of β-clamp. In this review, we scrutinize the β-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting β-clamp. Despite decades of research in β-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.
Collapse
Affiliation(s)
- Signe Simonsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Johan G Olsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Birthe B Kragelund
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
4
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication. J Biol Chem 2024; 300:107166. [PMID: 38490435 PMCID: PMC11044049 DOI: 10.1016/j.jbc.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emily K Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emma L Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
5
|
Ham D, Inoue A, Xu J, Du Y, Chung KY. Molecular mechanism of muscarinic acetylcholine receptor M3 interaction with Gq. Commun Biol 2024; 7:362. [PMID: 38521872 PMCID: PMC10960872 DOI: 10.1038/s42003-024-06056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Muscarinic acetylcholine receptor M3 (M3) and its downstream effector Gq/11 are critical drug development targets due to their involvement in physiopathological processes. Although the structure of the M3-miniGq complex was recently published, the lack of information on the intracellular loop 3 (ICL3) of M3 and extensive modification of Gαq impedes the elucidation of the molecular mechanism of M3-Gq coupling under more physiological condition. Here, we describe the molecular mechanism underlying the dynamic interactions between full-length wild-type M3 and Gq using hydrogen-deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cell systems. We propose a detailed analysis of M3-Gq coupling through examination of previously well-defined binding interfaces and neglected regions. Our findings suggest potential binding interfaces between M3 and Gq in pre-assembled and functionally active complexes. Furthermore, M3 ICL3 negatively affected M3-Gq coupling, and the Gαq AHD underwent unique conformational changes during M3-Gq coupling.
Collapse
Affiliation(s)
- Donghee Ham
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Jun Xu
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Shenzhen Futian Biomedical Innovation R&D Center, the Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences in clamp loader mechanism between bacteria and eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569468. [PMID: 38076975 PMCID: PMC10705477 DOI: 10.1101/2023.11.30.569468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp, and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader Replication Factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the E. coli clamp loader at high resolution using cryo-electron microscopy (cryo-EM). We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T. Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emily K. Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emma L. Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
7
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
8
|
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nat Commun 2022; 13:6791. [PMID: 36357385 PMCID: PMC9649653 DOI: 10.1038/s41467-022-34398-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat non-small cell lung cancers (NSCLC) driven by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain (TKD). TKI responses vary across tumors driven by the heterogeneous group of exon 19 deletions and mutations, but the molecular basis for these differences is not understood. Using purified TKDs, we compared kinetic properties of several exon 19 variants. Although unaltered for the second generation TKI afatinib, sensitivity varied significantly for both the first and third generation TKIs erlotinib and osimertinib. The most sensitive variants showed reduced ATP-binding affinity, whereas those associated with primary resistance retained wild type ATP-binding characteristics (and low KM, ATP). Through crystallographic and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies, we identify possible origins for the altered ATP-binding affinity underlying TKI sensitivity and resistance, and propose a basis for classifying uncommon exon 19 variants that may have predictive clinical value.
Collapse
|
9
|
Mulye M, Singh MI, Jain V. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Genes (Basel) 2022; 13:2058. [PMID: 36360296 PMCID: PMC9690074 DOI: 10.3390/genes13112058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Sliding clamps play a pivotal role in the process of replication by increasing the processivity of the replicative polymerase. They also serve as an interacting platform for a plethora of other proteins, which have an important role in other DNA metabolic processes, including DNA repair. In other words, clamps have evolved, as has been correctly referred to, into a mobile "tool-belt" on the DNA, and provide a platform for several proteins that are involved in maintaining genome integrity. Because of the central role played by the sliding clamp in various processes, its study becomes essential and relevant in understanding these processes and exploring the protein as an important drug target. In this review, we provide an updated report on the functioning, interactions, and moonlighting roles of the sliding clamps in various organisms and its utilization as a drug target.
Collapse
Affiliation(s)
- Meenakshi Mulye
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| | | | - Vikas Jain
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| |
Collapse
|
10
|
Lei Y, Fei P, Song B, Shi W, Luo C, Luo D, Li D, Chen W, Zheng J. A loosened gating mechanism of RIG-I leads to autoimmune disorders. Nucleic Acids Res 2022; 50:5850-5863. [PMID: 35580046 PMCID: PMC9177982 DOI: 10.1093/nar/gkac361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
DDX58 encodes RIG-I, a cytosolic RNA sensor that ensures immune surveillance of nonself RNAs. Individuals with RIG-IE510V and RIG-IQ517H mutations have increased susceptibility to Singleton-Merten syndrome (SMS) defects, resulting in tissue-specific (mild) and classic (severe) phenotypes. The coupling between RNA recognition and conformational changes is central to RIG-I RNA proofreading, but the molecular determinants leading to dissociated disease phenotypes remain unknown. Herein, we employed hydrogen/deuterium exchange mass spectrometry (HDX-MS) and single molecule magnetic tweezers (MT) to precisely examine how subtle conformational changes in the helicase insertion domain (HEL2i) promote impaired ATPase and erroneous RNA proofreading activities. We showed that the mutations cause a loosened latch-gate engagement in apo RIG-I, which in turn gradually dampens its self RNA (Cap2 moiety:m7G cap and N1-2-2′-O-methylation RNA) proofreading ability, leading to increased immunopathy. These results reveal HEL2i as a unique checkpoint directing two specialized functions, i.e. stabilizing the CARD2-HEL2i interface and gating the helicase from incoming self RNAs; thus, these findings add new insights into the role of HEL2i in the control of antiviral innate immunity and autoimmunity diseases.
