1
|
Dutta C, Lopez V, Preston C, Rudra N, Chavez AMV, Rogers AM, Solomon LA. Controlling heme redox properties in peptide amphiphile fibers with sequence and heme loading ratio. Biophys J 2024; 123:1781-1791. [PMID: 38783603 PMCID: PMC11267424 DOI: 10.1016/j.bpj.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Controlling the reduction midpoint potential of heme B is a key factor in many bioelectrochemical reactions, including long-range electron transport. Currently, there are a number of globular model protein systems to study this biophysical parameter; however, there are none for large polymeric protein model systems (e.g., the OmcS protein from G. sulfurreducens). Peptide amphiphiles, short peptides with a lipid tail that polymerize into fibrous structures, fill this gap. Here, we show a peptide amphiphile model system where one can tune the electrochemical potential of heme B by changing the loading ratio and peptide sequence. Changing the loading ratio resulted in the most significant increase, with values as high as -22 mV down to -224 mV. Circular dichroism spectra of certain sequences show Cotton effects at lower loading ratios that disappear as more heme B is added, indicating an ordered environment that becomes disrupted if heme B is overpacked. These findings can contribute to the design of functional self-assembling biomaterials.
Collapse
Affiliation(s)
- Chiranjit Dutta
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Virginia Lopez
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Conner Preston
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Nimesh Rudra
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia
| | | | - Abigail M Rogers
- Department of Biology, George Mason University, Fairfax, Virginia
| | - Lee A Solomon
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia.
| |
Collapse
|
2
|
Zhang L, Brown MC, Mutter AC, Greenland KN, Cooley JW, Koder RL. Protein dynamics govern the oxyferrous state lifetime of an artificial oxygen transport protein. Biophys J 2023; 122:4440-4450. [PMID: 37865818 PMCID: PMC10698322 DOI: 10.1016/j.bpj.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
It has long been known that the alteration of protein side chains that occlude or expose the heme cofactor to water can greatly affect the stability of the oxyferrous heme state. Here, we demonstrate that the rate of dynamically driven water penetration into the core of an artificial oxygen transport protein also correlates with oxyferrous state lifetime by reducing global dynamics, without altering the structure of the active site, via the simple linking of the two monomers in a homodimeric artificial oxygen transport protein using a glycine-rich loop. The tethering of these two helices does not significantly affect the active site structure, pentacoordinate heme-binding affinity, reduction potential, or gaseous ligand affinity. It does, however, significantly reduce the hydration of the protein core, as demonstrated by resonance Raman spectroscopy, backbone amide hydrogen exchange, and pKa shifts in buried histidine side chains. This further destabilizes the charge-buried entatic state and nearly triples the oxyferrous state lifetime. These data are the first direct evidence that dynamically driven water penetration is a rate-limiting step in the oxidation of these complexes. It furthermore demonstrates that structural rigidity that limits water penetration is a critical design feature in metalloenzyme construction and provides an explanation for both the failures and successes of earlier attempts to create oxygen-binding proteins.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics, The City College of New York, New York, New York
| | - Mia C Brown
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Andrew C Mutter
- Department of Biochemistry, The City College of New York, New York, New York
| | - Kelly N Greenland
- Department of Physics, The City College of New York, New York, New York
| | - Jason W Cooley
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York; Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, New York.
