1
|
Wang A, Liu W, Jin X, Wu H, Zhang D, Han X, Liu Y, Li Z, Ding M, Li J, Tan H. Dynamics and Machine Learning Reveal the Link between Tripeptide Sequences and Evaporation-Driven Material Properties. NANO LETTERS 2025. [PMID: 40289375 DOI: 10.1021/acs.nanolett.5c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Previous research showed that a peptide composed of three tyrosines (YYY) can turn into organic glass and cause strong adhesion between substrates via evaporation. However, the mechanisms of these processes remain unclear, and the exploration of applications of other peptide sequences is necessary. In this study, an optimized evaporation method was employed in molecular dynamics. It was found that YYY evaporation products possess abundant internal hydrogen bonds, which may facilitate the amorphous glass state formation. Moderate hydrophilicity of a peptide enhances molecular mobility and self-healing ability, while excessive hydrophilicity causes a water plasticizing effect. Stronger hydrophilicity also brings a larger curvature of evaporation products on polydimethylsiloxane (PDMS) substrate. A machine learning model was developed to predict the evaporation contact angle of peptide evaporation products and agrees well with the experiment. This research aims to improve understanding of peptide structure-function relationships and aid in designing custom organic optical devices based on peptide sequences.
Collapse
Affiliation(s)
- Ao Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Wenkai Liu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hecheng Wu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Dongfei Zhang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Liu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Med-X center for materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Landreh M, Osterholz H, Chen G, Knight SD, Rising A, Leppert A. Liquid-liquid crystalline phase separation of spider silk proteins. Commun Chem 2024; 7:260. [PMID: 39533043 PMCID: PMC11557605 DOI: 10.1038/s42004-024-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins can be considered an intermediate solubility regime between disperse solutions and solid fibers. While LLPS has been described for several pathogenic amyloids, recent evidence suggests that it is similarly relevant for functional amyloids. Here, we review the evidence that links spider silk proteins (spidroins) and LLPS and its role in the spinning process. Major ampullate spidroins undergo LLPS mediated by stickers and spacers in their repeat regions. During spinning, the spidroins droplets shift from liquid to crystalline states. Shear force, altered ion composition, and pH changes cause micelle-like spidroin assemblies to form an increasingly ordered liquid-crystalline phase. Interactions between polyalanine regions in the repeat regions ultimately yield the characteristic β-crystalline structure of mature dragline silk fibers. Based on these findings, we hypothesize that liquid-liquid crystalline phase separation (LLCPS) can describe the molecular and macroscopic features of the phase transitions of major ampullate spidroins during spinning and speculate whether other silk types may use a similar mechanism to convert from liquid dope to solid fiber.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Hannah Osterholz
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gefei Chen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Stefan D Knight
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Axel Leppert
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
3
|
Bonet DF, Ranyai S, Aswad L, Lane DP, Arsenian-Henriksson M, Landreh M, Lama D. AlphaFold with conformational sampling reveals the structural landscape of homorepeats. Structure 2024; 32:2160-2167.e2. [PMID: 39299235 DOI: 10.1016/j.str.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Homorepeats are motifs with reiterations of the same amino acid. They are prevalent in proteins associated with diverse physiological functions but also linked to several pathologies. Structural characterization of homorepeats has remained largely elusive, primarily because they generally occur in the disordered regions or proteins. Here, we address this subject by combining structures derived from machine learning with conformational sampling through physics-based simulations. We find that hydrophobic homorepeats have a tendency to fold into structured secondary conformations, while hydrophilic ones predominantly exist in unstructured states. Our data show that the flexibility rendered by disorder is a critical component besides the chemical feature that drives homorepeats composition toward hydrophilicity. The formation of regular secondary structures also influences their solubility, as pathologically relevant homorepeats display a direct correlation between repeat expansion, induction of helicity, and self-assembly. Our study provides critical insights into the conformational landscape of protein homorepeats and their structure-activity relationship.
Collapse
Affiliation(s)
- David Fernandez Bonet
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23A, SE-171 65 Solna, Sweden
| | - Shahrayar Ranyai
- Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE-114 28 Stockholm, Sweden
| | - Luay Aswad
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavagen 23A, SE-171 65 Solna, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden.
| |
Collapse
|
4
|
Patel A, Arik M, Sarkar A. An Undergraduate Laboratory Module Integrating Organic Chemistry and Polymer Science. JOURNAL OF CHEMICAL EDUCATION 2024; 101:1686-1695. [PMID: 38617818 PMCID: PMC11008100 DOI: 10.1021/acs.jchemed.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polymer science is receiving wider acceptance in the organic chemistry community; thus, it is imperative to include it in the undergraduate organic chemistry curriculum. Despite the ever-increasing popularity of the topic of polymer chemistry in undergraduate curricula, a comprehensive laboratory experiment module describing a polypeptide synthesis by ring-opening polymerization of N-carboxyanhydride (NCA ROP) and a homopolymer synthesis by activators-regenerated by electron-transfer for atom transfer radical polymerization (ARGET ATRP) has yet to be proposed. Herein, we report a semester-long, ten week undergraduate laboratory module focusing on the synthesis and analytical characterization of polyalanine and polystyrene for an advanced organic chemistry class. Students received hands-on-experiences in synthesizing polymers followed by their characterization via proton nuclear magnetic resonance (1H NMR) spectroscopy, electrospray ionization-mass spectrometry (ESI-MS), gel permeation chromatography (GPC), thermogravimetry (TGA), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM), which are not well-presented in the typical organic chemistry curricula. These engaging hands-on lessons in the newly designed laboratory module not only increase students' interests in an interdisciplinary environment of organic chemistry and polymer science but also cultivate their research interests and communication skills and promote critical thinking.