Collapse
Affiliation(s)
- Yixuan Lei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.,The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Panyu Fei
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Bin Song
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjia Shi
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Cheng Luo
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,The Chemical Biology Center, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, Zhejiang, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, NTU Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, 636921, Singapore
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jie Zheng
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
11
|
Yun MW, Kim K, Park JY, Chung KY. Conformational Dynamics Analysis of MEK1 Using Hydrogen/Deuterium Exchange Mass Spectrometry. Protein Pept Lett 2021; 28:481-488. [PMID: 33143608 DOI: 10.2174/0929866527666201103152534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Activation of mitogen-activated protein kinases (MAPKs) is regulated by a phosphorylation cascade comprising three kinases, MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K), and MAPK. MAP2K1 and MAPK2K2, also known as MEK1 and MEK2, activate ERK1 and ERK2. The structure of the MAPK signaling cascade has been studied, but high-resolution structural studies of MAP2Ks have often focused on kinase domains or docking sites, but not on full-length proteins. OBJECTIVE To understand the conformational dynamics of MEK1. METHODS Full-length MEK1 was purified from Escherichia coli (BL21), and its conformational dynamics were analyzed using hydrogen/deuterium exchange mass spectrometry (HDX-MS). The effects of ATP binding were examined by co-incubating MEK1 and adenylyl-imidodiphosphate (AMP- PNP), a non-hydrolysable ATP analog. RESULTS MEK1 exhibited mixed EX1/EX2 HDX kinetics within the N-terminal tail through β1, αI, and the C-terminal helix. AMP-PNP binding was found to reduce conformational dynamics within the glycine-rich loop and regions near the DFG motif, along with the activation lip. CONCLUSION We report for the first time that MEK1 has regions that slowly change its folded and unfolded states (mixed EX1/EX2 kinetics) and also report the conformational effects of ATP-binding to MEK1.
Collapse
Affiliation(s)
- Min Woo Yun
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Kiae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Ji Young Park
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
12
|
Fouque KJD, Garabedian A, Leng F, Tse-Dinh YC, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Anal Chem 2021; 93:2933-2941. [PMID: 33492949 PMCID: PMC8327357 DOI: 10.1021/acs.analchem.0c04556] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, β clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
13
|
Zhang Z. Complete Extraction of Protein Dynamics Information in Hydrogen/Deuterium Exchange Mass Spectrometry Data. Anal Chem 2020; 92:6486-6494. [DOI: 10.1021/acs.analchem.9b05724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhongqi Zhang
- Process Development, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
14
|
Zheng J, Strutzenberg T, Pascal BD, Griffin PR. Protein dynamics and conformational changes explored by hydrogen/deuterium exchange mass spectrometry. Curr Opin Struct Biol 2019; 58:305-313. [DOI: 10.1016/j.sbi.2019.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
|
15
|
Dynamics of the E. coli β-Clamp Dimer Interface and Its Influence on DNA Loading. Biophys J 2019; 117:587-601. [PMID: 31349986 DOI: 10.1016/j.bpj.2019.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023] Open
Abstract
The ring-shaped sliding clamp proteins have crucial roles in the regulation of DNA replication, recombination, and repair in all organisms. We previously showed that the Escherichia coli β-clamp is dynamic in solution, transiently visiting conformational states in which Domain 1 at the dimer interface is more flexible and prone to unfolding. This work aims to understand how the stability of the dimer interface influences clamp-opening dynamics and clamp loading by designing and characterizing stabilizing and destabilizing mutations in the clamp. The variants with stabilizing mutations conferred similar or increased thermostability and had similar quaternary structure as compared to the wild type. These variants stimulated the ATPase function of the clamp loader, complemented cell growth of a temperature-sensitive strain, and were successfully loaded onto a DNA substrate. The L82D and L82E I272A variants with purported destabilizing mutations had decreased thermostability, did not complement the growth of a temperature-sensitive strain, and had weakened dimerization as determined by native trapped ion mobility spectrometry-mass spectrometry. The β L82E variant had a reduced melting temperature but dimerized and complemented growth of a temperature-sensitive strain. All three clamps with destabilizing mutations had perturbed loading on DNA. Molecular dynamics simulations indicate altered hydrogen-bonding patterns at the dimer interface, and cross-correlation analysis showed the largest perturbations in the destabilized variants, consistent with the observed change in the conformations and functions of these clamps.