| |
Collapse
|
3
|
Solomon LA, Witten J, Kodali G, Moser CC, Dutton PL. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies. J Phys Chem B 2022; 126:8177-8187. [PMID: 36219580 PMCID: PMC9589594 DOI: 10.1021/acs.jpcb.2c05119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidoreductases have evolved over millions of years to perform a variety of metabolic tasks crucial for life. Understanding how these tasks are engineered relies on delivering external electron donors or acceptors to initiate electron transfer reactions. This is a challenge. Small-molecule redox reagents can act indiscriminately, poisoning the cell. Natural redox proteins are more selective, but finding the right partner can be difficult due to the limited number of redox potentials and difficulty tuning them. De novo proteins offer an alternative path. They are robust and can withstand mutations that allow for tailorable changes. They are also devoid of evolutionary artifacts and readily bind redox cofactors. However, no reliable set of engineering principles have been developed that allow for these proteins to be fine-tuned so their redox midpoint potential (Em) can form donor/acceptor pairs with any natural oxidoreductase. This work dissects protein-cofactor interactions that can be tuned to modulate redox potentials of acceptors and donors using a mutable de novo designed tetrahelical protein platform with iron tetrapyrrole cofactors as a test case. We show a series of engineered heme b-binding de novo proteins and quantify their resulting effect on Em. By focusing on the surface charge and buried charges, as well as cofactor placement, chemical modification, and ligation of cofactors, we are able to achieve a broad range of Em values spanning a range of 330 mV. We anticipate this work will guide the design of proteinaceous tools that can interface with natural oxidoreductases inside and outside the cell while shedding light on how natural proteins modulate Em values of bound cofactors.
Collapse
Affiliation(s)
- Lee A. Solomon
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia22030, United States,
| | - Joshua Witten
- Department
of Biology, George Mason University, Fairfax, Virginia22030, United States
| | - Goutham Kodali
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Christopher C. Moser
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - P. Leslie Dutton
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
4
|
Abstract
Liquid-liquid phase separation of tropoelastin has long been considered to be an important early step in the complex process of elastin fiber assembly in the body and has inspired the development of elastin-like peptides with a wide range of industrial and biomedical applications. Despite decades of study, the material state of the condensed liquid phase of elastin and its subsequent maturation remain poorly understood. Here, using a model minielastin that mimics the alternating domain structure of full-length tropoelastin, we examine the elastin liquid phase. We combine differential interference contrast (DIC), fluorescence, and scanning electron microscopy with particle-tracking microrheology to resolve the material transition occurring within elastin liquids over time in the absence of exogenous cross-linking. We find that this transition is accompanied by an intermediate stage marked by the coexistence of insoluble solid and dynamic liquid phases giving rise to significant spatial heterogeneities in material properties. We further demonstrate that varying the length of the terminal hydrophobic domains of minielastins can tune the maturation process. This work not only resolves an important step in the hierarchical assembly process of elastogenesis but further contributes mechanistic insight into the diverse repertoire of protein condensate maturation pathways with emerging importance across biology.
Collapse
|
5
|
Horoszko CP, Schnatz PJ, Budhathoki-Uprety J, Rao-Pothuraju RV, Koder RL, Heller DA. Non-Covalent Coatings on Carbon Nanotubes Mediate Photosensitizer Interactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51343-51350. [PMID: 34672190 PMCID: PMC9256527 DOI: 10.1021/acsami.1c14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon nanotube-based donor-acceptor devices are used in applications ranging from photovoltaics and sensors to environmental remediation. Non-covalent contacts between donor dyes and nanotubes are often used to optimize sensitization and scalability. However, inconsistency is often observed despite donor dye studies reporting strong donor-acceptor interactions. Here, we demonstrate that the dye binding location is an important factor in this process: we used coated-acceptor chromatic responses and find that dye binding is affected by the coating layer. The emission response to free- and protein-sequestered porphyrin was tested to compare direct and indirect dye contact. An acceptor complex that preferentially red-shifts in response to sequestered porphyrin was identified. We observe inconsistent optical signals that suggest porphyrin-dye interactions are best described as coating-centric; therefore, the coating interface must be considered in application and assay design.