Collapse
Affiliation(s)
- Arya Patel
- Department of Chemistry &
Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Michael Arik
- Department of Chemistry &
Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Amrita Sarkar
- Department of Chemistry &
Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
5
|
Eltareb A, Rivera-Cancel J, Lopez GE, Giovambattista N. Backbone Hydration of α-Helical Peptides: Hydrogen-Bonding and Surface Hydrophobicity/Hydrophilicity. Mol Phys 2024; 122:e2323637. [PMID: 39845025 PMCID: PMC11753776 DOI: 10.1080/00268976.2024.2323637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 01/24/2025]
Abstract
The stability of proteins and small peptides depends on the way they interact with the surrounding water molecules. For small peptides, such as α-helical polyalanine (polyALA), water molecules can weaken the intramolecular hydrogen-bonds (HB) formed between the peptide backbone O and NH groups which are responsible for the α-helix structure. Here, we perform molecular dynamics simulations to study the hydration of polyALA, polyserine (polySER), and other homopolymer peptide α-helices at different temperatures and pressures. We find that water molecules form HB with most polyALA carbonyl O atoms, despite ALA hydrophobic CH3 side chain. Similar water-peptide backbone HB are found in other (hydrophobic and hydrophilic) homopolymer α-helices with large side chains, including polyvaline, polyleucine, and polyphenyalanine. A novel hydration mechanism is observed in polyserine (polySER): the backbone peptide rarely forms HB with water and, instead, the carbonyl O atoms tend to form HB with polySER side chain OH groups. We also quantify the hydrophobicity/hydrophilicity of polyALA and polySER by calculating the contact angle θ c of a water droplet pierced by a long polyALA/polySER α-helix. Unexpectedly, even when polyALA α-helix is supposed to be hydrophobic (θ c > 90°), we find that θ c ≈ 79°. For polySER, θ c ≈ 70°, consistent with α-helical polySER being hydrophilic.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Janel Rivera-Cancel
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Gustavo E Lopez
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, United States
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| |
Collapse
|
6
|
Antón R, Treviño MÁ, Pantoja-Uceda D, Félix S, Babu M, Cabrita EJ, Zweckstetter M, Tinnefeld P, Vera AM, Oroz J. Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions. Nat Commun 2024; 15:1925. [PMID: 38431667 PMCID: PMC10908835 DOI: 10.1038/s41467-024-46236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal trinucleotide repeat expansions alter protein conformation causing malfunction and contribute to a significant number of incurable human diseases. Scarce structural insights available on disease-related homorepeat expansions hinder the design of effective therapeutics. Here, we present the dynamic structure of human PHOX2B C-terminal fragment, which contains the longest polyalanine segment known in mammals. The major α-helical conformation of the polyalanine tract is solely extended by polyalanine expansions in PHOX2B, which are responsible for most congenital central hypoventilation syndrome cases. However, polyalanine expansions in PHOX2B additionally promote nascent homorepeat conformations that trigger length-dependent phase transitions into solid condensates that capture wild-type PHOX2B. Remarkably, HSP70 and HSP90 chaperones specifically seize PHOX2B alternative conformations preventing phase transitions. The precise observation of emerging polymorphs in expanded PHOX2B postulates unbalanced phase transitions as distinct pathophysiological mechanisms in homorepeat expansion diseases, paving the way towards the search of therapeutics modulating biomolecular condensates in central hypoventilation syndrome.
Collapse
Affiliation(s)
- Rosa Antón
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Miguel Á Treviño
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Sara Félix
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - María Babu
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Andrés M Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Javier Oroz
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain.
| |
Collapse
|
7
|
Okumura H, Itoh SG, Zen H, Nakamura K. Dissociation process of polyalanine aggregates by free electron laser irradiation. PLoS One 2023; 18:e0291093. [PMID: 37683014 PMCID: PMC10491298 DOI: 10.1371/journal.pone.0291093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Polyalanine (polyA) disease-causative proteins with an expansion of alanine repeats can be aggregated. Although curative treatments for polyA diseases have not been explored, the dissociation of polyA aggregates likely reduces the cytotoxicity of polyA. Mid-infrared free electron laser (FEL) successfully dissociated multiple aggregates. However, whether the FEL dissociates polyA aggregates like other aggregates has not been tested. Here, we show that FEL at 6.1 μm experimentally weakened the extent of aggregation of a peptide with 13 alanine repeats (13A), and the irradiated 13A exerted lesser cytotoxicity to neuron-like cells than non-irradiated 13A. Then, we applied molecular dynamics (MD) simulation to follow the dissociation process by FEL. We successfully observed how the intermolecular β-sheet of polyA aggregates was dissociated and separated into monomers with helix structures upon FEL irradiation. After the dissociation by FEL, water molecules inhibited the reformation of polyA aggregates. We recently verified the same dissociation process using FEL-treated amyloid-β aggregates. Thus, a common mechanism underlies the dissociation of different protein aggregates that cause different diseases, polyA disease and Alzheimer's disease. However, MD simulation indicated that polyA aggregates are less easily dissociated than amyloid-β aggregates and require longer laser irradiation due to hydrophobic alanine repeats.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
| | - Heishun Zen
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| |
Collapse
|
8
|
Okumura H, Kawasaki T, Nakamura K. Probing protein misfolding and dissociation with an infrared free-electron laser. Methods Enzymol 2022; 679:65-96. [PMID: 36682873 DOI: 10.1016/bs.mie.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding is observed in the mutant proteins that are causative for neurodegenerative disorders such as polyglutamine diseases. These proteins are prone to aggregate in the cytoplasm and nucleus of cells. To reproduce cells with the aggregated proteins, gene expression system is usually applied, in which the expression construct having the mutated DNA sequence of the interest is transfected into cells. The transfected DNA is finally converted into the mutant protein, which is gradually aggregated in the cells. In addition, a simple method to prepare the cells having aggregates inside has been recently applied. Peptides were first aggregated by incubating them in water. The aggregates are spontaneously taken up by cells because aggregated proteins generally transfer between cells. Peptides with different degrees of aggregation can be made by changing the incubation times and temperatures, which enables to examine contribution of aggregation to the toxicity to the recipient cells. Moreover, such cells can be used for therapeutic researches of diseases in which aggregates are involved. In this chapter, we show methods to induce aggregation of peptides. The functional analyses of the cells with aggregates are also described. Then, experimental dissociation of the aggregates produced using this method by mid infrared free electron laser irradiation and its theoretical support by molecular dynamics simulation are introduced as the therapeutic research for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan.
| |
Collapse
|
9
|
Mier P, Elena-Real CA, Cortés J, Bernadó P, Andrade-Navarro MA. The sequence context in poly-alanine regions: structure, function and conservation. Bioinformatics 2022; 38:4851-4858. [PMID: 36106994 PMCID: PMC9620824 DOI: 10.1093/bioinformatics/btac610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
MOTIVATION Poly-alanine (polyA) regions are protein stretches mostly composed of alanines. Despite their abundance in eukaryotic proteomes and their association to nine inherited human diseases, the structural and functional roles exerted by polyA stretches remain poorly understood. In this work we study how the amino acid context in which polyA regions are settled in proteins influences their structure and function. RESULTS We identified glycine and proline as the most abundant amino acids within polyA and in the flanking regions of polyA tracts, in human proteins as well as in 17 additional eukaryotic species. Our analyses indicate that the non-structuring nature of these two amino acids influences the α-helical conformations predicted for polyA, suggesting a relevant role in reducing the inherent aggregation propensity of long polyA. Then, we show how polyA position in protein N-termini relates with their function as transit peptides. PolyA placed just after the initial methionine is often predicted as part of mitochondrial transit peptides, whereas when placed in downstream positions, polyA are part of signal peptides. A few examples from known structures suggest that short polyA can emerge by alanine substitutions in α-helices; but evolution by insertion is observed for longer polyA. Our results showcase the importance of studying the sequence context of homorepeats as a mechanism to shape their structure-function relationships. AVAILABILITY AND IMPLEMENTATION The datasets used and/or analyzed during the current study are available from the corresponding author onreasonable request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
10
|
Kuznik NC, Solozobova V, Lee II, Jung N, Yang L, Nienhaus K, Ntim EA, Rottenberg JT, Muhle-Goll C, Kumar AR, Peravali R, Gräßle S, Gourain V, Deville C, Cato L, Neeb A, Dilger M, Cramer von Clausbruch CA, Weiss C, Kieffer B, Nienhaus GU, Brown M, Bräse S, Cato ACB. A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway. iScience 2022; 25:104175. [PMID: 35479411 PMCID: PMC9036123 DOI: 10.1016/j.isci.2022.104175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth.
