1
|
Braun V. Substrate Uptake by TonB-Dependent Outer Membrane Transporters. Mol Microbiol 2024; 122:929-947. [PMID: 39626085 DOI: 10.1111/mmi.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024]
Abstract
TonB is an essential component of an energy-generating system that powers active transport across the outer membrane (OM) of compounds that are too large or too scarce to diffuse through porins. The TonB-dependent OM transport proteins (TBDTs) consist of β barrels forming pores that are closed by plugs. The binding of TonB to TBDTs elicits plug movement, which opens the pores and enables nutrient translocation from the cell surface into the periplasm. TonB is also involved in the uptake of certain proteins, particularly toxins, through OM proteins that differ structurally from TBDTs. TonB binds to a sequence of five residues, designated as the TonB box, which is conserved in all TBDTs. Energy from the proton motive force (pmf) of the cytoplasmic membrane is transmitted to TonB by two proteins, ExbB and ExbD. These proteins form an energy-transmitting protein complex consisting of five ExbB proteins, forming a pore that encloses the ExbD dimer. This review discusses the structural changes that occur in TBDTs upon interaction with TonB, as well as the interaction of ExbB-ExbD with TonB, which is required to transmit the energy of the pmf and thereby open TBDT pores. TonB facilitates import of a wide range of substrates.
Collapse
|
2
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|
3
|
Xu X, Rao ZM, Xu JZ, Zhang WG. Enhancement of l-Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the pipA Gene in the Escherichia coli Genome. ACS Synth Biol 2022; 11:760-769. [PMID: 35073050 DOI: 10.1021/acssynbio.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Pipecolic acid is an important rigid cyclic nonprotein amino acid, which is obtained through the conversion of l-lysine catalyzed by l-lysine cyclodeaminase (LCD). To directly produce l-pipecolic acid from glucose by microbial fermentation, in this study, a recombinant Escherichia coli strain with high efficiency of l-pipecolic acid production was constructed. This study involves the dynamic regulation of the substrate concentration and the expression level of the l-lysine cyclodeaminase-coding gene pipA. In terms of substrate concentration, we adopted the l-lysine riboswitch to dynamically regulate the expression of lysP and lysO genes. As a result, the l-pipecolic acid yield was increased about 1.8-fold as compared with the control. In addition, we used chemically inducible chromosomal evolution (CIChE) to realize the presence of multiple copies of the pipA gene on the genome. The resultant E. coli strain XQ-11-4 produced 61 ± 3.4 g/L l-pipecolic acid with a productivity of 1.02 ± 0.06 g/(L·h) and a glucose conversion efficiency (α) of 29.6% in fermentation. This is the first report that discovered multiple copies of pipA gene expression on the genome that improves the efficiency of l-pipecolic acid production in an l-lysine high-producing strain, and these results give us new insight for constructing the other valuable biochemicals derived from l-lysine.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| |
Collapse
|
4
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
5
|
Abstract
The transcription initiation signal elicited by the binding of ferric citrate to the outer membrane FecA protein is transmitted by the FecR protein across the cytoplasmic membrane to the FecI extracytoplasmic function (ECF) sigma factor. In this issue of Journal of Bacteriology, I. J. Passmore, J. M. Dow, F. Coll, J. Cuccui, et al. (J Bacteriol 202:e00541-19, 2020, https://doi.org/10.1128/JB.00541-19) report that the FecR sequence contains both the twin-arginine signal motif and the secretory (Sec) avoidance motif typical of proteins secreted by the twin-arginine translocation (TAT) system. The same study shows that FecR is indeed secreted by Tat and represents a new class of bitopic Tat-dependent membrane proteins.