Collapse
Affiliation(s)
- Christopher P. Horoszko
- Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Peter J. Schnatz
- Department of Physics, City College of New York, New York, NY 10031, United States
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27606, United States
| | | | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, United States
- Graduate Programs of Physics, Chemistry, Biochemistry and Biology, The Graduate Center of CUNY, New York, New York 10016, United States
| | - Daniel A. Heller
- Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
6
|
Carvajal MFCA, Preston JM, Jamhawi NM, Sabo TM, Bhattacharya S, Aramini JM, Wittebort RJ, Koder RL. Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil. Biophys J 2021; 120:4623-4634. [PMID: 34339635 PMCID: PMC8553601 DOI: 10.1016/j.bpj.2021.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation studies of the dynamics of the minielastins 24x' and 20x' using solution NMR, and of purified bovine elastin fibers in the presence and absence of mechanical stress using solid state NMR. The low sequence complexity of the minielastins enables us to determine average dynamical timescales and degrees of local ordering in the cross-link and hydrophobic modules separately using NMR relaxation by taking advantage of their residue-specific resolution. We find an extremely high degree of disorder, with order parameters for the entirety of the hydrophobic domains near zero, resembling that of simple chemical polymers and less than the order parameters that have been observed in other intrinsically disordered proteins. We find that average backbone order parameters in natural, purified elastin fibers are comparable to those found in 24x' and 20x' in solution. The difference in dynamics, compared with the minielastins, is that backbone correlation times are significantly slowed in purified elastin. Moreover, when elastin is mechanically stretched, the high chain disorder in purified elastin is retained, showing that any change in local ordering is below that detectable in our experiment. Combined with our previous finding of a 10-fold increase in the ordering of water when fully hydrated elastin fibers are stretched by 50%, these results support the hypothesis that stretch induced solvent ordering, i.e., the hydrophobic effect, is a key player in the elastic recoil of elastin as opposed to configurational entropy loss.
Collapse
Affiliation(s)
| | | | - Nour M Jamhawi
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - T Michael Sabo
- Department of Medicine and the James Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - James M Aramini
- Advanced Science Research Center, The City University of New York, New York, New York
| | | | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York; Graduate Programs of Physics, Chemistry, Biochemistry and Biology, The Graduate Center of CUNY, New York, New York.
| |
Collapse
|
7
|
Li Z, Li J, Liu L, Deng W, Liu Q, Liu R, Zhang W, He Z, Fan L, Yang Y, Duan Y, Hou H, Wang X, Yang Z, Wang X, Chen S, Wang Y, Huang N, Chen J. Structural Insight into the Mechanism of 4-Aminoquinolines Selectivity for the alpha2A-Adrenoceptor. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2585-2594. [PMID: 32694911 PMCID: PMC7340475 DOI: 10.2147/dddt.s214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022]
Abstract
Background α2A-adrenoceptor (AR) is a potential target for the treatment of degenerative diseases of the central nervous system, and α2A-AR agonists are effective drugs for this condition. However, the lack of high selectivity for α2A-AR subtype of traditional drugs greatly limits their clinic usage. Methods A series of homobivalent 4-aminoquinolines conjugated by two 4-aminoquinoline moieties via varying alkane linker length (C2-C12) were characterized for their affinities for each α2-AR subtype. Subsequently, docking, molecular dynamics and mutagenesis were applied to uncover the molecular mechanism. Results Most 4-aminoquinolines (4-aminoquinoline monomer, C2-C6, C8-C10) were selective for α2A-AR over α2B- and α2C-ARs. Besides, the affinities are of similar linker length-dependence for each α2-AR subtype. Among all the compounds tested, C10 has the highest affinity for α2A-AR (pKi=−7.45±0.62), which is 12-fold and 60-fold selective over α2B-AR and α2C-AR, respectively. Docking and molecular dynamics suggest that C10 simultaneously interacts with orthosteric and “allosteric” sites of the α2A-AR. The mutation of F205 decreases the affinity by 2-fold. The potential allosteric residues include S90, N93, E94 and W99. Conclusion The specificity of C10 for the α2A-AR and the potential orthosteric and allosteric binding sites proposed in this study provide valuable guidance for the development of novel α2A-AR subtype selective compounds.