BAG1L interacts with a sequence overlapping a polyalanine tract in the AR NTD Knockdown of BAG1L increase AR dynamics in the nucleus BAG1L uses ROS pathway to regulate AR+ prostate cancer cell proliferation A small molecule BAG1 inhibitor inhibits prostate tumor growth in mouse xenografts
Collapse
Affiliation(s)
- Nane C Kuznik
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Valeria Solozobova
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Linxiao Yang
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Emmanuel A Ntim
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Claudia Muhle-Goll
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Amrish Rajendra Kumar
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Victor Gourain
- LabEx IGO "Immunotherapy, Graft, Oncology", Centre de Recherche en Transplantation et Immunologie - UMR1064, 44093 Nantes, France
| | - Célia Deville
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Antje Neeb
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marco Dilger
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christina A Cramer von Clausbruch
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bruno Kieffer
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - G Ulrich Nienhaus
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andrew C B Cato
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Owada R, Mitsui S, Nakamura K. Exogenous polyserine and polyleucine are toxic to recipient cells. Sci Rep 2022; 12:1685. [PMID: 35102230 PMCID: PMC8803884 DOI: 10.1038/s41598-022-05720-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation of mRNAs/transcripts responsible for polyglutamine (polyQ) diseases may generate peptides containing different mono amino acid tracts such as polyserine (polyS) and polyleucine (polyL). The propagation of aggregated polyQ from one cell to another is also an intriguing feature of polyQ proteins. However, whether the RAN translation-related polyS and polyL have the ability to propagate remains unclear, and if they do, whether the exogenous polyS and polyL exert toxicity on the recipient cells is also not known yet. In the present study, we found that aggregated polyS and polyL peptides spontaneously enter neuron-like cells and astrocytes in vitro. Aggregated polyS led to the degeneration of the differentiated neuron-like cultured cells. Likewise, the two types of aggregates taken up by astrocytes induced aberrant differentiation and cell death in vitro. Furthermore, injection of each of the two types of aggregates into the ventricles of adult mice resulted in their behavioral changes. The polyS-injected mice showed extensive vacuolar degeneration in the brain. Thus, the RAN translation-related proteins containing polyS and polyL have the potential to propagate and the proteins generated by all polyQ diseases might exert universal toxicity in the recipient cells.
Collapse
Affiliation(s)
- Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
12
|
Iizuka Y, Owada R, Kawasaki T, Hayashi F, Sonoyama M, Nakamura K. Toxicity of internalized polyalanine to cells depends on aggregation. Sci Rep 2021; 11:23441. [PMID: 34873226 PMCID: PMC8648788 DOI: 10.1038/s41598-021-02889-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
In polyalanine (PA) diseases, the disease-causing transcription factors contain an expansion of alanine repeats. While aggregated proteins that are responsible for the pathogenesis of neurodegenerative disorders show cell-to-cell propagation and thereby exert toxic effects on the recipient cells, whether this is also the case with expanded PA has not been studied. It is also not known whether the internalized PA is toxic to recipient cells based on the degree of aggregation. In this study, we therefore prepared different degrees of aggregation of a peptide having 13 alanine repeats without flanking sequences of PA disease-causative proteins (13A). The aggregated 13A was spontaneously taken up by neuron-like cultured cells. Functionally, strong aggregates but not weak aggregates displayed a deficit in neuron-like differentiation in vitro. Moreover, the injection of strong but not weak 13A aggregates into the ventricle of mice during the neonatal stage led to enhanced spontaneous motor activity later in life. Thus, PA in the extracellular space has the potential to enter adjacent cells, and may exert toxicity depending on the degree of aggregation.
Collapse
Affiliation(s)
- Yutaro Iizuka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Fumio Hayashi
- Center for Instrumental Analysis, Organization for Promotion of Research and University Industry Collaboration, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
13
|
Zhao S, Ye X, Wu M, Ruan J, Wang X, Tang X, Zhong B. Recombinant Silk Proteins with Additional Polyalanine Have Excellent Mechanical Properties. Int J Mol Sci 2021; 22:ijms22041513. [PMID: 33546270 PMCID: PMC7913374 DOI: 10.3390/ijms22041513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
This paper explores the structures of exogenous protein molecules that can effectively improve the mechanical properties of silkworm silk. Several transgenic vectors fused with the silkworm fibroin light chain and type 3 repeats in different multiples of the ampullate dragline silk protein 1 (MaSp1) from black widow spider with different lengths of the polyalanine motifs were constructed for this study. Transgenic silkworms were successfully obtained by piggyBac-mediated microinjection. Molecular detection showed that foreign proteins were successfully secreted and contained within the cocoon shells. According to the prediction of PONDR® VSL2 and PONDR® VL-XT, the type 3 repeats and the polyalanine motif of the MaSp1 protein were amorphous. The results of FTIR analysis showed that the content of β-sheets in the silk of transgenic silkworms engineered with transgenic vectors with additional polyalanine was significantly higher than that of wild-type silkworm silk. Additionally, silk with a higher β-sheet content had better fracture strength and Young’s modulus. The mechanical properties of silk with longer chains of exogenous proteins were improved. In general, our results provide theoretical guidance and technical support for the large-scale production of excellent bionic silk.
