1
|
Gershberg J, Morhaim M, Rostrovsky I, Eichler J, Sal-Man N. The sequence of events of enteropathogenic E. coli's type III secretion system translocon assembly. iScience 2024; 27:109108. [PMID: 38375228 PMCID: PMC10875159 DOI: 10.1016/j.isci.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Many bacterial pathogens employ the type III secretion system (T3SS), a specialized complex that transports effector proteins that manipulate various cellular processes. The T3SS forms a translocon pore within the host-cell membrane consisting of two secreted proteins that transition from a soluble state into a transmembrane complex. Still, the exact sequence of events leading to the formation of a membranous functional pore remains uncertain. Here, we utilized the translocon proteins of enteropathogenic E. coli (EPEC) to investigate the sequence of those steps leading to translocon assembly, including self-oligomerization, hetero-oligomerization, interprotein interaction, and membrane insertion. We found that in EPEC, EspD (SctE) plays a dominant role in pore formation as it assembles into an oligomeric state, regardless of pH, membrane contact, or the presence of EspB (SctB). Subsequently, EspB subunits integrate into EspD homo-oligomers to create EspB-EspD hetero-oligomers that adopt a transmembrane orientation to create a functional pore complex.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - May Morhaim
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irina Rostrovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Guo H, Geddes EJ, Opperman TJ, Heuck AP. Cell-Based Assay to Determine Type 3 Secretion System Translocon Assembly in Pseudomonas aeruginosa Using Split Luciferase. ACS Infect Dis 2023; 9:2652-2664. [PMID: 37978950 DOI: 10.1021/acsinfecdis.3c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multi-drug-resistant Pseudomonas aeruginosa poses a serious threat to hospitalized patients. This organism expresses an arsenal of virulence factors that enables it to readily establish infections and disseminate in the host. The Type 3 secretion system (T3SS) and its associated effectors play a crucial role in the pathogenesis of P. aeruginosa, making them attractive targets for the development of novel therapeutic agents. The T3SS translocon, composed of PopD and PopB, is an essential component of the T3SS secretion apparatus. In the properly assembled translocon, the N-terminus of PopD protrudes into the cytoplasm of the target mammalian cell, which can be exploited as a molecular indicator of functional translocon assembly. In this article, we describe a novel whole-cell-based assay that employs the split NanoLuc luciferase detection system to provide a readout for translocon assembly. The assay demonstrates a favorable signal/noise ratio (13.6) and robustness (Z' = 0.67), making it highly suitable for high-throughput screening of small-molecule inhibitors targeting T3SS translocon assembly.
Collapse
Affiliation(s)
- Hanling Guo
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Emily J Geddes
- Microbiotix, Inc., Worcester, Massachusetts 01605, United States
| | | | - Alejandro P Heuck
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Godlee C, Holden DW. Transmembrane substrates of type three secretion system injectisomes. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001292. [PMID: 36748571 PMCID: PMC9993115 DOI: 10.1099/mic.0.001292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The type three secretion system injectisome of Gram-negative bacterial pathogens injects virulence proteins, called effectors, into host cells. Effectors of mammalian pathogens carry out a range of functions enabling bacterial invasion, replication, immune suppression and transmission. The injectisome secretes two translocon proteins that insert into host cell membranes to form a translocon pore, through which effectors are delivered. A subset of effectors also integrate into infected cell membranes, enabling a unique range of biochemical functions. Both translocon proteins and transmembrane effectors avoid cytoplasmic aggregation and integration into the bacterial inner membrane. Translocated transmembrane effectors locate and integrate into the appropriate host membrane. In this review, we focus on transmembrane translocon proteins and effectors of bacterial pathogens of mammals. We discuss what is known about the mechanisms underlying their membrane integration, as well as the functions conferred by the position of injectisome effectors within membranes.