Collapse
|
6
|
Kopp DR, Postle K. The Intrinsically Disordered Region of ExbD Is Required for Signal Transduction. J Bacteriol 2020; 202:e00687-19. [PMID: 31932309 PMCID: PMC7167468 DOI: 10.1128/jb.00687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
The TonB system actively transports vital nutrients across the unenergized outer membranes of the majority of Gram-negative bacteria. In this system, integral membrane proteins ExbB, ExbD, and TonB work together to transduce the proton motive force (PMF) of the inner membrane to customized active transporters in the outer membrane by direct and cyclic binding of TonB to the transporters. A PMF-dependent TonB-ExbD interaction is prevented by 10-residue deletions within a periplasmic disordered domain of ExbD adjacent to the cytoplasmic membrane. Here, we explored the function of the ExbD disordered domain in more detail. In vivo photo-cross-linking through sequential pBpa substitutions in the ExbD disordered domain captured five different ExbD complexes, some of which had been previously detected using in vivo formaldehyde cross-linking, a technique that lacks the residue-specific information that can be achieved through photo-cross-linking: two ExbB-ExbD heterodimers (one of which had not been detected previously), previously detected ExbD homodimers, previously detected PMF-dependent ExbD-TonB heterodimers, and for the first time, a predicted, ExbD-TonB PMF-independent interaction. The fact that multiple complexes were captured by the same pBpa substitution indicated the dynamic nature of ExbD interactions as the energy transduction cycle proceeded in vivo In this study, we also discovered that a conserved motif-V45, V47, L49, and P50-within the disordered domain was required for signal transduction to TonB and to the C-terminal domain of ExbD and was the source of motif essentiality.IMPORTANCE The TonB system is a virulence factor for Gram-negative pathogens. The mechanism by which cytoplasmic membrane proteins of the TonB system transduce an electrochemical gradient into mechanical energy is a long-standing mystery. TonB, ExbB, and ExbD primary amino acid sequences are characterized by regions of predicted intrinsic disorder, consistent with a proposed multiplicity of protein-protein contacts as TonB proceeds through an energy transduction cycle, a complex process that has yet to be recapitulated in vitro This study validates a region of intrinsic disorder near the ExbD transmembrane domain and identifies an essential conserved motif embedded within it that transduces signals to distal regions of ExbD suggested to configure TonB for productive interaction with outer membrane transporters.
Collapse
Affiliation(s)
- Dale R Kopp
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Celia H, Noinaj N, Buchanan SK. Structure and Stoichiometry of the Ton Molecular Motor. Int J Mol Sci 2020; 21:E375. [PMID: 31936081 PMCID: PMC7014051 DOI: 10.3390/ijms21020375] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to generate force and movement, which are transmitted to transporters at the outer membrane, allowing the entry of nutrients into the periplasmic space. Despite decades of investigation and the recent flurry of structures being reported by X-ray crystallography and cryoEM, the mode of action of the Ton molecular motor has remained elusive, and the precise stoichiometry of its subunits is still a matter of debate. This review summarizes the latest findings on the Ton system by presenting the recently reported structures and related reports on the stoichiometry of the fully assembled complex.
Collapse
Affiliation(s)
- Herve Celia
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Braun V. The Outer Membrane Took Center Stage. Annu Rev Microbiol 2018; 72:1-24. [PMID: 30200853 DOI: 10.1146/annurev-micro-090817-062156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My interest in membranes was piqued during a lecture series given by one of the founders of molecular biology, Max Delbrück, at Caltech, where I spent a postdoctoral year to learn more about protein chemistry. That general interest was further refined to my ultimate research focal point-the outer membrane of Escherichia coli-through the influence of the work of Wolfhard Weidel, who discovered the murein (peptidoglycan) layer and biochemically characterized the first phage receptors of this bacterium. The discovery of lipoprotein bound to murein was completely unexpected and demonstrated that the protein composition of the outer membrane and the structure and function of proteins could be unraveled at a time when nothing was known about outer membrane proteins. The research of my laboratory over the years covered energy-dependent import of proteinaceous toxins and iron chelates across the outer membrane, which does not contain an energy source, and gene regulation by iron, including transmembrane transcriptional regulation.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
9
|
Maki-Yonekura S, Matsuoka R, Yamashita Y, Shimizu H, Tanaka M, Iwabuki F, Yonekura K. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. eLife 2018; 7:35419. [PMID: 29661272 PMCID: PMC5903867 DOI: 10.7554/elife.35419] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023] Open