Collapse
|
14
|
Paik B, Calero-Rubio C, Lee JY, Jia X, Kiick KL, Roberts CJ. Characterizing aggregate growth and morphology of alanine-rich polypeptides as a function of sequence chemistry and solution temperature from scattering, spectroscopy, and microscopy. Biophys Chem 2020; 267:106481. [PMID: 33035751 DOI: 10.1016/j.bpc.2020.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
The aggregation behavior and stability of a series of alanine-rich peptides, which are included as components of peptide-polymer conjugates, were characterized using a combination of biophysical techniques. Light scattering techniques were used to monitor changes in peptide morphology and size distributions as a function of time and temperature. The results show large particles immediately upon dissolution in buffer. At room temperature, these particles relaxed to reach a mostly monomeric peptide state, while at higher temperatures, they grew to form aggregates. Circular dichroism spectroscopy (CD) was used to monitor temperature- and time-dependent conformational changes as a function of peptide sequence and incubation time. CD measurements reveal that all of the sequences are helical at low temperatures with transitions to non-helical conformation with increased temperature. Samples incubated at room temperature were able to recover their original helicity. At increased temperature, the shorter and longer peptide sequences showed notable changes in conformation, and were not able to recover their original helicity after 72 h. After incubation for up to one week, β-sheet conformations were observed in these two cases, while only α-helical conformation loss was observed for the peptide of intermediate molecular weight. Transmission electron microscopy measurements reveal the formation of fibrils after 72 h of incubation at 60 °C for all samples, in agreement with the scattering measurements. Additional quenching experiments show that peptide aggregation can be stalled when solutions are cooled to room temperature.
Collapse
Affiliation(s)
- Bradford Paik
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Cesar Calero-Rubio
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Jee Young Lee
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Xinqiao Jia
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America
| | - Kristi L Kiick
- Department of Material Science & Engineering Department, University of Delaware, Newark, DE 19716, United States of America.
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States of America.
| |
Collapse
|
15
|
Pirone L, Caldinelli L, Di Lascio S, Di Girolamo R, Di Gaetano S, Fornasari D, Pollegioni L, Benfante R, Pedone E. Molecular insights into the role of the polyalanine region in mediating PHOX2B aggregation. FEBS J 2019; 286:2505-2521. [PMID: 30955232 DOI: 10.1111/febs.14841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
Abstract
About 90% of congenital central hypoventilation syndrome (CCHS) patients show polyalanine triplet expansions in the coding region of transcription factor PHOX2B, which renders this protein an intriguing target to understand the insurgence of this syndrome and for the design of a novel therapeutical approach. Consistently with the role of PHOX2B as a transcriptional regulator, it is reasonable that a general transcriptional dysregulation caused by the polyalanine expansion might represent an important mechanism underlying CCHS pathogenesis. Therefore, this study focused on the biochemical characterization of different PHOX2B variants, such as a variant containing the correct C-terminal (20 alanines) stretch, one of the most frequent polyalanine expansions (+7 alanines), and a variant lacking the complete alanine stretch (0 alanines). Comparison of the different variants by a multidisciplinary approach based on different methodologies (including circular dichroism, spectrofluorimetry, light scattering, and Atomic Force Microscopy studies) highlighted the propensity to aggregate for the PHOX2B variant containing the polyalanine expansion (+7-alanines), especially in the presence of DNA, while the 0-alanines variant resembled the protein with the correct polyalanine length. Moreover, and unexpectedly, the formation of fibrils was revealed only for the pathological variant, suggesting a plausible role of such fibrils in the insurgence of CCHS.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, Italy
| | | | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
- CNR- Neuroscience Institute, Milan, Italy
| | - Emilia Pedone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
16
|
Galzitskaya OV, Novikov GS, Dovidchenko NV, Lobanov MY. Is there codon usage bias for poly-Q stretches in the human proteome? J Bioinform Comput Biol 2019; 17:1950010. [PMID: 30866735 DOI: 10.1142/s0219720019500100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have analyzed codon usage for poly-Q stretches of different lengths for the human proteome. First, we have obtained that all long poly-Q stretches in Protein Data Bank (PDB) belong to the disordered regions. Second, we have found the bias for codon usage for glutamine homo-repeats in the human proteome. In the cases when the same codon is used for poly-Q stretches only CAG triplets are found. Similar results are obtained for human proteins with glutamine homo-repeats associated with diseases. Moreover, for proteins associated with diseases (from the HraDis database), the fraction of proteins for which the same codon is used for glutamine homo-repeats is less (22%) than for proteins from the human proteome (26%). We have demonstrated for poly-Q stretches in the human proteome that in some cases (28) the splicing sites correspond to the homo-repeats and in 11 cases, these sites appear at the C -terminal part of the homo-repeats with statistical significance 10 -8 .
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- * Institute of Protein Research, Russian Academy of Sciences, Institutskaya Str., 4, Pushchino, Moscow Region 142290, Russia
| | - Georgii S Novikov
- † St. Petersburg Academic University, Nanotechnology Research and Education Centre of the Russian Academy of Sciences, St. Petersburg, Khlopina Str., 8/3, 194021, Russia
| | - Nikita V Dovidchenko
- * Institute of Protein Research, Russian Academy of Sciences, Institutskaya Str., 4, Pushchino, Moscow Region 142290, Russia
| | - Mikhail Yu Lobanov
- * Institute of Protein Research, Russian Academy of Sciences, Institutskaya Str., 4, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
17
|
Roberts S, Harmon TS, Schaal JL, Miao V, Li KJ, Hunt A, Wen Y, Oas TG, Collier JH, Pappu RV, Chilkoti A. Injectable tissue integrating networks from recombinant polypeptides with tunable order. NATURE MATERIALS 2018; 17:1154-1163. [PMID: 30323334 PMCID: PMC6329288 DOI: 10.1038/s41563-018-0182-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/29/2018] [Indexed: 05/23/2023]
Abstract
Emergent properties of natural biomaterials result from the collective effects of nanoscale interactions among ordered and disordered domains. Here, using recombinant sequence design, we have created a set of partially ordered polypeptides to study emergent hierarchical structures by precisely encoding nanoscale order-disorder interactions. These materials, which combine the stimuli-responsiveness of disordered elastin-like polypeptides and the structural stability of polyalanine helices, are thermally responsive with tunable thermal hysteresis and the ability to reversibly form porous, viscoelastic networks above threshold temperatures. Through coarse-grain simulations, we show that hysteresis arises from physical crosslinking due to mesoscale phase separation of ordered and disordered domains. On injection of partially ordered polypeptides designed to transition at body temperature, they form stable, porous scaffolds that rapidly integrate into surrounding tissue with minimal inflammation and a high degree of vascularization. Sequence-level modulation of structural order and disorder is an untapped principle for the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tyler S Harmon
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering and Center for Biological Systems Engineering , Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey L Schaal