Collapse
Affiliation(s)
- Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- Present address: Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- *Correspondence: Camilla Godlee, ;
| | - David W. Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- *Correspondence: David W. Holden,
| |
Collapse
|
5
|
Jouault A, Saliba AM, Touqui L. Modulation of the immune response by the Pseudomonas aeruginosa type-III secretion system. Front Cell Infect Microbiol 2022; 12:1064010. [PMID: 36519135 PMCID: PMC9742435 DOI: 10.3389/fcimb.2022.1064010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause critical cellular damage and subvert the immune response to promote its survival. Among the numerous virulence factors of P. aeruginosa, the type III secretion system (T3SS) is involved in host cell pathogenicity. Using a needle-like structure, T3SS detects eukaryotic cells and injects toxins directly into their cytosol, thus highlighting its ability to interfere with the host immune response. In this mini-review, we discuss how the T3SS and bacterial effectors secreted by this pathway not only activate the immune response but can also manipulate it to promote the establishment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Albane Jouault
- Mucoviscidose: Phénotypique et Phénogénomique, Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Paris, France,Département Santé Globale, Mucoviscidose et Bronchopathie Chroniques, Institut Pasteur, Paris, France,*Correspondence: Albane Jouault,
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lhousseine Touqui
- Mucoviscidose: Phénotypique et Phénogénomique, Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Paris, France,Département Santé Globale, Mucoviscidose et Bronchopathie Chroniques, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Evolutionary Conservation, Variability, and Adaptation of Type III Secretion Systems. J Membr Biol 2022; 255:599-612. [PMID: 35695900 DOI: 10.1007/s00232-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Type III secretion (T3S) systems are complex bacterial structures used by many pathogens to inject proteins directly into the cytosol of the host cell. These secretion machines evolved from the bacterial flagella and they have been grouped into families by phylogenetic analysis. The T3S system is composed of more than 20 proteins grouped into five complexes: the cytosolic platform, the export apparatus, the basal body, the needle, and the translocon complex. While the proteins located inside the bacterium are conserved, those exposed to the external media present high variability among families. This suggests that the T3S systems have adapted to interact with different cells or tissues in the host, and/or have been subjected to the evolutionary pressure of the host immune defenses. Such adaptation led to changes in the sequence of the T3S needle tip and translocon suggesting differences in the mechanism of assembly and structure of this complex.
Collapse
|
7
|
Gershberg J, Braverman D, Sal-Man N. Transmembrane domains of type III-secreted proteins affect bacterial-host interactions in enteropathogenic E. coli. Virulence 2021; 12:902-917. [PMID: 33729090 PMCID: PMC7993127 DOI: 10.1080/21505594.2021.1898777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bacterial pathogens utilize a specialized secretion system, termed type III secretion system (T3SS), to translocate effector proteins into host cells and establish bacterial infection. The T3SS is anchored within the bacterial membranes and contains a long needle/filament that extends toward the host-cell and forms, at its distal end, a pore complex within the host membrane. The T3SS pore complex consists of two bacterial proteins, termed SctB and SctE, which have conflicting targeting indications; a signal sequence that targets to secretion to the extracellular environment via the T3SS, and transmembrane domains (TMDs) that target to membrane localization. In this study, we investigate whether the TMD sequences of SctB and SctE have special features that differentiate them from classical TMDs and allow them to escape bacterial membrane integration. For this purpose, we exchanged the SctB and SctE native TMDs for alternative hydrophobic sequences and found that the TMD sequences of SctB and SctE dictate membrane destination (bacterial versus host membrane). Moreover, we examined the role of the SctB TMD sequence in the activity of the full-length protein, post secretion, and found that the TMD does not serve only as a hydrophobic segment, but is also involved in the ability of the protein to translocate itself and other proteins into and across the host cell membrane.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dor Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
8
|
Tang Y, Guo H, Vermeulen AJ, Heuck AP. Topological analysis of type 3 secretion translocons in native membranes. Methods Enzymol 2021; 649:397-429. [PMID: 33712194 DOI: 10.1016/bs.mie.2021.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFPs (Pore-forming proteins) perforate cellular membranes to create an aqueous pore and allow the passage of ions and polar molecules. The molecular mechanisms for many of these PFPs have been elucidated by combining high resolution structural information of these proteins with biochemical and biophysical approaches. However, some PFPs do not adopt stable conformations and are difficult to study in vitro. An example of these proteins are the bacterial Type 3 Secretion (T3S) translocators. The translocators are secreted by the bacterium and insert into the target cell membrane to form a translocon pore providing a portal for the passage of T3S toxins into eukaryotic cells. Given the important role that the T3S systems play in pathogenesis, methods to study these translocon pores in cellular membranes are needed. Using a combination of protein modifications and methods to selectively permeate and solubilized eukaryotic membranes, we have established an experimental procedure to analyze the topology of the Pseudomonas aeruginosa T3S translocon using P. aeruginosa strain variants and HeLa cell lines.