Abstract
Gram-negative bacteria import essential nutrients such as iron and vitamin B12 through outer membrane receptors. This process utilizes proton motive force harvested by the Ton system made up of three inner membrane proteins, ExbB, ExbD and TonB. ExbB and ExbD form the proton channel that energizes uptake through TonB. Recently, crystal structures suggest that the ExbB pentamer is the scaffold. Here, we present structures of hexameric complexes of ExbB and ExbD revealed by X-ray crystallography and single particle cryo-EM. Image analysis shows that hexameric and pentameric complexes coexist, with the proportion of hexamer increasing with pH. Channel current measurement and 2D crystallography support the existence and transition of the two oligomeric states in membranes. The hexameric complex consists of six ExbB subunits and three ExbD transmembrane helices enclosed within the central channel. We propose models for activation/inactivation associated with hexamer and pentamer formation and utilization of proton motive force. Many biological processes that are essential for life are powered by the flow of ions across the membranes of cells. Similar to how energy is stored in the water behind a dam, energy is also stored when the concentration of ions on one side of a biological membrane is higher than it is on the other. When these ions then flow down this concentration gradient, the energy can be harnessed to power other processes. In many bacteria, the concentration of hydrogen ions, or protons, is higher on the outside of the cell. When the protons flow down the concentration gradient, a protein complex called the Ton system in the bacteria’s inner membrane harnesses the energy to transport various compounds, including essential nutrients, across the outer membrane, which is about 20 nanometres away. Toxins, and viruses that infect bacteria, can also hijack the Ton system to gain entry into these cells. This means that the Ton system could perhaps be targeted via drugs to treat bacterial infections. Though the Ton system is important, structural information on this protein family is limited. The Ton complex is composed of three proteins – ExbB, ExbD and TonB – located in the bacteria’s inner membrane. ExbB and ExbD together form a channel for the protons and the complex made from these two proteins can be thought of as the system’s engine. Maki-Yonekura et al. wanted to understand how the ExbB / ExbD complex works, which was challenging because the complex was not well suited to any single structural biology technique. To get around this issue, a combination of two techniques called X-ray crystallography and single particle cryo-EM were used. This approached revealed that the two proteins form complexes made up of either five or six ExbB subunits with one or three ExbD subunits, respectively. It also showed that the proteins transition between the two forms in a cell’s membrane. More of the larger six-unit complex (also called a “hexamer”) formed at higher pH. This is consistent with the increased flow of protons through the channel when the local conditions inside the cell become less acidic. Based on these results, Maki-Yonekura et al. propose that some subunits in the core of the complex rotate to harness the energy from the flow of protons, and the number of subunits in the complex changes when it switches to become active or inactive. The discoveries may provide a new vision of dynamic membrane biology. Further studies are now needed to see how general this mechanism is in biology, and the new structural information could also be used to help develop more anti-bacterial drugs.
Collapse
Affiliation(s)
| | - Rei Matsuoka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Yoshiki Yamashita
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maiko Tanaka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Fumie Iwabuki
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| |
Collapse
|
10
|
Abstract
Membrane proteins can assemble and form complexes in the cell envelope. In Gram-negative bacteria, a number of multiprotein complexes, including secretion systems, efflux pumps, molecular motors, and pilus assembly machines, comprise proteins from the inner and outer membranes. Besides the structures of isolated soluble domains, only a few atomic structures of these assembled molecular machines have been elucidated. To better understand the function and to solve the structure of protein complexes, it is thus necessary to design dedicated production and purification processes. Here we present cloning procedures to overproduce membrane proteins into Escherichia coli cells and describe the cloning and purification strategy for the Type VI secretion TssJLM membrane complex.
Collapse
|
11
|
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, Buchanan SK. Structural insight into the role of the Ton complex in energy transduction. Nature 2016; 538:60-65. [PMID: 27654919 PMCID: PMC5161667 DOI: 10.1038/nature19757] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Abstract
In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.