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Vincent Miao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kan Jonathan Li
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Andrew Hunt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yi Wen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Terrence G Oas
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering , Washington University in St. Louis, St. Louis, MO, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Mier P, Andrade-Navarro MA. Glutamine Codon Usage and polyQ Evolution in Primates Depend on the Q Stretch Length. Genome Biol Evol 2018; 10:816-825. [PMID: 29608721 PMCID: PMC5841385 DOI: 10.1093/gbe/evy046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Amino acid usage in a proteome depends mostly on its taxonomy, as it does the codon usage in transcriptomes. Here, we explore the level of variation in the codon usage of a specific amino acid, glutamine, in relation to the number of consecutive glutamine residues. We show that CAG triplets are consistently more abundant in short glutamine homorepeats (polyQ, four to eight residues) than in shorter glutamine stretches (one to three residues), leading to the evolutionary growth of the repeat region in a CAG-dependent manner. The length of orthologous polyQ regions is mostly stable in primates, particularly the short ones. Interestingly, given a short polyQ the CAG usage is higher in unstable-in-length orthologous polyQ regions. This indicates that CAG triplets produce the necessary instability for a glutamine stretch to grow. Proteins related to polyQ-associated diseases behave in a more extreme way, with longer glutamine stretches in human and evolutionarily closer nonhuman primates, and an overall higher CAG usage. In the light of our results, we suggest an evolutionary model to explain the glutamine codon usage in polyQ regions.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
19
|
Darling AL, Uversky VN. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:2027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
Affiliation(s)
- April L. Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
20
|
Knecht V, Reiter G, Schlaad H, Reiter R. Structure Formation in Langmuir Peptide Films As Revealed from Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6492-6502. [PMID: 28594565 DOI: 10.1021/acs.langmuir.7b01455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular dynamics simulations in conjunction with the Martini coarse-grained model have been used to investigate the (nonequilibrium) behavior of helical 22-residue poly(γ-benzyl-l-glutamate) (PBLG) peptides at the water/vapor interface. Preformed PBLG mono- or bilayers homogeneously covering the water surface laterally collapse in tens of nanoseconds, exposing significant proportions of empty water surface. This behavior was also observed in recent AFM experiments at similar areas per monomer, where a complete coverage had been assumed in earlier work. In the simulations, depending on the area per monomer, either elongated clusters or fibrils form, whose heights (together with the portion of empty water surface) increase over time. Peptides tend to align with respect to the fiber axis or with the major principal axis of the cluster, respectively. The aspect ratio of the cluster observed is 1.7 and, hence, comparable to though somewhat smaller than the aspect ratio of the peptides in α-helical conformation, which is 2.2. The heights of the fibrils is 3 nm after 20 ns and increases to 4.5 nm if the relaxation time is increased by 2 orders of magnitude, in agreement with the experiment. Aggregates with heights of about 3 or 4.5 nm are found to correspond to local bi- or trilayer structures, respectively.
Collapse
Affiliation(s)
- Volker Knecht
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT) , 79110 Freiburg, Germany
| | - Günter Reiter
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT) , 79110 Freiburg, Germany
- Institute of Physics, University of Freiburg , Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam , Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Renate Reiter
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT) , 79110 Freiburg, Germany
- Institute of Physics, University of Freiburg , Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Tsuchiya K, Numata K. Papain-Catalyzed Chemoenzymatic Synthesis of Telechelic Polypeptides Using Bis(Leucine Ethyl Ester) Initiator. Macromol Biosci 2016; 16:1001-8. [DOI: 10.1002/mabi.201600005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kousuke Tsuchiya
- Enzyme Research Team; Biomass Engineering Research Division; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Keiji Numata
- Enzyme Research Team; Biomass Engineering Research Division; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| |
Collapse
|
22
|
Vanhalle M, Corneillie S, Smet M, Van Puyvelde P, Goderis B. Poly(alanine): Structure and Stability of the d and l-Enantiomers. Biomacromolecules 2015; 17:183-91. [DOI: 10.1021/acs.biomac.5b01301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maja Vanhalle
- Polymer
Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan
200F, Leuven, 3001, Belgium
| | - Stijn Corneillie
- Polymer
Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan
200F, Leuven, 3001, Belgium
| | - Mario Smet
- Polymer
Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan
200F, Leuven, 3001, Belgium
| | - Peter Van Puyvelde
- Soft
Matter, Applied Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Bart Goderis
- Polymer
Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan
200F, Leuven, 3001, Belgium
| |
Collapse
|
23
|
Murphy RM. Q&A: repeat-containing proteins. Nat Struct Mol Biol 2015; 22:943-5. [DOI: 10.1038/nsmb.3135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Polling S, Ormsby AR, Wood RJ, Lee K, Shoubridge C, Hughes JN, Thomas PQ, Griffin MDW, Hill AF, Bowden Q, Böcking T, Hatters DM. Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. Nat Struct Mol Biol 2015; 22:1008-15. [DOI: 10.1038/nsmb.3127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
|
25
|
Abstract
The treatment of bending and buckling of stiff biopolymer filaments by the popular worm-like chain model does not provide adequate understanding of these processes at the microscopic level. Thus, we have used the atomistic molecular-dynamic simulations and the Amber03 force field to examine the compression buckling of α-helix (AH) filaments at room temperature. It was found that the buckling instability occurs in AHs at the critical force f(c) in the range of tens of pN depending on the AH length. The decrease of the force f(c) with the contour length follows the prediction of the classic thin rod theory. At the force f(c) the helical filament undergoes the swift and irreversible transition from the smoothly bent structure to the buckled one. A sharp kink in the AH contour arises at the transition, accompanied by the disruption of the hydrogen bonds in its vicinity. The kink defect brings in an effective softening of the AH molecule at buckling. Nonbonded interactions between helical branches drive the rearrangement of a kinked AH into the ultimate buckled structure of a compact helical hairpin described earlier in the literature.
Collapse
Affiliation(s)
- Peter Palenčár
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Tomáš Bleha
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| |
Collapse
|
26
|
Abdel-Aal ABM, Papageorgiou G, Quibell M, Offer J. Automated synthesis of backbone protected peptides. Chem Commun (Camb) 2015; 50:8316-9. [PMID: 24938489 PMCID: PMC4161149 DOI: 10.1039/c4cc03065f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The automated introduction of removable substitution along a peptide backbone prevents chain-association and synthesis failure.
The synthesis of peptides rich in aggregation prone sequences can be improved with backbone protection. We report the automated introduction of backbone protection to a peptide. This new method was applied in a fully-automated synthesis, giving improved handling, quality and yield of several challenging target sequences.