Collapse
Affiliation(s)
- Yuzhou Tang
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, United States
| | - Hanling Guo
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, United States
| | - Arjan J Vermeulen
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| | - Alejandro P Heuck
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
9
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
10
|
Tang Y, Romano FB, Breña M, Heuck AP. The Pseudomonas aeruginosa type III secretion translocator PopB assists the insertion of the PopD translocator into host cell membranes. J Biol Chem 2018; 293:8982-8993. [PMID: 29685888 DOI: 10.1074/jbc.ra118.002766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Many Gram-negative bacterial pathogens use a type III secretion system to infect eukaryotic cells. The injection of bacterial toxins or protein effectors via this system is accomplished through a plasma membrane channel formed by two bacterial proteins, termed translocators, whose assembly and membrane-insertion mechanisms are currently unclear. Here, using purified proteins we demonstrate that the translocators PopB and PopD in Pseudomonas aeruginosa assemble heterodimers in membranes, leading to stably inserted hetero-complexes. Using site-directed fluorescence labeling with an environment-sensitive probe, we found that hydrophobic segments in PopD anchor the translocator to the membrane, but without adopting a typical transmembrane orientation. A fluorescence dual-quenching assay revealed that the presence of PopB changes the conformation adopted by PopD segments in membranes. Furthermore, analysis of PopD's interaction with human cell membranes revealed that PopD adopts a distinctive conformation when PopB is present. An N-terminal region of PopD is only exposed to the host cytosol when PopB is present. We conclude that PopB assists with the proper insertion of PopD in cell membranes, required for the formation of a functional translocon and host infection.
Collapse
Affiliation(s)
- Yuzhou Tang
- From the Program in Molecular and Cellular Biology and
| | | | - Mariana Breña
- From the Program in Molecular and Cellular Biology and
| | - Alejandro P Heuck
- From the Program in Molecular and Cellular Biology and .,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
11
|
Dortet L, Lombardi C, Cretin F, Dessen A, Filloux A. Pore-forming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome. Nat Microbiol 2018; 3:378-386. [PMID: 29403015 DOI: 10.1038/s41564-018-0109-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
Recent studies highlight that bacterial pathogens can reprogram target cells by influencing epigenetic factors. The type III secretion system (T3SS) is a bacterial nanomachine that resembles a syringe on the bacterial surface. The T3SS 'needle' delivers translocon proteins into eukaryotic cell membranes, subsequently allowing injection of bacterial effectors into the cytosol. Here we show that Pseudomonas aeruginosa induces early T3SS-dependent dephosphorylation and deacetylation of histone H3 in eukaryotic cells. This is not triggered by any of the P. aeruginosa T3SS effectors, but results from the insertion of the PopB-PopD translocon into the membrane. This suggests that the P. aeruginosa translocon is a genuine T3SS effector acting as a pore-forming toxin. We visualized the translocon plugged into the host cell membrane after the bacterium has left the site of contact, and demonstrate that subsequent ion exchange through this pore is responsible for histone H3 modifications and host cell subversion.