Collapse
Affiliation(s)
- Hervé Celia
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Stanislav D. Zakharov
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Enrica Bordignon
- Fachbereich Physik, Freie Universität, 14195 Berlin, Germany,Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 45810 Bochum, Germany
| | - Istvan Botos
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Monica Santamaria
- Departamento de Cirugia Experimental, Instituto de Investigacion Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Travis J. Barnard
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - William A. Cramer
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Roland Lloubes
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Susan K. Buchanan
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| |
Collapse
|
12
|
Abstract
The rotational surveillance and energy transfer (ROSET) model of TonB action suggests a mechanism by which the electrochemical proton gradient across the Gram-negative bacterial inner membrane (IM) promotes the transport of iron through ligand-gated porins (LGP) in the outer membrane (OM). TonB associates with the IM by an N-terminal hydrophobic helix that forms a complex with ExbBD. It also contains a central extended length of rigid polypeptide that spans the periplasm and a dimeric C-terminal-ββαβ-domain (CTD) with LysM motifs that binds the peptidoglycan (PG) layer beneath the OM bilayer. The TonB CTD forms a dimer with affinity for both PG- and TonB-independent OM proteins (e.g., OmpA), localizing it near the periplasmic interface of the OM bilayer. Porins and other OM proteins associate with PG, and this general affinity allows the TonB CTD dimer to survey the periplasmic surface of the OM bilayer. Energized rotational motion of the TonB N terminus in the fluid IM bilayer promotes the lateral movement of the TonB-ExbBD complex in the IM and of the TonB CTD dimer across the inner surface of the OM. When it encounters an accessible TonB box of a (ligand-bound) LGP, the monomeric form of the CTD binds and recruits it into a 4-stranded β-sheet. Because the CTD is rotating, this binding reaction transfers kinetic energy, created by the electrochemical proton gradient across the IM, through the periplasm to the OM protein. The equilibration of the TonB C terminus between the dimeric and monomeric forms that engage in different binding reactions allows the identification of iron-loaded LGP and then the internalization of iron through their trans-outer membrane β-barrels. Hence, the ROSET model postulates a mechanism for the transfer of energy from the IM to the OM, triggering iron uptake.
Collapse
|
13
|
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle. J Bacteriol 2015; 197:3433-45. [PMID: 26283773 DOI: 10.1128/jb.00484-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport across the outer membrane for nutrients that are too large, too scarce, or too important for diffusion-limited transport. A proton gradient across the cytoplasmic membrane is converted by a multiprotein complex into mechanical energy that drives high-affinity active transport across the outer membrane. This system is also of interest since one of its uses in pathogenic bacteria is for competition with the host for the essential element iron. Understanding the mechanism of the TonB system will allow design of antibiotics targeting iron acquisition.
Collapse
|
14
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|
15
|
Chen F, Gerber S, Korkhov VM, Mireku S, Bucher M, Locher KP, Zenobi R. On the efficiency of NHS ester cross-linkers for stabilizing integral membrane protein complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:493-498. [PMID: 25404159 DOI: 10.1007/s13361-014-1035-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC(2)D(2). We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The paper provides a short overview of three investigated bacterial protein toxins, colicin M (Cma) of Escherichia coli, pesticin (Pst) of Yersinia pestis and hemolysin (ShlAB) of Serratia marcescens. Cma and Pst are exceptional among colicins in that they kill bacteria by degrading the murein (peptidoglycan). Both are released into the medium and bind to specific receptor proteins in the outer membrane of sensitive E. coli cells. Subsequently they are translocated into the periplasm by an energy-consuming process using the proton motive force. For transmembrane translocation the colicins unfold and refold in the periplasm. In the case of Cma the FkpA peptidyl prolyl cis-trans isomerase/chaperone is required. ShlA is secreted and activated through ShlB in the outer membrane by a type Vb secretion mechanism.