Collapse
|
16
|
Zheng J, Wang C, Chang MR, Devarkar SC, Schweibenz B, Crynen GC, Garcia-Ordonez RD, Pascal BD, Novick SJ, Patel SS, Marcotrigiano J, Griffin PR. HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat Commun 2018; 9:5366. [PMID: 30560918 PMCID: PMC6299088 DOI: 10.1038/s41467-018-07780-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Retinoic acid inducible gene-I (RIG-I) ensures immune surveillance of viral RNAs bearing a 5'-triphosphate (5'ppp) moiety. Mutations in RIG-I (C268F and E373A) lead to impaired ATPase activity, thereby driving hyperactive signaling associated with autoimmune diseases. Here we report, using hydrogen/deuterium exchange, mechanistic models for dysregulated RIG-I proofreading that ultimately result in the improper recognition of cellular RNAs bearing 7-methylguanosine and N1-2'-O-methylation (Cap1) on the 5' end. Cap1-RNA compromises its ability to stabilize RIG-I helicase and blunts caspase activation and recruitment domains (CARD) partial opening by threefold. RIG-I H830A mutation restores Cap1-helicase engagement as well as CARDs partial opening event to a level comparable to that of 5'ppp. However, E373A RIG-I locks the receptor in an ATP-bound state, resulting in enhanced Cap1-helicase engagement and a sequential CARDs stimulation. C268F mutation renders a more tethered ring architecture and results in constitutive CARDs signaling in an ATP-independent manner.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Autoimmunity/genetics
- Caspase Activation and Recruitment Domain/immunology
- DEAD Box Protein 58/chemistry
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Deuterium Exchange Measurement/methods
- Gain of Function Mutation
- Guanosine/analogs & derivatives
- Guanosine/chemistry
- Guanosine/immunology
- Guanosine/metabolism
- Immunity, Innate/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Mass Spectrometry/methods
- Methylation
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Binding/genetics
- Protein Binding/immunology
- RNA Caps/chemistry
- RNA Caps/immunology
- RNA Caps/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- RNA, Viral/immunology
- Receptors, Immunologic
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| | - Chen Wang
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mi Ra Chang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Swapnil C Devarkar
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Brandon Schweibenz
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Gogce C Crynen
- The Center for Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ruben D Garcia-Ordonez
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Omics Informatics LLC, Honolulu, HI 96813, USA
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Smita S Patel
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
17
|
McGrath AE, Martyn AP, Whittell LR, Dawes FE, Beck JL, Dixon NE, Kelso MJ, Oakley AJ. Crystal structures and biochemical characterization of DNA sliding clamps from three Gram-negative bacterial pathogens. J Struct Biol 2018; 204:396-405. [DOI: 10.1016/j.jsb.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
|
18
|
Kaguni JM. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Antibiotics (Basel) 2018. [PMID: 29538288 PMCID: PMC5872134 DOI: 10.3390/antibiotics7010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
19
|
Douma LG, Yu KK, England JK, Levitus M, Bloom LB. Mechanism of opening a sliding clamp. Nucleic Acids Res 2017; 45:10178-10189. [PMID: 28973453 PMCID: PMC5737080 DOI: 10.1093/nar/gkx665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/20/2017] [Indexed: 11/29/2022] Open
Abstract
Clamp loaders load ring-shaped sliding clamps onto DNA where the clamps serve as processivity factors for DNA polymerases. In the first stage of clamp loading, clamp loaders bind and stabilize clamps in an open conformation, and in the second stage, clamp loaders place the open clamps around DNA so that the clamps encircle DNA. Here, the mechanism of the initial clamp opening stage is investigated. Mutations were introduced into the Escherichia coli β-sliding clamp that destabilize the dimer interface to determine whether the formation of an open clamp loader–clamp complex is dependent on spontaneous clamp opening events. In other work, we showed that mutation of a positively charged Arg residue at the β-dimer interface and high NaCl concentrations destabilize the clamp, but neither facilitates the formation of an open clamp loader–clamp complex in experiments presented here. Clamp opening reactions could be fit to a minimal three-step ‘bind-open-lock’ model in which the clamp loader binds a closed clamp, the clamp opens, and subsequent conformational rearrangements ‘lock’ the clamp loader–clamp complex in a stable open conformation. Our results support a model in which the E. coli clamp loader actively opens the β-sliding clamp.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Biochemistry & Molecular Biology and the Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kevin K Yu
- Department of Biochemistry & Molecular Biology and the Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer K England
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Marcia Levitus
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Linda B Bloom
- Department of Biochemistry & Molecular Biology and the Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. Nat Commun 2017; 8:923. [PMID: 29030554 PMCID: PMC5640644 DOI: 10.1038/s41467-017-00978-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/09/2017] [Indexed: 01/20/2023] Open
Abstract
The vitamin D receptor/retinoid X receptor-α heterodimer (VDRRXRα) regulates bone mineralization via transcriptional control of osteocalcin (BGLAP) gene and is the receptor for 1α,25-dihydroxyvitamin D3 (1,25D3). However, supra-physiological levels of 1,25D3 activates the calcium-regulating gene TRPV6 leading to hypercalcemia. An approach to attenuate this adverse effect is to develop selective VDR modulators (VDRMs) that differentially activate BGLAP but not TRPV6. Here we present structural insight for the action of a VDRM compared with agonists by employing hydrogen/deuterium exchange. Agonist binding directs crosstalk between co-receptors upon DNA binding, stabilizing the activation function 2 (AF2) surfaces of both receptors driving steroid receptor co-activator-1 (SRC1) interaction. In contrast, AF2 of VDR within VDRM:BGLAP bound heterodimer is more vulnerable for large stabilization upon SRC1 interaction compared with VDRM:TRPV6 bound heterodimer. These results reveal that the combination of ligand structure and DNA sequence tailor the transcriptional activity of VDR toward specific target genes. The vitamin D receptor/retinoid X receptor-α heterodimer (VDRRXRα) regulates bone mineralization. Here the authors employ hydrogen/deuterium exchange (HDX) mass spectrometry to study the conformational dynamics of VDRRXRα and give mechanistic insights into how VDRRXRα controls the transcriptional activity of specific genes.