Collapse
Affiliation(s)
- Laurent Dortet
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Faculty of Medicine, Paris-Sud University, LabEx Lermit, Le Kremlin-Bicêtre, France
| | - Charlotte Lombardi
- Institut de Biologie Structurale (IBS), University Grenoble-Alpes, CEA, CNRS, Bacterial Pathogenesis Group, Grenoble, France
| | - François Cretin
- University Grenoble-Alpes, Bacterial Pathogenesis and Cellular Responses, CNRS-ERL5261, U1036_S, INSERM, Biosciences and Biotechnology Institute of Grenoble, CEA-Grenoble, Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale (IBS), University Grenoble-Alpes, CEA, CNRS, Bacterial Pathogenesis Group, Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), CNPEM, São Paulo, Brazil
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
12
|
Engel AC, Herbst F, Kerres A, Galle JN, Hegemann JH. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae. PLoS One 2016; 11:e0148509. [PMID: 26895250 PMCID: PMC4760673 DOI: 10.1371/journal.pone.0148509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Chlamydia pneumoniae is an intracellular Gram-negative bacterium that possesses a type III secretion system (T3SS), which enables the pathogen to deliver, in a single step, effector proteins for modulation of host-cell functions into the human host cell cytosol to establish a unique intracellular niche for replication. The translocon proteins located at the top of the T3SS needle filament are essential for its function, as they form pores in the host-cell membrane. Interestingly, unlike other Gram-negative bacteria, C. pneumoniae has two putative translocon operons, named LcrH_1 and LcrH_2. However, little is known about chlamydial translocon proteins. In this study, we analyzed CPn0809, one of the putative hydrophobic translocators encoded by the LcrH_1 operon, and identified an 'SseC-like family' domain characteristic of T3S translocators. Using bright-field and confocal microscopy, we found that CPn0809 is associated with EBs during early and very late phases of a C. pneumoniae infection. Furthermore, CPn0809 forms oligomers, and interacts with the T3SS chaperone LcrH_1, via its N-terminal segment. Moreover, expression of full-length CPn0809 in the heterologous host Escherichia coli causes a grave cytotoxic effect that leads to cell death. Taken together, our data indicate that CPn0809 likely represents one of the translocon proteins of the C. pneumoniae T3SS, and possibly plays a role in the translocation of effector proteins in the early stages of infection.
Collapse
Affiliation(s)
- Astrid C. Engel
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frauke Herbst
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anne Kerres
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jan N. Galle
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Johannes H. Hegemann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
13
|
Romano FB, Tang Y, Rossi KC, Monopoli KR, Ross JL, Heuck AP. Type 3 Secretion Translocators Spontaneously Assemble a Hexadecameric Transmembrane Complex. J Biol Chem 2016; 291:6304-15. [PMID: 26786106 DOI: 10.1074/jbc.m115.681031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 11/06/2022] Open
Abstract
A type 3 secretion system is used by many bacterial pathogens to inject proteins into eukaryotic cells. Pathogens insert a translocon complex into the target eukaryotic membrane by secreting two proteins known as translocators. How these translocators form a translocon in the lipid bilayer and why both proteins are required remains elusive. Pseudomonas aeruginosa translocators PopB and PopD insert pores into membranes forming homo- or hetero-complexes of undetermined stoichiometry. Single-molecule fluorescence photobleaching experiments revealed that PopD formed mostly hexameric structures in membranes, whereas PopB displayed a bi-modal distribution with 6 and 12 subunits peaks. However, individually the proteins are not functional for effector translocation. We have found that when added together, the translocators formed distinct hetero-complexes containing 8 PopB and 8 PopD molecules. Thus, the interaction between PopB and PopD guide the assembly of a unique hetero-oligomer in membranes.
Collapse
Affiliation(s)
| | - Yuzhou Tang
- From the Program in Molecular and Cellular Biology, and
| | - Kyle C Rossi
- the Departments of Biochemistry and Molecular Biology and
| | | | - Jennifer L Ross
- From the Program in Molecular and Cellular Biology, and Physics, University of Massachusetts, Amherst, Massachusetts 01003
| | - Alejandro P Heuck
- From the Program in Molecular and Cellular Biology, and the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
14
|
Chatterjee A, Caballero-Franco C, Bakker D, Totten S, Jardim A. Pore-forming Activity of the Escherichia coli Type III Secretion System Protein EspD. J Biol Chem 2015; 290:25579-94. [PMID: 26324713 DOI: 10.1074/jbc.m115.648204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280-320-kDa oligomeric structure consisting of ∼6-7 subunits.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Celia Caballero-Franco
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Dannika Bakker
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Stephanie Totten
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Armando Jardim
- From the Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
15
|
Discola KF, Förster A, Boulay F, Simorre JP, Attree I, Dessen A, Job V. Membrane and chaperone recognition by the major translocator protein PopB of the type III secretion system of Pseudomonas aeruginosa. J Biol Chem 2013; 289:3591-601. [PMID: 24297169 DOI: 10.1074/jbc.m113.517920] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and β-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51-59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly.