Collapse
Affiliation(s)
- Zaibing Li
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China.,Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jingyu Li
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liyan Liu
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenyi Deng
- West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qingrong Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ruofan Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wen Zhang
- West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zaiqing He
- Department of Pathology, Nuclear of Industry 416 Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Lei Fan
- Department of Occupational Medicine, Nuclear of Industry 416 Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Yingzhuo Yang
- Department of Nuclear Medicine, Sichuan Cancer Hospital, Chengdu 610041, People's Republic of China
| | - Yun Duan
- Department of Nuclear Medicine, Sichuan Cancer Hospital, Chengdu 610041, People's Republic of China
| | - Huifang Hou
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinyuan Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhimei Yang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shanze Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
8
|
Designing heterotropically activated allosteric conformational switches using supercharging. Proc Natl Acad Sci U S A 2020; 117:5291-5297. [PMID: 32098845 DOI: 10.1073/pnas.1916046117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotropic allosteric activation of protein function, in which binding of one ligand thermodynamically activates the binding of another, different ligand or substrate, is a fundamental control mechanism in metabolism and as such has been a long-aspired capability in protein design. Here we show that greatly increasing the magnitude of a protein's net charge using surface supercharging transforms that protein into an allosteric ligand- and counterion-gated conformational molecular switch. To demonstrate this we first modified the designed helical bundle hemoprotein H4, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. As a result of the high surface-charge density, ligand binding to this protein is allosterically activated up to 1,300-fold by low concentrations of divalent cations and the polyamine spermine. To extend this process further using a natural protein, we similarly modified Escherichia coli cytochrome b 562 and the resulting protein behaves in a like manner. These simple model systems not only establish a set of general engineering principles which can be used to convert natural and designed soluble proteins into allosteric molecular switches useful in biodesign, sensing, and synthetic biology, the behavior we have demonstrated--functional activation of supercharged intrinsically disordered proteins by low concentrations of multivalent ions--may be a control mechanism utilized by Nature which has yet to be appreciated.
Collapse
|
9
|
Greenland KN, Carvajal MFCA, Preston JM, Ekblad S, Dean WL, Chiang JY, Koder RL, Wittebort RJ. Order, Disorder, and Temperature-Driven Compaction in a Designed Elastin Protein. J Phys Chem B 2018; 122:2725-2736. [PMID: 29461832 DOI: 10.1021/acs.jpcb.7b11596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificial minielastin constructs have been designed that replicate the structure and function of natural elastins in a simpler context, allowing the NMR observation of structure and dynamics of elastin-like proteins with complete residue-specific resolution. We find that the alanine-rich cross-linking domains of elastin have a partially helical structure, but only when capped by proline-rich hydrophobic domains. We also find that the hydrophobic domains, composed of prominent 6-residue repeats VPGVGG and APGVGV found in natural elastins, appear random coil by both NMR chemical shift analysis and circular dichroism. However, these elastin hydrophobic domains exhibit structural bias for a dynamically disordered conformation that is neither helical nor β sheet with a degree of nonrandom structural bias which is dependent on residue type and position in the sequence. Another nonrandom-coil aspect of hydrophobic domain structure lies in the fact that, in contrast to other intrinsically disordered proteins, these hydrophobic domains retain a relatively condensed conformation whether attached to cross-linking domains or not. Importantly, these domains and the proteins containing them constrict with increasing temperature by up to 30% in volume without becoming more ordered. This property is often observed in nonbiological polymers and suggests that temperature-driven constriction is a new type of protein structural change that is linked to elastin's biological functions of coacervation-driven assembly and elastic recoil.