Collapse
|
27
|
Mahmoudinobar F, Dias CL, Zangi R. Role of side-chain interactions on the formation of α-helices in model peptides. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032710. [PMID: 25871147 DOI: 10.1103/physreve.91.032710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Indexed: 06/04/2023]
Abstract
The role played by side-chain interactions on the formation of α-helices is studied using extensive all-atom molecular dynamics simulations of polyalanine-like peptides in explicit TIP4P water. The peptide is described by the OPLS-AA force field except for the Lennard-Jones interaction between Cβ-Cβ atoms, which is modified systematically. We identify values of the Lennard-Jones parameter that promote α-helix formation. To rationalize these results, potentials of mean force (PMF) between methane-like molecules that mimic side chains in our polyalanine-like peptides are computed. These PMF exhibit a complex distance dependence where global and local minima are separated by an energy barrier. We show that α-helix propensity correlates with values of these PMF at distances corresponding to Cβ-Cβ of i-i+3 and other nearest neighbors in the α-helix. In particular, the set of Lennard-Jones parameters that promote α-helices is characterized by PMF that exhibit a global minimum at distances corresponding to i-i+3 neighbors in α-helices. Implications of these results are discussed.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- New Jersey Institute of Technology, Physics Department, University Heights, Newark, New Jersey, 07102-1982, USA
| | - Cristiano L Dias
- New Jersey Institute of Technology, Physics Department, University Heights, Newark, New Jersey, 07102-1982, USA
| | - Ronen Zangi
- Department of Organic Chemistry I and POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
28
|
Popescu MT, Liontos G, Avgeropoulos A, Tsitsilianis C. Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide. SOFT MATTER 2015; 11:331-342. [PMID: 25379651 DOI: 10.1039/c4sm02092h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, the self-assembly behavior and pH responsiveness of a triblock copolypeptide in aqueous media are demonstrated. The copolypeptide was composed of a central pH responsive poly(l-glutamic acid) (PGA), flanked by two hydrophobic poly(l-alanine) blocks (PAla) (PAla5-PGA11-PAla5). This system showed a pH-responsive transition from short tapes to spherical aggregates by increasing the pH, as a result of deprotonation of the PGA block and a conformational change from α-helix to random coil. Increasing the ionic strength to physiological conditions (0.15 M) has triggered fibrillar self-assembly through intermolecular hydrogen bonding of PAla end-blocks that form β-sheet nanostructures, in conjunction with charge screening of the central random coil PGA segments. At elevated concentrations a thermo-responsive free supporting hydrogel was obtained, consisting of rigid β-sheet based twisted superfibers, resulting from hierarchical self-assembly of the copolypeptide. Yet, morphological transformation of this nanostructure was observed upon switching the pH from physiological conditions to pH 4. An unexpected morphology constituted of α-helix-based giant nanobelts was observed as a consequence of the secondary peptide transitions.
Collapse
|
29
|
Affiliation(s)
- Zhaoqian Su
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L. Dias
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
30
|
Mu Y, Yu M. Effects of hydrophobic interaction strength on the self-assembled structures of model peptides. SOFT MATTER 2014; 10:4956-4965. [PMID: 24888420 DOI: 10.1039/c4sm00378k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stable and ordered self-assembled peptide nanostructures are formed as a result of cooperative effects of various relatively weak intermolecular interactions. We systematically studied the influence of hydrophobic interaction strength and temperature on the self-assembly of peptides with a coarse-grained model by Monte Carlo simulations. The simulation results show a rich phase behavior of peptide self-assembly, indicating that the formation and morphology of peptide assemblies may be tuned by varying the temperature and the strength of hydrophobic interactions. There exist optimal combinations of temperature and hydrophobic interaction strength where ordered fibrillar nanostructures are readily formed. Our simulation results not only facilitate the understanding of the self-assembly behavior of peptides at the molecular level, but also provide useful insights into the development of fabrication strategies for high-quality peptide fibrils.
Collapse
Affiliation(s)
- Yan Mu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| | | |
Collapse
|
31
|
Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG, Fiumara F. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 2014; 23:3402-20. [PMID: 24497578 PMCID: PMC4049302 DOI: 10.1093/hmg/ddu049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone β-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form—alone or with polyQ and polyQA—CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2—a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion—and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases.
Collapse
Affiliation(s)
| | - Davide Corà
- Center for Molecular Systems Biology, University of Torino, Torino 10123, Italy
| | - Federico Cesano
- Department of Chemistry, University of Torino, Torino 10125, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology,Medical University of Vienna, Vienna 1090, Austria
| | - Pier Giorgio Montarolo
- Department of Neuroscience and
- National Institute of Neuroscience (INN), Torino 10125, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience and
- To whom correspondence should be addressed at: Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy. Tel: +39-0116708486;
| |
Collapse
|
32
|
Mu Y, Tang B, Yu M. Length-dependent β-sheet growth mechanisms of polyalanine peptides in water and on hydrophobic surfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032711. [PMID: 24730878 DOI: 10.1103/physreve.89.032711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Fibrillar assemblies by peptides are becoming one of the most promising nanomaterials due to their exceptional properties. The self-assembly of peptides into β sheets is a critical step in the fibrillization pathway. We investigated the length-dependent β-sheet growth mechanisms of polyalanine [poly(A)] peptides consisting of 6 to 24 alanines (A6 to A24) in water and on the hydrophobic surface, respectively, by molecular dynamics simulations. β-sheet growth behavior in water fits negative exponential growth model, showing that β-sheet growth rate decays exponentially with time. Meanwhile, increasing chain length leads to an accelerated decay of the β-sheet growth rate. By contrast, β-sheet growth on the surface from A6 to A18 occurs in two consecutive stages, both of which fit linear growth models. β-sheet growth rate in the first stage increases as chain length is increased, while the intermediate length peptide A12 has the highest β-sheet growth rate in the second stage. β-sheet growth behavior of A24 on the surface still fits negative exponential model. Overall, the hydrophobic surface accelerates β-sheet growth by enhancing local concentration and reducing conformational entropy of poly(A) peptide, and the β-sheet growth of the intermediate length peptide A12 is the fastest on the surface. Our simulation results shed light on understanding the accelerated peptide fibrillization on the hydrophobic surface.
Collapse
Affiliation(s)
- Yan Mu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou Guangdong, 510641, China
| | - Binqing Tang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou Guangdong, 510641, China
| | - Meng Yu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou Guangdong, 510641, China
| |
Collapse
|
33
|
Reichheld SE, Muiznieks LD, Stahl R, Simonetti K, Sharpe S, Keeley FW. Conformational transitions of the cross-linking domains of elastin during self-assembly. J Biol Chem 2014; 289:10057-68. [PMID: 24550393 DOI: 10.1074/jbc.m113.533893] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation.
Collapse
Affiliation(s)
- Sean E Reichheld
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 and
| | | | | | | | | | | |
Collapse
|
34
|
Polling S, Mok YF, Ramdzan YM, Turner BJ, Yerbury JJ, Hill AF, Hatters DM. Misfolded polyglutamine, polyalanine, and superoxide dismutase 1 aggregate via distinct pathways in the cell. J Biol Chem 2014; 289:6669-6680. [PMID: 24425868 DOI: 10.1074/jbc.m113.520189] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.