Collapse
Affiliation(s)
- Karen F Discola
- From the Institut de Biologie Structurale, Université Grenoble Alpes, 6 rue Jules Horowitz, 38000 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Wager B, Faudry E, Wills T, Attree I, Delcour AH. Current fluctuation analysis of the PopB and PopD translocon components of the Pseudomonas aeruginosa type III secretion system. Biophys J 2013; 104:1445-55. [PMID: 23561521 DOI: 10.1016/j.bpj.2013.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a major agent of hospital-acquired infections, and a pathogen of immunocompromised, cystic fibrosis and burn patients. It uses a type III secretion system for the injection of toxins directly into host cells, through a translocon assembled in the host cell membrane. The hydrophobic translocator subunits of this system, PopB and PopD, have membrane permeabilizing activity based on previous dye leakage experiments, but little is known about the mechanism of assembly and the pore properties of this translocon. Using electrophysiology, we have observed that an equimolar mixture of PopB and PopD induces current fluctuations in planar lipid bilayers, with a unitary conductance of 57 pS in 1 M KCl and numerous larger conductance levels. The activity depends on voltage magnitude and polarity, and increases with protein concentration and the duration of the voltage step. PopB alone is sufficient for producing current fluctuations. PopD rarely displays any transitions, but accelerates PopB onset of activity. The effects of pH, ionic strength, and lipid composition have also been explored. Our data provide new, to our knowledge, insights into the behavior of PopB and PopD by highlighting similarities with secreted pore-forming peptides, and by suggesting that PopB/PopD may form channels via the toroidal pore model. We believe that the events we report here represent the initial steps of insertion and assembly of these translocators in the membrane.
Collapse
Affiliation(s)
- Beau Wager
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
17
|
Raghava S, Giorda KM, Romano FB, Heuck AP, Hebert DN. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release. Biochemistry 2013; 52:3939-48. [PMID: 23651212 DOI: 10.1021/bi400036z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers.
Collapse
Affiliation(s)
- Smita Raghava
- Department of Biochemistry and Molecular Biology, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | | | | | | | | |
Collapse
|
18
|
Faudry E, Perdu C, Attrée I. Pore formation by T3SS translocators: liposome leakage assay. Methods Mol Biol 2013; 966:173-85. [PMID: 23299735 DOI: 10.1007/978-1-62703-245-2_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-negative bacteria utilize a dedicated membrane-embedded apparatus, the type III secretion system (T3SS), to inject proteins into host cells. The passage of the proteins across the target membrane is accomplished by a proteinaceous pore-the translocon-formed within the host-cell cytoplasmic membrane. Translocators bound to their chaperones can be expressed in Escherichia coli and subsequently dissociated from the chaperone by guanidine treatment. The pore formation properties of the translocators can then be studied by an in-vitro liposome leakage assay. Sulforhodamine-B is encapsulated within lipid vesicles during liposome preparation. At high concentration, this fluorochrome exhibits self-quenching limiting fluorescence emission. Upon pore formation, liposome leakage leads to the dilution of Sulforhodamine-B in the medium and fluorescence emission increases. Alternatively, fluorochromes coupled to large dextran molecules can be encapsulated in order to estimate pore dimensions. Here we describe protein expression and purification, dye-liposome preparation, and leakage assay conditions.
Collapse
Affiliation(s)
- Eric Faudry
- Bacterial Pathogenesis and Cellular Responses Group, Centre National de la Recherche Scientifique, Université Grenoble I, Commissariat à l'Energie Atomique, iRTSV, Grenoble, France.
| | | | | |
Collapse
|
19
|
Abstract
The TTSS encoding "translocator operon" of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an α-helical model for PopB, PcrH and PopB-PcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB-PcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (K(d) ~ 0.37 μM) of PopB for PcrH at pH 7.8, which reduces to ~0.68 μM at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.