Collapse
Affiliation(s)
- Kelly N Greenland
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | | | - Jonathan M Preston
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - Siri Ekblad
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - William L Dean
- Department of Biochemistry and Molecular Genetics and the James Brown Cancer Center , University of Louisville School of Medicine , Louisville , Kentucky 40292 , United States
| | - Jeff Y Chiang
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - Ronald L Koder
- Department of Physics , The City College of New York , New York , New York 10031 , United States.,Graduate Programs of Physics, Chemistry and Biochemistry , The Graduate Center of CUNY , New York , New York 10016 , United States
| | - Richard J Wittebort
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
10
|
Brisendine JM, Koder RL. Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:485-492. [PMID: 26498191 PMCID: PMC4856154 DOI: 10.1016/j.bbabio.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022]
Abstract
The accumulated results of thirty years of rational and computational de novo protein design have taught us important lessons about the stability, information content, and evolution of natural proteins. First, de novo protein design has complicated the assertion that biological function is equivalent to biological structure - demonstrating the capacity to abstract active sites from natural contexts and paste them into non-native topologies without loss of function. The structure-function relationship has thus been revealed to be either a generality or strictly true only in a local sense. Second, the simplification to "maquette" topologies carried out by rational protein design also has demonstrated that even sophisticated functions such as conformational switching, cooperative ligand binding, and light-activated electron transfer can be achieved with low-information design approaches. This is because for simple topologies the functional footprint in sequence space is enormous and easily exceeds the number of structures which could have possibly existed in the history of life on Earth. Finally, the pervasiveness of extraordinary stability in designed proteins challenges accepted models for the "marginal stability" of natural proteins, suggesting that there must be a selection pressure against highly stable proteins. This can be explained using recent theories which relate non-equilibrium thermodynamics and self-replication. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Joseph M Brisendine
- Department of Physics, The City College of New York, New York, NY 10031, United States; The Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, NY 10031, United States; Graduate Programs of Physics, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
11
|
Preface. Methods Enzymol 2016; 580:xvii-xxii. [DOI: 10.1016/s0076-6879(16)30242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
13
|
Raju G, Singh S, Mutter AC, Everson BH, Cerda JF, Koder RL. An extended scope synthesis of an artificial safranine cofactor. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Solomon LA, Kodali G, Moser CC, Dutton PL. Engineering the assembly of heme cofactors in man-made proteins. J Am Chem Soc 2014; 136:3192-9. [PMID: 24495285 PMCID: PMC3985801 DOI: 10.1021/ja411845f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Timely ligation of one or more chemical cofactors at preselected locations in proteins is a critical preamble for catalysis in many natural enzymes, including the oxidoreductases and allied transport and signaling proteins. Likewise, ligation strategies must be directly addressed when designing oxidoreductase and molecular transport functions in man-made, first-principle protein constructs intended to operate in vitro or in vivo. As one of the most common catalytic cofactors in biology, we have chosen heme B, along with its chemical analogues, to determine the kinetics and barriers to cofactor incorporation and bishistidine ligation in a range of 4-α-helix proteins. We compare five elementary synthetic designs (maquettes) and the natural cytochrome b562 that differ in oligomeric forms, apo- and holo-tertiary structural stability; qualities that we show can either assist or hinder assembly. The cofactor itself also imposes an assembly barrier if amphiphilicity ranges toward too hydrophobic or hydrophilic. With progressive removal of identified barriers, we achieve maquette assembly rates as fast as native cytochrome b562, paving the way to in vivo assembly of man-made hemoprotein maquettes and integration of artificial proteins into enzymatic pathways.
Collapse
Affiliation(s)
- Lee A Solomon
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
15
|
Mutter AC, Norman JA, Tiedemann MT, Singh S, Sha S, Morsi S, Ahmed I, Stillman MJ, Koder RL. Rational design of a zinc phthalocyanine binding protein. J Struct Biol 2014; 185:178-85. [PMID: 23827257 PMCID: PMC4244077 DOI: 10.1016/j.jsb.2013.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
Abstract
Phthalocyanines have long been used as primary donor molecules in synthetic light-powered devices due to their superior properties when compared to natural light activated molecules such as chlorophylls. Their use in biological contexts, however, has been severely restricted due to their high degree of self-association, and its attendant photoquenching, in aqueous environments. To this end we report the rational redesign of a de novo four helix bundle di-heme binding protein into a heme and Zinc(II) phthalocyanine (ZnPc) dyad in which the ZnPc is electronically and photonically isolated. The redesign required transformation of the homodimeric protein into a single chain four helix bundle and the addition of a negatively charge sulfonate ion to the ZnPc macrocycle. To explore the role of topology on ZnPc binding two constructs were made and the resulting differences in affinity can be explained by steric interference of the newly added connecting loop. Singular binding of ZnPc was verified by absorption, fluorescence, and magnetic circular dichroism spectroscopy. The engineering guidelines determined here, which enable the simple insertion of a monomeric ZnPc binding site into an artificial helical bundle, are a robust starting point for the creation of functional photoactive nanodevices.