Collapse
Affiliation(s)
- Saskia Polling
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Yasmin M Ramdzan
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health and Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Justin J Yerbury
- School of Biological Sciences, Faculty of Science and Illawarra Health and Medical Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
35
|
Do TD, Economou NJ, LaPointe NE, Kincannon WM, Bleiholder C, Feinstein SC, Teplow DB, Buratto SK, Bowers MT. Factors that drive peptide assembly and fibril formation: experimental and theoretical analysis of Sup35 NNQQNY mutants. J Phys Chem B 2013; 117:8436-46. [PMID: 23802812 DOI: 10.1021/jp4046287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Residue mutations have substantial effects on aggregation kinetics and propensities of amyloid peptides and their aggregate morphologies. Such effects are attributed to conformational transitions accessed by various types of oligomers such as steric zipper or single β-sheet. We have studied the aggregation propensities of six NNQQNY mutants: NVVVVY, NNVVNV, NNVVNY, VIQVVY, NVVQIY, and NVQVVY in water using a combination of ion-mobility mass spectrometry, transmission electron microscopy, atomic force microscopy, and all-atom molecular dynamics simulations. Our data show a strong correlation between the tendency to form early β-sheet oligomers and the subsequent aggregation propensity. Our molecular dynamics simulations indicate that the stability of a steric zipper structure can enhance the propensity for fibril formation. Such stability can be attained by either hydrophobic interactions in the mutant peptide or polar side-chain interdigitations in the wild-type peptide. The overall results display only modest agreement with the aggregation propensity prediction methods such as PASTA, Zyggregator, and RosettaProfile, suggesting the need for better parametrization and model peptides for these algorithms.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang W, Roberts CJ. Non-Arrhenius protein aggregation. AAPS JOURNAL 2013; 15:840-51. [PMID: 23615748 DOI: 10.1208/s12248-013-9485-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/02/2013] [Indexed: 01/31/2023]
Abstract
Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.
Collapse
Affiliation(s)
- Wei Wang
- Pfizer Inc., BioTherapeutics Pharmaceutical Sciences, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.
| | | |
Collapse
|
37
|
Olivares-Quiroz L. Thermodynamics of ideal proteinogenic homopolymer chains as a function of the energy spectrum E, helical propensity ω and enthalpic energy barrier. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:155103. [PMID: 23515207 DOI: 10.1088/0953-8984/25/15/155103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A reformulation and generalization of the Zwanzig model (ZW model) for ideal homopolymer chains poly-X, where X represents any of the twenty naturally occurring proteinogenic amino acid residues is presented. This reformulation and generalization provides a direct connection between coarse-grained parameters originally proposed in the ZW model with variables from the Lifson-Roig (LR) theory, such as the helical propensity per residue ω, and new variables introduced here, such as the energy gap Δ between unfolded and folded structures, as well as the ratio f of the energy scales involved. This enables us to discover the relevance of the energy spectrum E to the onset of configurational phase transitions. From the configurational partition function Q, thermodynamic properties such as the configurational entropy S, specific heat v and average energy <E> are calculated in terms of the number of residues K, temperature T, helical propensity ω and energy barrier ΔH for different poly-X chains in vacuo. Results obtained here provide substantial evidence that configurational phase transitions for ideal poly-X chains correspond to first-order phase transitions. An anomalous behavior of the thermodynamic functions <E>, Cv, S with respect to the number K of residues is also highlighted. On-going methods of solution are outlined.
Collapse
Affiliation(s)
- L Olivares-Quiroz
- Universidad Autónoma de la Ciudad de México, Campus Cuautepec, Av La Corona 320, Col Loma Alta CP 07160 DF, Mexico.
| |
Collapse
|
38
|
Ni B, Baumketner A. Reduced atomic pair-interaction design (RAPID) model for simulations of proteins. J Chem Phys 2013; 138:064102. [PMID: 23425456 PMCID: PMC3579890 DOI: 10.1063/1.4790160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 01/18/2013] [Indexed: 12/15/2022] Open
Abstract
Increasingly, theoretical studies of proteins focus on large systems. This trend demands the development of computational models that are fast, to overcome the growing complexity, and accurate, to capture the physically relevant features. To address this demand, we introduce a protein model that uses all-atom architecture to ensure the highest level of chemical detail while employing effective pair potentials to represent the effect of solvent to achieve the maximum speed. The effective potentials are derived for amino acid residues based on the condition that the solvent-free model matches the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found to reproduce properly the native state and its population. Small discrepancies are observed for other folding properties and can be attributed to the approximations inherent in the model. The transferability of the generated effective potentials is investigated in simulations of a longer peptide with 25 residues. A minimal set of potentials is identified that leads to qualitatively correct results in comparison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show that the transferable model correctly reproduces the experimentally observed tendency of polyalanines to aggregate into β-sheets more strongly with the growing length of the peptide chain. Taken together, the reported results suggest that the proposed model could be used to succesfully simulate folding and aggregation of small peptides in atomic detail. Further tests are needed to assess the strengths and limitations of the model more thoroughly.
Collapse
Affiliation(s)
- Boris Ni
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28262, USA
| | | |
Collapse
|
39
|
Abstract
Aggregation of repeat-containing proteins is associated with neurodegenerative disorders; a specific example is the established link between expansion of the polyglutamine domain in huntingtin and the appearance of nuclear inclusions in Huntington's disease. This connection between aggregation and pathology has motivated numerous investigations into the kinetics of aggregation. Quantitative analysis of kinetic data is needed both for comparative purposes (e.g., to compare the effect of different compounds on aggregation kinetics) and for mechanistic insight. Here we describe some analytical equations that can be used to model aggregation data and demonstrate appropriate and simple methods for extracting valid model parameters by fitting equations to kinetic data.
Collapse
Affiliation(s)
- Regina M Murphy
- Chemical and Biological Engineering Department, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
40
|
Khan MKA, Bowler BE. Conformational properties of polyglutamine sequences in guanidine hydrochloride solutions. Biophys J 2012. [PMID: 23199927 DOI: 10.1016/j.bpj.2012.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two sets of iso-1-cytochrome c variants have been prepared with N-terminal insertions of pure polyglutamine, i.e., PolyQ variants, or polyglutamine interrupted with lysine every sixth residue, i.e., Gln-rich variants. The polymer properties of these pure polyGln or Gln-rich sequences have been evaluated using equilibrium and kinetic His-heme loop formation methods for loop sizes ranging from 22 to 46 in 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). In 6.0 M GdnHCl, the scaling exponent, ν(3), for the pure polyGln sequences, is ~1.7--significantly less than ν(3) ≈ 2.15 for the Gln-rich sequences. The stability of the His-heme loops becomes progressively greater for the pure polyGln sequences relative to the Gln-rich sequences as GdnHCl concentration decreases from 6.0 to 1.5 M. Thus, the context of the sequence effects the polymer properties of Gln repeats even in denaturing concentrations of GdnHCl. Comparison of data for the Gln-rich variants with previous results for Gly-rich and Ala-rich variants shows that ν(3) ~ 2.2 for the Gln-rich, Gly-rich, and Ala-rich sequences in 6.0 M GdnHCl, whereas ν(3) remains unchanged at 3.0 M GdnHCl concentration for the Gln-rich and Ala-rich sequences but decreases to ~1.7 for the Gly-rich sequences. Thus, the polymer properties of Gln-rich and Ala-rich sequences are less sensitive to solvent quality in denaturing solutions of GdnHCl than Gly-rich sequences. Evaluation of Flory's characteristic ratio, C(n), for the Gln-rich and Ala-rich sequences relative to the Gly-rich sequences shows that Gln-rich sequences are stiffer than Ala-rich sequences at both 3.0 and 6.0 M GdnHCl.