Collapse
|
21
|
Alyami EM, Rizzo AA, Beuning PJ, Korzhnev DM. NMR resonance assignments for the N-terminal domain of the δ subunit of the E. coli γ clamp loader complex. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:169-173. [PMID: 28265855 DOI: 10.1007/s12104-017-9741-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
The β-clamp protein and the γ clamp loader complex are essential components of bacterial DNA replication machinery. The β-clamp is a ring-shaped homodimer that encircles DNA and increases the efficiency of replication by providing a binding platform for DNA polymerases and other replication-related proteins. The β-clamp is loaded onto DNA by the five-subunit γ clamp loader complex in a multi-step ATP-dependent process. The initial steps of this process involve the cooperative binding of the β-clamp by the five subunits of ATP-bound clamp loader, which induces or traps an open conformation of the clamp. Remarkably, the δ subunit of the E. coli clamp loader, or even its 140 residue N-terminal domain (called mini-δ), alone can shift conformational equilibrium of the β-clamp towards the open state. Here we report nearly complete backbone and side-chain 1H, 13C and 15N NMR resonance assignments of mini-δ that will facilitate NMR studies of the mechanisms of β-clamp opening and its loading on DNA by the clamp loader.
Collapse
Affiliation(s)
- Esmael M Alyami
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
22
|
Cloning, recombinant production and crystallographic structure of Proliferating Cell Nuclear Antigen from radioresistant archaeon Thermococcus gammatolerans. Biochem Biophys Rep 2017; 8:200-206. [PMID: 28955957 PMCID: PMC5613700 DOI: 10.1016/j.bbrep.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022] Open
Abstract
Thermococcus gammatolerans is a strictly anaerobic; hyperthermophilicarchaeon belongs to the order Thermococcales in the phylum Euryarchaeota. It was extracted from a hydrothermal vent from the Guaymas Basin (Gulf of California, Mexico). Different studies show that T. gammatolerans is one of the most radioresistant organisms known amongst the archaea. This makes it a unique model to study adaptations to the environment and to study DNA repair mechanisms in an organism able to tolerate harsh conditions. A key protein in these mechanisms is the Proliferation Cell Nuclear Antigen (PCNA). Its function is focused on their ability to slide along the DNA duplex and coordinating the activities of proteins mainly related to DNA edition and processing. Analysis of archaeal proteins have proven to be enormously fruitful because much of the information obtained from them can be extrapolated to eukaryotic systems, and PCNA is no exception. Here we report the cloning, recombinant expression and crystallographic structure of PCNA from T. gammatolerans (TgPCNA). Amino acid sequence of TgPCNA depicts several residues and motifs well conserved. Asp41 appears to stimulate archaeal family B polymerases and FEN1 in homologous PCNA. By gel filtration the molecular mass was 52 kDa, closer to the monomeric state. The TgPCNA crystal belonged to the P3 space group. A total of 47 457 reflections were integrated to a resolution of 2.8 Å.
Collapse
|
23
|
Purohit A, England JK, Douma LG, Tondnevis F, Bloom LB, Levitus M. Electrostatic Interactions at the Dimer Interface Stabilize the E. coli β Sliding Clamp. Biophys J 2017; 113:794-804. [PMID: 28834716 DOI: 10.1016/j.bpj.2017.06.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the β-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states.
Collapse
Affiliation(s)
- Anirban Purohit
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jennifer K England
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida
| | - Farzaneh Tondnevis
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida.
| | - Marcia Levitus
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|
24
|
Park JY, Yun Y, Chung KY. Conformations of JNK3α splice variants analyzed by hydrogen/deuterium exchange mass spectrometry. J Struct Biol 2016; 197:271-278. [PMID: 27998708 DOI: 10.1016/j.jsb.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family that regulate apoptosis, inflammation, cytokine production, and metabolism. MAPKs undergo various splicing within their kinase domains. Unlike other MAPKs, JNKs have alternative splicing at the C-terminus, resulting in long and short variants. Functional or conformational effects due to the elongated C-terminal tail in the long splice variants have not been investigated nor has the conformation of the C-terminal tail been analyzed. Here, we analyzed the conformation of the elongated C-terminal tail and investigated conformational differences between long and short splice variants of JNKs using JNK3α2 and JNK3α1 as models. We adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to analyze the conformation. HDX-MS revealed that the C-terminal tail is mostly intrinsically disordered, and that the conformation of the kinase domain of JNK3α2 is more dynamic than that of JNK3α1. The different conformation dynamics between long and short splice variants of JNK3α might affect the cellular functions of JNK3.
