1
|
The Association of Lipids with Amyloid Fibrils. J Biol Chem 2022; 298:102108. [PMID: 35688209 PMCID: PMC9293637 DOI: 10.1016/j.jbc.2022.102108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid formation continues to be a widely studied area because of its association with numerous diseases, such as Alzheimer’s and Parkinson’s diseases. Despite a large body of work on protein aggregation and fibril formation, there are still significant gaps in our understanding of the factors that differentiate toxic amyloid formation in vivo from alternative misfolding pathways. In addition to proteins, amyloid fibrils are often associated in their cellular context with several types of molecule, including carbohydrates, polyanions, and lipids. This review focuses in particular on evidence for the presence of lipids in amyloid fibrils and the routes by which those lipids may become incorporated. Chemical analyses of fibril composition, combined with studies to probe the lipid distribution around fibrils, provide evidence that in some cases, lipids have a strong association with fibrils. In addition, amyloid fibrils formed in the presence of lipids have distinct morphologies and material properties. It is argued that lipids are an integral part of many amyloid deposits in vivo, where their presence has the potential to influence the nucleation, morphology, and mechanical properties of fibrils. The role of lipids in these structures is therefore worthy of further study.
Collapse
|
4
|
Ryan TM, Griffin MDW, McGillivray DJ, Knott RB, Wood K, Masters CL, Kirby N, Curtain CC. Apolipoprotein C-II Adopts Distinct Structures in Complex with Micellar and Submicellar Forms of the Amyloid-Inhibiting Lipid-Mimetic Dodecylphosphocholine. Biophys J 2016; 110:85-94. [PMID: 26745412 PMCID: PMC4805880 DOI: 10.1016/j.bpj.2015.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 01/21/2023] Open
Abstract
The formation of amyloid deposits is a common feature of a broad range of diseases, including atherosclerosis, Alzheimer's disease, and Parkinson's disease. The basis and role of amyloid deposition in the pathogenesis of these diseases is still being defined, however an interesting feature of amyloidogenic proteins is that the majority of the pathologically associated proteins are involved in lipid homeostasis, be it in lipid transport, incorporation into membranes, or the regulation of lipid pathways. Thus, amyloid-forming proteins commonly bind lipids, and lipids are generally involved in the proper folding of these proteins. However, understanding of the basis for these lipid-related aspects of amyloidogenesis is lacking. Thus, we have used the apolipoprotein C-II amyloid model system in conjunction with x-ray and neutron scattering analyses to address this problem. Apolipoprotein C-II is a well-studied model system of systemic amyloid fibril formation, with a clear and well-defined pathway for fibril formation, where the effects of lipid interaction are characterized, particularly for the lipid mimetic dodecylphosphocholine. We show that the micellar state of an inhibitory lipid can have a very significant effect on protein conformation, with micelles stabilizing a particular α-helical structure, whereas submicellar lipids stabilize a very different dimeric, α-helical structure. These results indicate that lipids may have an important role in the development and progression of amyloid-related diseases.
Collapse
Affiliation(s)
- Timothy M Ryan
- Australian Synchrotron, Clayton, Victoria, Australia; The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia; The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Duncan J McGillivray
- School of Chemical Science, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Robert B Knott
- Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel Kirby
- Australian Synchrotron, Clayton, Victoria, Australia
| | - Cyril C Curtain
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Zlatic CO, Mao Y, Ryan TM, Mok YF, Roberts BR, Howlett GJ, Griffin MDW. Fluphenazine·HCl and Epigallocatechin Gallate Modulate the Rate of Formation and Structural Properties of Apolipoprotein C-II Amyloid Fibrils. Biochemistry 2015; 54:3831-8. [DOI: 10.1021/acs.biochem.5b00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Courtney O. Zlatic
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu Mao
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy M. Ryan
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Stabilization of nontoxic Aβ-oligomers: insights into the mechanism of action of hydroxyquinolines in Alzheimer's disease. J Neurosci 2015; 35:2871-84. [PMID: 25698727 DOI: 10.1523/jneurosci.2912-14.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extracellular accumulation of amyloid β (Aβ) peptides is characteristic of Alzheimer's disease (AD). However, formation of diffusible, oligomeric forms of Aβ, both on and off pathways to amyloid fibrils, is thought to include neurotoxic species responsible for synaptic loss and neurodegeneration, rather than polymeric amyloid aggregates. The 8-hydroxyquinolines (8-HQ) clioquinol (CQ) and PBT2 were developed for their ability to inhibit metal-mediated generation of reactive oxygen species from Aβ:Cu complexes and have both undergone preclinical and Phase II clinical development for the treatment of AD. Their respective modes of action are not fully understood and may include both inhibition of Aβ fibrillar polymerization and direct depolymerization of existing Aβ fibrils. In the present study, we find that CQ and PBT2 can interact directly with Aβ and affect its propensity to aggregate. Using a combination of biophysical techniques, we demonstrate that, in the presence of these 8-HQs and in the absence of metal ions, Aβ associates with two 8-HQ molecules and forms a dimer. Furthermore, 8-HQ bind Aβ with an affinity of 1-10 μm and suppress the formation of large (>30 kDa) oligomers. The stabilized low molecular weight species are nontoxic. Treatment with 8-HQs also reduces the levels of in vivo soluble oligomers in a Caenorhabditis elegans model of Aβ toxicity. We propose that 8-HQs possess an additional mechanism of action that neutralizes neurotoxic Aβ oligomer formation through stabilization of small (dimeric) nontoxic Aβ conformers.