Collapse
Affiliation(s)
- Md Khurshid Alam Khan
- Department of Chemistry and Biochemistry, and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | | |
Collapse
|
41
|
Lapidus LJ. Understanding protein aggregation from the view of monomer dynamics. MOLECULAR BIOSYSTEMS 2012; 9:29-35. [PMID: 23104145 DOI: 10.1039/c2mb25334h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Much work in recent years has been devoted to understanding the complex process of protein aggregation. This review looks at the earliest stages of aggregation, long before the formation of fibrils that are the hallmark of many aggregation-based diseases, and proposes that the first steps are controlled by the reconfiguration dynamics of the monomer. When reconfiguration is much faster or much slower than bimolecular diffusion, then aggregation is slow, but when they are similar, aggregation is fast. The experimental evidence for this model is reviewed and the prospects for small molecule aggregation inhibitors to prevent disease are discussed.
Collapse
Affiliation(s)
- Lisa J Lapidus
- Department of Physics and Astronomy and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
De Los Rios P, Hafner M, Pastore A. Explaining the length threshold of polyglutamine aggregation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244105. [PMID: 22595533 DOI: 10.1088/0953-8984/24/24/244105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The existence of a length threshold, of about 35 residues, above which polyglutamine repeats can give rise to aggregation and to pathologies, is one of the hallmarks of polyglutamine neurodegenerative diseases such as Huntington's disease. The reason why such a minimal length exists at all has remained one of the main open issues in research on the molecular origins of such classes of diseases. Following the seminal proposals of Perutz, most research has focused on the hunt for a special structure, attainable only above the minimal length, able to trigger aggregation. Such a structure has remained elusive and there is growing evidence that it might not exist at all. Here we review some basic polymer and statistical physics facts and show that the existence of a threshold is compatible with the modulation that the repeat length imposes on the association and dissociation rates of polyglutamine polypeptides to and from oligomers. In particular, their dramatically different functional dependence on the length rationalizes the very presence of a threshold and hints at the cellular processes that might be at play, in vivo, to prevent aggregation and the consequent onset of the disease.
Collapse
Affiliation(s)
- Paolo De Los Rios
- Laboratory of Statistical Biophysics, ITP SB EPFL, Lausanne, Switzerland.
| | | | | |
Collapse
|
43
|
Beam M, Silva MC, Morimoto RI. Dynamic imaging by fluorescence correlation spectroscopy identifies diverse populations of polyglutamine oligomers formed in vivo. J Biol Chem 2012; 287:26136-45. [PMID: 22669943 DOI: 10.1074/jbc.m112.362764] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding and aggregation are exacerbated by aging and diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In the cellular environment, aggregates can exist as discrete entities, or heterogeneous complexes of diverse solubility and conformational state. In this study, we have examined the in vivo dynamics of aggregation using imaging methods including fluorescence microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS), to monitor the diverse biophysical states of expanded polyglutamine (polyQ) proteins expressed in Caenorhabditis elegans. We show that monomers, oligomers and aggregates co-exist at different concentrations in young and aged animals expressing different polyQ-lengths. During aging, when aggregation and toxicity are exacerbated, FCS-based burst analysis and purified single molecule FCS detected a populational shift toward an increase in the frequency of brighter and larger oligomeric species. Regardless of age or polyQ-length, oligomers were maintained in a heterogeneous distribution that spans multiple orders of magnitude in brightness. We employed genetic suppressors that prevent polyQ aggregation and observed a reduction in visible immobile species with the persistence of heterogeneous oligomers, yet our analysis did not detect the appearance of any discrete oligomeric states associated with toxicity. These studies reveal that the reversible transition from monomers to immobile aggregates is not represented by discrete oligomeric states, but rather suggests that the process of aggregation involves a more complex pattern of molecular interactions of diverse intermediate species that can appear in vivo and contribute to aggregate formation and toxicity.
Collapse
Affiliation(s)
- Monica Beam
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
44
|
Hayre NR, Singh RRP, Cox DL. Sequence-dependent stability test of a left-handed β-helix motif. Biophys J 2012; 102:1443-52. [PMID: 22455928 PMCID: PMC3309403 DOI: 10.1016/j.bpj.2012.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/25/2012] [Accepted: 02/07/2012] [Indexed: 11/18/2022] Open
Abstract
The left-handed β-helix (LHBH) is an intriguing, rare structural pattern in polypeptides that has been implicated in the formation of amyloid aggregates. We used accurate all-atom replica-exchange molecular dynamics (REMD) simulations to study the relative stability of diverse sequences in the LHBH conformation. Ensemble-average coordinates from REMD served as a scoring criterion to identify sequences and threadings optimally suited to the LHBH, as in a fold recognition paradigm. We examined the repeatability of our REMD simulations, finding that single simulations can be reliable to a quantifiable extent. We find expected behavior for the positive and negative control cases of a native LHBH and intrinsically disordered sequences, respectively. Polyglutamine and a designed hexapeptide repeat show remarkable affinity for the LHBH motif. A structural model for misfolded murine prion protein was also considered, and showed intermediate stability under the given conditions. Our technique is found to be an effective probe of LHBH stability, and promises to be scalable to broader studies of this and potentially other novel or rare motifs. The superstable character of the designed hexapeptide repeat suggests theoretical and experimental follow-ups.
Collapse
Affiliation(s)
- Natha R Hayre
- Department of Physics, University of California, Davis, California, USA.
| | | | | |
Collapse
|
45
|
Baker PJ, Numata K. Chemoenzymatic Synthesis of Poly(l-alanine) in Aqueous Environment. Biomacromolecules 2012; 13:947-51. [PMID: 22380731 DOI: 10.1021/bm201862z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Peter James Baker
- Enzyme Research Team, RIKEN Biomass Engineering Program, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama,
Japan
| | - Keiji Numata
- Enzyme Research Team, RIKEN Biomass Engineering Program, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama,
Japan
| |
Collapse
|