Collapse
Affiliation(s)
- Ji Young Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngjoo Yun
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
25
|
Identification of β Clamp-DNA Interaction Regions That Impair the Ability of E. coli to Tolerate Specific Classes of DNA Damage. PLoS One 2016; 11:e0163643. [PMID: 27685804 PMCID: PMC5042465 DOI: 10.1371/journal.pone.0163643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The E. coli dnaN-encoded β sliding clamp protein plays a pivotal role in managing the actions on DNA of the 5 bacterial DNA polymerases, proteins involved in mismatch repair, as well as several additional proteins involved in DNA replication. Results of in vitro experiments indicate that the loading of β clamp onto DNA relies on both the DnaX clamp loader complex as well as several discrete sliding clamp-DNA interactions. However, the importance of these DNA interactions to E. coli viability, as well as the ability of the β clamp to support the actions of its numerous partner proteins, have not yet been examined. To determine the contribution of β clamp-DNA interactions to the ability of E. coli to cope with different classes of DNA damage, we used alanine scanning to mutate 22 separate residues mapping to 3 distinct β clamp surfaces known or nearby those known to contact the DNA template, including residues P20-L27 (referred to here as loop I), H148-Y154 (loop II) and 7 different residues lining the central pore of the β clamp through which the DNA template threads. Twenty of these 22 dnaN mutants supported bacterial growth. While none of these 20 conferred sensitivity to hydrogen peroxide or ultra violet light, 12 were sensitized to NFZ, 5 were sensitized to MMS, 8 displayed modestly altered frequencies of DNA damage-induced mutagenesis, and 2 may be impaired for supporting hda function. Taken together, these results demonstrate that discrete β clamp-DNA interaction regions contribute to the ability of E. coli to tolerate specific classes of DNA damage.
Collapse
|
26
|
Singh MI, Ganesh B, Jain V. On the domains of T4 phage sliding clamp gp45: An intermolecular crosstalk governs structural stability and biological activity. Biochim Biophys Acta Gen Subj 2016; 1861:3300-3310. [PMID: 27554844 DOI: 10.1016/j.bbagen.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND DNA polymerase processivity factors are ubiquitously present in all living organisms. Notwithstanding their high significance, the molecular details of clamps pertaining to the factors contributing to their stability are presently lacking. The bacteriophage T4 sliding clamp gp45 forms a homotrimer that besides being involved in DNA replication, moonlights as a transcription factor. Here we have carried out a detailed characterization of gp45 to understand the role of monomer-monomer interface interactions in stability and functioning of the protein. METHODS We generated several gp45 mutants harboring either Ala or Pro substitutions at the interface residues and performed a detailed investigation using biochemical and biophysical methods including circular dichroism, fluorescence anisotropy and quenching, differential scanning calorimetry, blue-native PAGE, cross-linking, size exclusion chromatography, and dynamic light scattering. We also carried out both transcription and DNA replication to understand the properties of the wild-type and the mutant proteins. RESULTS One specific mutation S88P leads not only to monomerization, but also results in an unstable molecule. Most interestingly, mutating either Q125 or K164 in the gp45 C-terminal domain negatively affects the stability of the N-terminal domain. We also report that these residues upon mutation to alanine make gp45 inactive for late promoter transcription, whereas strand-displacement DNA replication ability remains unaltered. CONCLUSIONS AND GENERAL SIGNIFICANCE The results suggest that the two domains of gp45 demonstrate an "inter-monomer" crosstalk that stabilizes the trimer. We also conclude that the residue-specific interactions at the interface allow the protein to function distinctly as replication and transcription factors.
Collapse
Affiliation(s)
- Manika Indrajit Singh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Bylapudi Ganesh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India.
| |
Collapse
|
27
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
28
|
Abstract
A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders.
Collapse
|
29
|
Tondnevis F, Weiss TM, Matsui T, Bloom LB, McKenna R. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex. J Struct Biol 2016; 194:272-81. [PMID: 26968362 DOI: 10.1016/j.jsb.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 01/06/2023]
Abstract
Sliding clamps are opened and loaded onto primer template junctions by clamp loaders, and once loaded on DNA, confer processivity to replicative polymerases. Previously determined crystal structures of eukaryotic and T4 clamp loader-clamp complexes have captured the sliding clamps in either closed or only partially open interface conformations. In these solution structure studies, we have captured for the first time the clamp loader-sliding clamp complex from Escherichia coli using size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). The data suggests the sliding clamp is in an open conformation which is wide enough to permit duplex DNA binding. The data also provides information about spatial arrangement of the sliding clamp with respect to the clamp loader subunits and is compared to complex crystal structures determined from other organisms.