Collapse
Affiliation(s)
- Andrew C Mutter
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Jessica A Norman
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | | | - Sunaina Singh
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Sha Sha
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Sara Morsi
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Ismail Ahmed
- Department of Biochemistry, The City College of New York, New York, NY 10031, United States
| | - Martin J Stillman
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, NY 10031, United States.
| |
Collapse
|
16
|
Incorporating metals into de novo proteins. Curr Opin Chem Biol 2013; 17:934-9. [DOI: 10.1016/j.cbpa.2013.10.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/24/2022]
|
17
|
A three-dimensional printed cell for rapid, low-volume spectroelectrochemistry. Anal Biochem 2013; 439:1-3. [PMID: 23583818 DOI: 10.1016/j.ab.2013.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 11/21/2022]
Abstract
We have used three-dimensional (3D) printing technology to create an inexpensive spectroelectrochemical cell insert that fits inside a standard cuvette and can be used with any transmission spectrometer. The cell positions the working, counter, and reference electrodes and has an interior volume of approximately 200 μl while simultaneously providing a full 1-cm path length for spectroscopic measurements. This method reduces the time required to perform a potentiometric titration on a molecule compared with standard chemical titration methods and achieves complete electrolysis of protein samples within minutes. Thus, the device combines the best aspects of thin-layer cells and standard potentiometry.
Collapse
|
18
|
Zhang L, Andersen EME, Khajo A, Magliozzo RS, Koder RL. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein. Biochemistry 2013; 52:447-55. [PMID: 23249163 DOI: 10.1021/bi301066z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics, The City College of New York, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
19
|
Raju G, Capo J, Lichtenstein BR, Cerda JF, Koder RL. Manipulating Reduction Potentials in an Artificial Safranin Cofactor. Tetrahedron Lett 2012; 53:1201-1203. [PMID: 23335821 DOI: 10.1016/j.tetlet.2011.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Safranines hold great promise as artificial flavin-like electron transfer cofactors with tunable properties. We report the design and chemical synthesis of the p-methoxy derivative of safranine O using a new synthetic route based on the Ulmann condensation. Spectroelectrochemical comparison of the purified parent safranine and this derivative demonstrates that the modification increases its two-electron reduction potential by 125 mV, or 5.75 kcal/mol. This modification also causes redshifts in the absorbance and fluorescence spectra of the cofactor, suggesting that it may find future utility in arrayed sensor applications.
Collapse
Affiliation(s)
- Gheevarghese Raju
- Department of Chemistry, The City College of New York, New York, NY 10031
| | | | | | | | | |
Collapse
|
20
|
Shinde S, Cordova JM, Woodrum BW, Ghirlanda G. Modulation of function in a minimalist heme-binding membrane protein. J Biol Inorg Chem 2012; 17:557-64. [PMID: 22307279 DOI: 10.1007/s00775-012-0876-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
De novo designed heme-binding proteins have been used successfully to recapitulate features of natural hemoproteins. This approach has now been extended to membrane-soluble model proteins. Our group designed a functional hemoprotein, ME1, by engineering a bishistidine binding site into a natural membrane protein, glycophorin A (Cordova et al. in J Am Chem Soc 129:512-518, 2007). ME1 binds iron(III) protoporphyrin IX with submicromolar affinity, has a redox potential of -128 mV, and displays peroxidase activity. Here, we show the effect of aromatic residues in modulating the redox potential in the context of a membrane-soluble model system. We designed aromatic interactions with the heme through a single-point mutant, G25F, in which a phenylalanine is designed to dock against the porphyrin ring. This mutation results in roughly tenfold tighter binding to iron(III) protoporphyrin IX (K(d,app) = 6.5 × 10(-8) M), and lowers the redox potential of the cofactor to -172 mV. This work demonstrates that specific design features aimed at controlling the properties of bound cofactors can be introduced in a minimalist membrane hemoprotein model. The ability to modulate the redox potential of cofactors embedded in artificial membrane proteins is crucial for the design of electron transfer chains across membranes in functional photosynthetic devices.
Collapse
Affiliation(s)
- Sandip Shinde
- Department of Chemistry and Biochemistry, ASU, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|