Collapse
|
8
|
Zhao H, Ma J, Ingaramo M, Andrade E, MacDonald J, Ramsay G, Piszczek G, Patterson GH, Schuck P. Accounting for photophysical processes and specific signal intensity changes in fluorescence-detected sedimentation velocity. Anal Chem 2014; 86:9286-92. [PMID: 25136929 PMCID: PMC4165462 DOI: 10.1021/ac502478a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Fluorescence detected sedimentation
velocity (FDS-SV) has emerged
as a powerful technique for the study of high-affinity protein interactions,
with hydrodynamic resolution exceeding that of diffusion-based techniques,
and with sufficient sensitivity for binding studies at low picomolar
concentrations. For the detailed quantitative analysis of the observed
sedimentation boundaries, it is necessary to adjust the conventional
sedimentation models to the FDS data structure. A key consideration
is the change in the macromolecular fluorescence intensity during
the course of the experiment, caused by slow drifts of the excitation
laser power, and/or by photophysical processes. In the present work,
we demonstrate that FDS-SV data have inherently a reference for the
time-dependent macromolecular signal intensity, resting on a geometric
link between radial boundary migration and plateau signal. We show
how this new time-domain can be exploited to study molecules exhibiting
photobleaching and photoactivation. This expands the application of
FDS-SV to proteins tagged with photoswitchable fluorescent proteins,
organic dyes, or nanoparticles, such as those recently introduced
for subdiffraction microscopy and enables FDS-SV studies of their
interactions and size distributions. At the same time, we find that
conventional fluorophores undergo minimal photobleaching under standard
illumination in the FDS. These findings support the application of
a high laser power density for the detection, which we demonstrate
can further increase the signal quality.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhao H, Berger AJ, Brown PH, Kumar J, Balbo A, May CA, Casillas E, Laue TM, Patterson GH, Mayer ML, Schuck P. Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. J Gen Physiol 2012; 139:371-88. [PMID: 22508847 PMCID: PMC3343374 DOI: 10.1085/jgp.201210770] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/27/2012] [Indexed: 01/06/2023] Open
Abstract
Analytical ultracentrifugation (AUC) and steady-state fluorescence anisotropy were used to measure the equilibrium dissociation constant (Kd) for formation of dimers by the amino-terminal domains (ATDs) of the GluA2 and GluA3 subtypes of AMPA receptor. Previous reports on GluA2 dimerization differed in their estimate of the monomer-dimer Kd by a 2,400-fold range, with no consensus on whether the ATD forms tetramers in solution. We find by sedimentation velocity (SV) analysis performed using absorbance detection a narrow range of monomer-dimer Kd values for GluA2, from 5 to 11 nM for six independent experiments, with no detectable formation of tetramers and no effect of glycosylation or the polypeptide linker connecting the ATD and ligand-binding domains; for GluA3, the monomer-dimer Kd was 5.6 µM, again with no detectable tetramer formation. For sedimentation equilibrium (SE) experiments, a wide range of Kd values was obtained for GluA2, from 13 to 284 nM, whereas for GluA3, the Kd of 3.1 µM was less than twofold different from the SV value. Analysis of cell contents after the ∼1-week centrifuge run by silver-stained gels revealed low molecular weight GluA2 breakdown products. Simulated data for SE runs demonstrate that the apparent Kd for GluA2 varies with the extent of proteolysis, leading to artificially high Kd values. SV experiments with fluorescence detection for GluA2 labeled with 5,6-carboxyfluorescein, and fluorescence anisotropy measurements for GluA2 labeled with DyLight405, yielded Kd values of 5 and 11 nM, consistent with those from SV with absorbance detection. However, the sedimentation coefficients measured by AUC using absorbance and fluorescence systems were strikingly different, and for the latter are not consistent with hydrodynamic protein models. Thus, for unknown reasons, the concentration dependence of sedimentation coefficients obtained with fluorescence detection SV may be unreliable, limiting the usefulness of this technique for quantitative analysis.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Anthony J. Berger
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Patrick H. Brown
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Janesh Kumar
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Andrea Balbo
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Carrie A. May
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - Ernesto Casillas
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Thomas M. Laue
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - George H. Patterson
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Mark L. Mayer
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| |
Collapse
|