Collapse
Affiliation(s)
- Farzaneh Tondnevis
- Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, United States
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, United States
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, United States
| | - Robert McKenna
- Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, United States.
| |
Collapse
|
30
|
Singh MI, Jain V. Molecular Dissection of the Homotrimeric Sliding Clamp of T4 Phage: Two Domains of a Subunit Display Asymmetric Characteristics. Biochemistry 2016; 55:588-96. [DOI: 10.1021/acs.biochem.5b01204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manika Indrajit Singh
- Microbiology
and Molecular
Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Vikas Jain
- Microbiology
and Molecular
Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| |
Collapse
|
31
|
Chodavarapu S, Jones AD, Feig M, Kaguni JM. DnaC traps DnaB as an open ring and remodels the domain that binds primase. Nucleic Acids Res 2015; 44:210-20. [PMID: 26420830 PMCID: PMC4705694 DOI: 10.1093/nar/gkv961] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Helicase loading at a DNA replication origin often requires the dynamic interactions between the DNA helicase and an accessory protein. In E. coli, the DNA helicase is DnaB and DnaC is its loading partner. We used the method of hydrogen/deuterium exchange mass spectrometry to address the importance of DnaB–DnaC complex formation as a prerequisite for helicase loading. Our results show that the DnaB ring opens and closes, and that specific amino acids near the N-terminus of DnaC interact with a site in DnaB's C-terminal domain to trap it as an open ring. This event correlates with conformational changes of the RecA fold of DnaB that is involved in nucleotide binding, and of the AAA+ domain of DnaC. DnaC also causes an alteration of the helical hairpins in the N-terminal domain of DnaB, presumably occluding this region from interacting with primase. Hence, DnaC controls the access of DnaB by primase.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
32
|
Zheng J, Yong HY, Panutdaporn N, Liu C, Tang K, Luo D. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res 2015; 43:1216-30. [PMID: 25539915 PMCID: PMC4333383 DOI: 10.1093/nar/gku1329] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022] Open
Abstract
RIG-I and MDA5 are the major intracellular immune receptors that recognize viral RNA species and undergo a series of conformational transitions leading to the activation of the interferon-mediated antiviral response. However, to date, full-length RLRs have resisted crystallographic efforts and a molecular description of their activation pathways remains hypothetical. Here we employ hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to probe the apo states of RIG-I and MDA5 and to dissect the molecular details with respect to distinct RNA species recognition, ATP binding and hydrolysis and CARDs activation. We show that human RIG-I maintains an auto-inhibited resting state owing to the intra-molecular HEL2i-CARD2 interactions while apo MDA5 lacks the analogous intra-molecular interactions and therefore adopts an extended conformation. Our work demonstrates that RIG-I binds and responds differently to short triphosphorylated RNA and long duplex RNA and that sequential addition of RNA and ATP triggers specific allosteric effects leading to RIG-I CARDs activation. We also present a high-resolution protein surface mapping technique that refines the cooperative oligomerization model of neighboring MDA5 molecules on long duplex RNA. Taken together, our data provide a high-resolution view of RLR activation in solution and offer new evidence for the molecular mechanism of RLR activation.
Collapse
Affiliation(s)
- Jie Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, 138673, Singapore
| | - Nantika Panutdaporn
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chuanfa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kai Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, 138673, Singapore
| |
Collapse
|
33
|
Binder JK, Douma LG, Ranjit S, Kanno DM, Chakraborty M, Bloom LB, Levitus M. Intrinsic stability and oligomerization dynamics of DNA processivity clamps. Nucleic Acids Res 2014; 42:6476-86. [PMID: 24728995 PMCID: PMC4041429 DOI: 10.1093/nar/gku255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli β and the homotrimeric Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) clamps using single-molecule approaches. We show that E. coli β is stable in solution as a closed ring at concentrations three orders of magnitude lower than PCNA. The trimeric structure of PCNA results in slow subunit association rates and is largely responsible for the lower solution stability. Despite this large difference, the intrinsic lifetimes of the rings differ by only one order of magnitude. Our results show that the longer lifetime of the E. coli β dimer is due to more prominent electrostatic interactions that stabilize the subunit interfaces.