Collapse
|
20
|
Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP. Modifications in Perfringolysin O Domain 4 Alter the Cholesterol Concentration Threshold Required for Binding. Biochemistry 2012; 51:3373-82. [DOI: 10.1021/bi3003132] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - David Wang
- Department of Biochemistry and
Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Kathleen Rossi
- Department of Biochemistry and
Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and
Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
21
|
Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A, McArthur FA, Romano FB, Caimano MJ, Heuck AP, Malkowski MG, Radolf JD. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem 2011; 286:41656-41668. [PMID: 21965687 PMCID: PMC3308875 DOI: 10.1074/jbc.m111.305284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 09/26/2011] [Indexed: 11/06/2022] Open
Abstract
The molecular architecture and composition of the outer membrane (OM) of Treponema pallidum (Tp), the noncultivable agent of venereal syphilis, differ considerably from those of typical Gram-negative bacteria. Several years ago we described TP0453, the only lipoprotein associated with the inner leaflet of the Tp OM. Whereas polypeptides of other treponemal lipoproteins are hydrophilic, non-lipidated TP0453 can integrate into membranes, a property attributed to its multiple amphipathic helices (AHs). Furthermore, membrane integration of the TP0453 polypeptide was found to increase membrane permeability, suggesting the molecule functions in a porin-like manner. To better understand the mechanism of membrane integration of TP0453 and its physiological role in Tp OM biogenesis, we solved its crystal structure and used mutagenesis to identify membrane insertion elements. The crystal structure of TP0453 consists of an α/β/α-fold and includes five stably folded AHs. In high concentrations of detergent, TP0453 transitions from a closed to open conformation by lateral movement of two groups of AHs, exposing a large hydrophobic cavity. Triton X-114 phase partitioning, liposome floatation assay, and bis-1-anilino-8-naphthalenesulfonate binding revealed that two adjacent AHs are critical for membrane sensing/integration. Using terbium-dipicolinic acid complex-loaded large unilamellar vesicles, we found that TP0453 increased efflux of fluorophore only at acidic pH. Gel filtration and cross-linking experiments demonstrated that one AH critical for membrane sensing/insertion also forms a dimeric interface. Based on structural dynamics and comparison with Mycobacterium tuberculosis lipoproteins LprG and LppX, we propose that TP0453 functions as a carrier of lipids, glycolipids, and/or derivatives during OM biogenesis.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Guangyu Zhu
- Hauptman-Woodward Medical Research Institute and Department of Structural Biology, State University of New York, Buffalo, New York 14203
| | - Daniel C Desrosiers
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Christian H Eggers
- Departments of Biomedical Sciences, Quinnipiac University, Hamden, Connecticut 06518
| | - Vishwaroop Mulay
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Fiona A McArthur
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Fabian B Romano
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Melissa J Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Alejandro P Heuck
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Michael G Malkowski
- Hauptman-Woodward Medical Research Institute and Department of Structural Biology, State University of New York, Buffalo, New York 14203
| | - Justin D Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030; Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut 06030; Departments of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030.
| |
Collapse
|
22
|
Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J Bacteriol 2011; 193:6923-8. [PMID: 22001511 DOI: 10.1128/jb.05555-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The type III secretion systems are contact-activated secretion systems that allow bacteria to inject effector proteins across eukaryotic cell membranes. The secretion apparatus, called injectisome or needle complex, includes a needle that terminates with a tip structure. The injectisome exports its own distal components, like the needle subunit and the needle tip. Upon contact, it exports two hydrophobic proteins called translocators (YopB and YopD in Yersinia enterocolitica) and the effectors. The translocators, assisted by the needle tip, form a pore in the target cell membrane, but the structure of this pore remains elusive. Here, we purified the membranes from infected sheep erythrocytes, and we show that they contain integrated and not simply adherent YopB and YopD. In blue native PAGE, these proteins appeared as a multimeric 500- to 700-kDa complex. This heteropolymeric YopBD complex could be copurified after solubilization in 0.5% dodecyl maltoside but not visualized in the electron microscope. We speculate that this complex may not be stable and rigid but only transient.
Collapse
|