Collapse
|
17
|
Sverzhinsky A, Qian S, Yang L, Allaire M, Moraes I, Ma D, Chung JW, Zoonens M, Popot JL, Coulton JW. Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study. J Membr Biol 2014; 247:1005-18. [DOI: 10.1007/s00232-014-9678-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023]
|
18
|
Boeri Erba E. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 2014; 14:1259-70. [PMID: 24723549 DOI: 10.1002/pmic.201300333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
MS has emerged as an important tool to investigate noncovalent interactions between proteins and various ligands (e.g. other proteins, small molecules, or drugs). In particular, ESI under so-called "native conditions" (a.k.a. "native MS") has considerably expanded the scope of such investigations. For instance, ESI quadrupole time of flight (Q-TOF) instruments have been used to probe the precise stoichiometry of protein assemblies, the interactions between subunits and the position of subunits within the complex (i.e. defining core and peripheral subunits). This review highlights several illustrative native Q-TOF-based investigations and recent seminal contributions of top-down MS (i.e. Fourier transform (FT) MS) to the characterization of noncovalent complexes. Combined top-down and native MS, recently demonstrated in "high-mass modified" orbitrap mass spectrometers, and further improvements needed for the enhanced investigation of biologically significant noncovalent interactions by MS will be discussed.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Institute of Structural Biology (Institut de Biologie Structurale), Centre National de la Recherche Scientifique (CNRS), University of Grenoble Alpes (Université de Grenoble Alpes), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), DSV, Grenoble, France
| |
Collapse
|
19
|
Sverzhinsky A, Fabre L, Cottreau AL, Biot-Pelletier DMP, Khalil S, Bostina M, Rouiller I, Coulton JW. Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. Structure 2014; 22:791-7. [PMID: 24657092 DOI: 10.1016/j.str.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Gram-negative bacteria rely on the ExbB-ExbD-TonB system for the import of essential nutrients. Despite decades of research, the stoichiometry, subunit organization, and mechanism of action of the membrane proteins of the Ton system remain unclear. We copurified ExbB with ExbD as an ∼240 kDa protein-detergent complex, measured by light scattering and by native gels. Quantitative Coomassie staining revealed a stoichiometry of ExbB4-ExbD2. Negative stain electron microscopy and 2D analysis showed particles of ∼10 nm diameter in multiple structural states. Nanogold labeling identified the position of the ExbD periplasmic domain. Random conical tilt was used to reconstruct the particles in three structural states followed by sorting of the single particles and refinement of each state. The different states are interpreted by coordinated structural rearrangements between the cytoplasmic domain and the periplasmic domain, concordant with in vivo predictions.
Collapse
Affiliation(s)
- Aleksandr Sverzhinsky
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrew L Cottreau
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Sofia Khalil
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mihnea Bostina
- Facility for Electron Microscope Research, McGill University, Montreal, QC H3A 2B4, Canada
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
20
|
Zeng X, Xu F, Lin J. Specific TonB-ExbB-ExbD energy transduction systems required for ferric enterobactin acquisition in Campylobacter. FEMS Microbiol Lett 2013; 347:83-91. [PMID: 23905838 DOI: 10.1111/1574-6968.12221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 01/28/2023] Open
Abstract
Ferric enterobactin (FeEnt) acquisition plays a critical role in the pathophysiology of Campylobacter, the leading bacterial cause of human gastroenteritis in industrialized countries. In Campylobacter, the surface-exposed receptor, CfrA or CfrB, functions as a 'gatekeeper' for initial binding of FeEnt. Subsequent transport across the outer membrane is energized by TonB-ExbB-ExbD energy transduction systems. Although there are up to three TonB-ExbB-ExbD systems in Campylobacter, the cognate components of TonB-ExbB-ExbD for FeEnt acquisition are still largely unknown. In this study, we addressed this issue using complementary molecular approaches: comparative genomic analysis, random transposon mutagenesis and site-directed mutagenesis in two representative C. jejuni strains, NCTC 11168 and 81-176. We demonstrated that CfrB could interact with either TonB2 or TonB3 for efficient Ent-mediated iron acquisition. However, TonB3 is a dominant player in the CfrA-dependent pathway. The ExbB2 and ExbD2 components were essential for both CfrA- and CfrB-dependent FeEnt acquisition. Sequences analysis identified potential TonB boxes in CfrA and CfrB, and the corresponding binding sites in TonB. In conclusion, these findings identify specific TonB-ExbB-ExbD energy transduction components required for FeEnt acquisition, and provide insights into the complex molecular interactions of FeEnt acquisition systems in Campylobacter.
Collapse
Affiliation(s)
- Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
21
|
ExbB cytoplasmic loop deletions cause immediate, proton motive force-independent growth arrest. J Bacteriol 2013; 195:4580-91. [PMID: 23913327 DOI: 10.1128/jb.00334-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli TonB system consists of the cytoplasmic membrane proteins TonB, ExbB, and ExbD and multiple outer membrane active transporters for diverse iron siderophores and vitamin B12. The cytoplasmic membrane proteins harvest and transmit the proton motive force (PMF) to outer membrane transporters. This system, which spans the cell envelope, has only one component with a significant cytoplasmic presence, ExbB. Characterization of sequential 10-residue deletions in the ExbB cytoplasmic loop (residues 40 to 129; referred to as Δ10 proteins) revealed that it was required for all TonB-dependent activities, including interaction between the periplasmic domains of TonB and ExbD. Expression of eight out of nine of the Δ10 proteins at chromosomal levels led to immediate, but reversible, growth arrest. Arrest was not due to collapse of the PMF and did not require the presence of ExbD or TonB. All Δ10 proteins that caused growth arrest were dominant for that phenotype. However, several were not dominant for iron transport, indicating that growth arrest was an intrinsic property of the Δ10 variants, whether or not they could associate with wild-type ExbB proteins. The lack of dominance in iron transport also ruled out trivial explanations for growth arrest, such as high-level induction. Taken together, the data suggest that growth arrest reflected a changed interaction between the ExbB cytoplasmic loop and one or more unknown growth-regulatory proteins. Consistent with that, a large proportion of the ExbB cytoplasmic loop between transmembrane domain 1 (TMD1) and TMD2 is predicted to be disordered, suggesting the need for interaction with one or more cytoplasmic proteins to induce a final structure.