Collapse
Affiliation(s)
- Jennifer K Binder
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Suman Ranjit
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - David M Kanno
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Manas Chakraborty
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Marcia Levitus
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| |
Collapse
|
34
|
Bereszczak JZ, Watts NR, Wingfield PT, Steven AC, Heck AJR. Assessment of differences in the conformational flexibility of hepatitis B virus core-antigen and e-antigen by hydrogen deuterium exchange-mass spectrometry. Protein Sci 2014; 23:884-96. [PMID: 24715628 DOI: 10.1002/pro.2470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/17/2023]
Abstract
Hepatitis B virus core-antigen (capsid protein) and e-antigen (an immune regulator) have almost complete sequence identity, yet the dimeric proteins (termed Cp149d and Cp(-10)149d , respectively) adopt quite distinct quaternary structures. Here we use hydrogen deuterium exchange-mass spectrometry (HDX-MS) to study their structural properties. We detect many regions that differ substantially in their HDX dynamics. Significantly, whilst all regions in Cp(-10)149d exchange by EX2-type kinetics, a number of regions in Cp149d were shown to exhibit a mixture of EX2- and EX1-type kinetics, hinting at conformational heterogeneity in these regions. Comparison of the HDX of the free Cp149d with that in assembled capsids (Cp149c ) indicated increased resistance to exchange at the C-terminus where the inter-dimer contacts occur. Furthermore, evidence of mixed exchange kinetics were not observed in Cp149c , implying a reduction in flexibility upon capsid formation. Cp(-10)149d undergoes a drastic structural change when the intermolecular disulphide bridge is reduced, adopting a Cp149d -like structure, as evidenced by the detected HDX dynamics being more consistent with Cp149d in many, albeit not all, regions. These results demonstrate the highly dynamic nature of these similar proteins. To probe the effect of these structural differences on the resulting antigenicity, we investigated binding of the antibody fragment (Fab E1) that is known to bind a conformational epitope on the four-helix bundle. Whilst Fab E1 binds to Cp149c and Cp149d , it does not bind non-reduced and reduced Cp(-10)149d , despite unhindered access to the epitope. These results imply a remarkable sensitivity of this epitope to its structural context.
Collapse
Affiliation(s)
- Jessica Z Bereszczak
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Li Z, Huang RYC, Yopp DC, Hileman TH, Santangelo TJ, Hurwitz J, Hudgens JW, Kelman Z. A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein. Nucleic Acids Res 2014; 42:5776-89. [PMID: 24728986 PMCID: PMC4027161 DOI: 10.1093/nar/gku239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that associates with and influences the activity of many proteins participating in DNA metabolic processes and cell cycle progression. Previously, an uncharacterized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably interact with PCNA in vivo. Here, we show that this protein, designated Thermococcales inhibitor of PCNA (TIP), binds to PCNA in vitro and inhibits PCNA-dependent activities likely by preventing PCNA trimerization. Using hydrogen/deuterium exchange mass spectrometry and site-directed mutagenesis, the interacting regions of PCNA and TIP were identified. Most proteins bind to PCNA via a PCNA-interacting peptide (PIP) motif that interacts with the inter domain connecting loop (IDCL) on PCNA. TIP, however, lacks any known PCNA-interacting motif, suggesting a new mechanism for PCNA binding and regulation of PCNA-dependent activities, which may support the development of a new subclass of therapeutic biomolecules for inhibiting PCNA.
Collapse
Affiliation(s)
- Zhuo Li
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Richard Y-C Huang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Daniel C Yopp
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Travis H Hileman
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jeffrey W Hudgens
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
36
|
Fang J, Nevin P, Kairys V, Venclovas Č, Engen JR, Beuning PJ. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics. Structure 2014; 22:572-581. [PMID: 24613485 DOI: 10.1016/j.str.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 02/06/2023]
Abstract
The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics.
Collapse
Affiliation(s)
- Jing Fang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Visvaldas Kairys
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
37
|
Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. INT REV PHYS CHEM 2013; 32:96-127. [PMID: 23682200 DOI: 10.1080/0144235x.2012.751175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many proteins do not exist in a single rigid conformation. Protein motions, or dynamics, exist and in many cases are important for protein function. The analysis of protein dynamics relies on biophysical techniques that can distinguish simultaneously existing populations of molecules and their rates of interconversion. Hydrogen exchange (HX) detected by mass spectrometry (MS) is contributing to our understanding of protein motions by revealing unfolding and dynamics on a wide timescale, ranging from seconds to hours to days. In this review we discuss HX MS-based analyses of protein dynamics, using our studies of multi-domain kinases as examples. Using HX MS, we have successfully probed protein dynamics and unfolding in the isolated SH3, SH2 and kinase domains of the c-Src and Abl kinase families, as well as the role of inter- and intra-molecular interactions in the global control of kinase function. Coupled with high-resolution structural information, HX MS has proved to be a powerful and versatile tool for the analysis of the conformational dynamics in these kinase systems, and has provided fresh insight regarding the regulatory control of these important signaling proteins. HX MS studies of dynamics are applicable not only to the proteins we illustrate here, but to a very wide range of proteins and protein systems, and should play a role in both classification of and greater understanding of the prevalence of protein motion.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115 USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhang J, Ramachandran P, Kumar R, Gross ML. H/D exchange centroid monitoring is insufficient to show differences in the behavior of protein states. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:450-3. [PMID: 23397137 PMCID: PMC3594389 DOI: 10.1007/s13361-012-0555-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/25/2012] [Accepted: 12/01/2012] [Indexed: 05/19/2023]