Collapse
|
22
|
Braun V, Patzer SI. Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett 2013; 345:13-21. [PMID: 23701660 DOI: 10.1111/1574-6968.12180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
Bacteria are in constant conflict with competing bacterial and eukaryotic cells. To cope with the various challenges, bacteria developed distinct strategies, such as toxins that inhibit the growth or kill rivals of the same ecological niche. In recent years, two toxin systems have been discovered - the type VI secretion system and the contact-dependent growth inhibition (CDI) system. These systems have structural and functional similarities and share features with the long-known gram-negative bacteriocins, such as small immunity proteins that bind to and inactivate the toxins, and target sites on DNA, tRNA, rRNA, murein (peptidoglycan), or the cytoplasmic membrane. Colicins, CdiA proteins, and certain type VI toxins have a modular design with the transport functions localized in the N-terminal region and the activity functions localized in the C-terminal region. Despite these common properties, the sequences of toxins and immunity proteins of colicins, CDI systems, and type VI systems show little similarity.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | |
Collapse
|
23
|
Simou OM, Pantazaki AA. Evidence for lytic transglycosylase and β-N-acetylglucosaminidase activities located at the polyhydroxyalkanoates (PHAs) granules of Thermus thermophilus HB8. Appl Microbiol Biotechnol 2013; 98:1205-21. [PMID: 23685478 DOI: 10.1007/s00253-013-4980-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 11/30/2022]
Abstract
The thermophilic bacterium Thermus thermophilus HB8 accumulates polyhydroxyalkanoates (PHAs) as intracellular granules used by cells as carbon and energy storage compounds. PHAs granules were isolated from cells grown in sodium gluconate (1.5 % w/v) as carbon source. Lytic activities are strongly associated and act to the PHAs granules proved with various methods. Specialized lytic trasglycosylases (LTGs) are muramidases capable of locally degrading the peptidoglycan (PG) meshwork of Gram negative bacteria. These enzymes cleave the β-1,4-glycosidic linkages between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues of PG. Lysozyme-like activity/-ies were detected using lysoplate assay. Chitinolytic activity/-ies, were detected as N-acetyl glucosaminidases (NAG) (E.C.3.2.1.5.52) hydrolyzing the synthetic substrate p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-GlcNAc) releasing pNP and GlcNAc. Using zymogram analysis two abundant LTGs were revealed hydrolyzing cell wall of Micrococcus lysodeikticus or purified PG incorporated as natural substrates, in SDS-PAGE and then renaturation. These proteins corresponded in a SDS-PAGE and Coomassie-stained gel in molecular mass of 110 and 32 kDa respectively, were analyzed by MALDI-MS (Matrix-assisted laser desorption/ionization-Mass Spectrometry). The 110 kDa protein was identified as an S-layer domain-containing protein [gi|336233805], while the 32 kDa similar to the hypothetical protein VDG1235_2196 (gi/254443957). Overall, the localization of PG hydrolases in PHAs granules appears to be involved to their biogenesis from membranes, and probably promoting septal PG splitting and daughter cell separation.
Collapse
Affiliation(s)
- Olga M Simou
- Laboratory of Biochemistry, Dept. of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | |
Collapse
|
24
|
Chen F, Gerber S, Heuser K, Korkhov VM, Lizak C, Mireku S, Locher KP, Zenobi R. High-mass matrix-assisted laser desorption ionization-mass spectrometry of integral membrane proteins and their complexes. Anal Chem 2013; 85:3483-8. [PMID: 23463947 DOI: 10.1021/ac4000943] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Analyzing purified membrane proteins and membrane protein complexes by mass spectrometry has been notoriously challenging and required highly specialized buffer conditions, sample preparation methods, and apparatus. Here we show that a standard matrix-assisted laser desorption/ionization (MALDI) protocol, if used in combination with a high-mass detector, allows straightforward mass spectrometric measurements of integral membrane proteins and their complexes, directly following purification in detergent solution. Molecular weights can be determined precisely (mass error ≤ 0.1%) such that high-mass MALDI-MS was able to identify the site for N-linked glycosylation of the eukaryotic multidrug ABC transporter Cdr1p without special purification steps, which is impossible by any other current approach. After chemical cross-linking with glutaraldehyde in the presence of detergent micelles, the subunit stoichiometries of a series of integral membrane protein complexes, including the homomeric PglK and the heteromeric BtuCD as well as BtuCDF, were unambiguously resolved. This thus adds a valuable tool for biophysical characterization of integral membrane proteins.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Braun V, Hantke K. The Tricky Ways Bacteria Cope with Iron Limitation. IRON UPTAKE IN BACTERIA WITH EMPHASIS ON E. COLI AND PSEUDOMONAS 2013. [DOI: 10.1007/978-94-007-6088-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Affiliation(s)
- Karen S. Jakes
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - William A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
27
|
Energetics of colicin import revealed by genetic cross-complementation between the Tol and Ton systems. Biochem Soc Trans 2012; 40:1480-5. [DOI: 10.1042/bst20120181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colicins are bacterial toxins that parasitize OM (outer membrane) receptors to bind to the target cells, use an import system to translocate through the cell envelope and then kill sensitive cells. Colicins classified as group A (colicins A, E1–E9, K and N) use the Tol system (TolA, TolB, TolQ and TolR), whereas group B colicins (colicins B, D, Ia, M and 5) use the ExbB–ExbD–TonB system. Genetic evidence has suggested that TolQ and ExbB, as well as TolR and ExbD, are interchangeable, whereas this is not possible with TolA and TonB. Early reports indicated that group B colicin uptake requires energy input, whereas no energy was necessary for the uptake of the pore-forming colicin A. Furthermore, energy is required to dissociate the complex formed with colicin E9 and its cognate immunity protein during the import process. In the present paper, we detail the functional phenotypes and colicin-sensitivity results obtained in tolQ and exbB mutants and cross-complementation data of amino acid substitutions that lie within ExbB or TolQ TMHs (transmembrane helices). We also discuss on a specific phenotype that corresponds to group A colicin-sensitivity associated with a non-functional Tol system.
Collapse
|
28
|
The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers. J Bacteriol 2011; 193:6852-63. [PMID: 21984795 DOI: 10.1128/jb.06190-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system couples cytoplasmic membrane proton motive force to TonB-gated outer membrane transporters for active transport of nutrients into the periplasm. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD promote conformational changes in TonB, which transmits this energy to the transporters. The only known energy-dependent interaction occurs between the periplasmic domains of TonB and ExbD. This study identified sites of in vivo homodimeric interactions within ExbD periplasmic domain residues 92 to 121. ExbD was active as a homodimer (ExbD(2)) but not through all Cys substitution sites, suggesting the existence of conformationally dynamic regions in the ExbD periplasmic domain. A subset of homodimeric interactions could not be modeled on the nuclear magnetic resonance (NMR) structure without significant distortion. Most importantly, the majority of ExbD Cys substitutions that mediated homodimer formation also mediated ExbD-TonB heterodimer formation with TonB A150C. Consistent with the implied competition, ExbD homodimer formation increased in the absence of TonB. Although ExbD D25 was not required for their formation, ExbD dimers interacted in vivo with ExbB. ExbD-TonB interactions required ExbD transmembrane domain residue D25. These results suggested a model where ExbD(2) assembled with ExbB undergoes a transmembrane domain-dependent transition and exchanges partners in localized homodimeric interfaces to form an ExbD(2)-TonB heterotrimer. The findings here were also consistent with our previous hypothesis that ExbD guides the conformation of the TonB periplasmic domain, which itself is conformationally dynamic.
Collapse
|