Abstract
Differential hydrogen/deuterium exchange (H/DX) coupled with mass spectrometry (H/DX-MS) offers a rapid and sensitive characterization of changes in proteins following perturbations induced by changes in folding, ligand binding, oligomerization, and modification. The characterization of H/DX rates by software tools and automated data processing often relies on the centroid mass calculation and, thereby, the deuterium distribution in the mass spectra is neglected. Here we present an example demonstrating the clear limitation of using only a centroid approach to characterize the H/DX rate, in which the change in protein is not reflected as the difference in deuterium uptake based on centroid calculation.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Pradeep Ramachandran
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
39
|
Hayner JN, Bloom LB. The β sliding clamp closes around DNA prior to release by the Escherichia coli clamp loader γ complex. J Biol Chem 2012; 288:1162-70. [PMID: 23161545 DOI: 10.1074/jbc.m112.406231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli γ complex clamp loader functions to load the β sliding clamp onto sites of DNA replication and repair. The clamp loader uses the energy of ATP binding and hydrolysis to drive conformational changes allowing for β binding and opening, DNA binding, and then release of the β·DNA complex. Although much work has been done studying the sliding clamp and clamp loader mechanism, kinetic analysis of the events following β·γ complex·DNA formation is not complete. Using fluorescent clamp closing and release assays, we show that β closing is faster than β release, indicating that γ complex closes β before releasing it around DNA. Using a fluorescent ATP hydrolysis assay, we show that there is a burst of ATP hydrolysis before β closing and that β release may be the rate-limiting step in the overall clamp loading reaction. The combined use of these fluorescent assays provides a unique perspective into the E. coli clamp loader by providing a measure of the relative timing of different events in the clamp loading reaction, helping to elucidate the complicated clamp loading mechanism.
Collapse
Affiliation(s)
- Jaclyn N Hayner
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | |
Collapse
|
40
|
Subtractive genomics approach to identify putative drug targets and identification of drug-like molecules for beta subunit of DNA polymerase III in Streptococcus species. Appl Biochem Biotechnol 2012; 167:1377-95. [PMID: 22415782 DOI: 10.1007/s12010-012-9620-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The prolonged use of the antibiotics over the years has transformed many organisms resistant to multiple drugs. This has made the field of drug discovery of vital importance in curing various infections and diseases. The drugs act by binding to a specific target protein of prime importance for the cell's survival. Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes are the few gram positive organisms that have developed resistance to drugs. It causes pneumonia, meningitis, pharyngitis, otitis media, sinusitis, bacteremia, pericarditis, and arthritis infections. The present study was carried out to identify potential drug targets and inhibitors for beta subunit of DNA polymerase III in these three Streptococcus species that might facilitate the discovery of novel drugs in near future. Various steps were adopted to find out novel drug targets. And finally 3D structure of DNA polymerase III subunit beta was modeled. The ligand library was generated from various databases to find the most suitable ligands. All the ligands were docked using Molegro Virtual Docker and the lead molecules were investigated for ADME and toxicity.
Collapse
|
41
|
Silva MC, Nevin P, Ronayne EA, Beuning PJ. Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res 2012; 40:5511-22. [PMID: 22406830 PMCID: PMC3384344 DOI: 10.1093/nar/gks229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS response, were previously shown to bind to the α, β and ε subunits of DNA pol III. Full-length UmuD inhibits DNA replication and prevents mutagenic TLS, while the cleaved form UmuD' facilitates mutagenesis. We show that α possesses two UmuD binding sites: at the N-terminus (residues 1-280) and the C-terminus (residues 956-975). The C-terminal site favors UmuD over UmuD'. We also find that UmuD, but not UmuD', disrupts the α-β complex. We propose that the interaction between α and UmuD contributes to the transition between replicative and TLS polymerases by removing α from the β clamp.
Collapse
Affiliation(s)
- Michelle C Silva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
42
|
Hu G, Michielssens S, Moors SLC, Ceulemans A. The harmonic analysis of cylindrically symmetric proteins: a comparison of Dronpa and a DNA sliding clamp. J Mol Graph Model 2011; 34:28-37. [PMID: 22306411 DOI: 10.1016/j.jmgm.2011.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The harmonic analysis of two types of proteins with cylindrical symmetry is performed by the Standard Force Field Normal Mode Analysis and by the elastic network model. For both proteins the global elastic modes are assigned to their characteristic topologies. Dronpa is a rigid β-barrel structure, presenting the twisting, bending and breathing motion of a cylindrical rod. The β sliding clamp of Escherichia coli is a hexagonal β-wheel, consisting of rigid segments. In its spectrum four classes of vibrations are identified which are characteristic of an elastic torus. Correlation diagrams and RMSF analysis are compared. The results provide not only a comprehensive validation of the use of both methods to describe the elastic behavior according to the low-frequency normal modes, but also depict the correlated motions of β-barrel and β-wheel proteins. The harmonic flexibility of the Dronpa protein is compared to the principal components of molecular dynamics (MD) simulation. A functionally important localized cleft opening mode is found, which is not detected by harmonic analysis.
Collapse
Affiliation(s)
- Guang Hu
- Department of Chemistry and INPAC Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | | | | |
Collapse
|