1
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
2
|
Chai P, Lan P, Li S, Yao D, Chang C, Cao M, Shen Y, Ge S, Wu J, Lei M, Fan X. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol Cell 2022; 82:4116-4130.e6. [DOI: 10.1016/j.molcel.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
3
|
Kortmann M, Baumgart M, Bott M. Pyruvate carboxylase from Corynebacterium glutamicum : purification and characterization. Appl Microbiol Biotechnol 2019; 103:6571-6580. [PMID: 31240367 DOI: 10.1007/s00253-019-09982-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 11/29/2022]
Abstract
Pyruvate carboxylase of Corynebacterium glutamicum serves as anaplerotic enzyme when cells are growing on carbohydrates and plays an important role in the industrial production of metabolites derived from the tricarboxylic acid cycle, such as L-glutamate or L-lysine. Previous studies suggested that the enzyme from C. glutamicum is very labile, as activity could only be measured in permeabilized cells, but not in cell-free extracts. In this study, we established conditions allowing activity measurements in cell-free extracts of C. glutamicum and purification of the enzyme by avidin affinity chromatography and gel filtration. Using a coupled enzymatic assay with malate dehydrogenase, Vmax values between 20 and 25 μmol min-1 mg-1 were measured for purified pyruvate carboxylase corresponding to turnover numbers of 160 - 200 s-1 for the tetrameric enzyme. The concentration dependency for pyruvate and ATP followed Michaelis-Menten kinetics with Km values of 3.76 ± 0.72 mM and 0.61 ± 0.13 mM, respectively. For bicarbonate, concentrations ≥5 mM were required to obtain activity and half-maximal rates were found at 13.25 ± 4.88 mM. ADP and aspartate inhibited PCx activity with apparent Ki values of 1.5 mM and 9.3 mM, respectively. Acetyl-CoA had a weak inhibitory effect, but only at low concentrations up to 50 μM. The results presented here enable further detailed biochemical and structural studies of this enzyme.
Collapse
Affiliation(s)
- Maike Kortmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
4
|
Wyatt BN, Arnold LA, St Maurice M. A high-throughput screening assay for pyruvate carboxylase. Anal Biochem 2018; 550:90-98. [PMID: 29655770 DOI: 10.1016/j.ab.2018.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/20/2023]
Abstract
Pyruvate carboxylase (PC) catalyzes the conversion of pyruvate to oxaloacetate (OAA), an important metabolic reaction in a wide range of organisms. Small molecules directed against PC would enable detailed studies on the metabolic role of this enzyme and would have the potential to be developed into pharmacological agents. Currently, specific and potent small molecule regulators of PC are unavailable. To assist in efforts to find, develop, and characterize small molecule effectors of PC, a novel fixed-time assay has been developed based on the reaction of OAA with the diazonium salt, Fast Violet B (FVB), which produces a colored adduct with an absorbance maximum at 530 nm. This fixed time assay is reproducible, sensitive and responsive to known effectors of Rhizobium etli PC, Staphylococcus aureus PC, and Listeria monocytogenes PC, and is highly amenable to high-throughput screening. The assay was validated using a plate uniformity assessment test and a pilot screen of a library of 1280 compounds. The results indicate that the assay is suitable for screening small molecule libraries to find novel small molecule effectors of PC.
Collapse
Affiliation(s)
- Brittney N Wyatt
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
5
|
Liu Y, Budelier MM, Stine K, St Maurice M. Allosteric regulation alters carrier domain translocation in pyruvate carboxylase. Nat Commun 2018; 9:1384. [PMID: 29643369 PMCID: PMC5895798 DOI: 10.1038/s41467-018-03814-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/14/2018] [Indexed: 11/28/2022] Open
Abstract
Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate. The reaction occurs in two separate catalytic domains, coupled by the long-range translocation of a biotinylated carrier domain (BCCP). Here, we use a series of hybrid PC enzymes to examine multiple BCCP translocation pathways in PC. These studies reveal that the BCCP domain of PC adopts a wide range of translocation pathways during catalysis. Furthermore, the allosteric activator, acetyl CoA, promotes one specific intermolecular carrier domain translocation pathway. These results provide a basis for the ordered thermodynamic state and the enhanced carboxyl group transfer efficiency in the presence of acetyl CoA, and reveal that the allosteric effector regulates enzyme activity by altering carrier domain movement. Given the similarities with enzymes involved in the modular synthesis of natural products, the allosteric regulation of carrier domain movements in PC is likely to be broadly applicable to multiple important enzyme systems. Carrier domain enzymes accomplish catalysis by physically transporting intermediates long distances between remote active sites. Here the authors describe a wide range of catalytically productive translocation events during catalysis by pyruvate carboxylase and suggest a basis for its allosteric activation.
Collapse
Affiliation(s)
- Yumeng Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Melissa M Budelier
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Katelyn Stine
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
6
|
Westerhold LE, Bridges LC, Shaikh SR, Zeczycki TN. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase. Biochemistry 2017; 56:3492-3506. [PMID: 28617592 DOI: 10.1021/acs.biochem.7b00383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allosteric regulation of pyruvate carboxylase (PC) activity is pivotal to maintaining metabolic homeostasis. In contrast, dysregulated PC activity contributes to the pathogenesis of numerous diseases, rendering PC a possible target for allosteric therapeutic development. Recent research efforts have focused on demarcating the role of acetyl-CoA, one of the most potent activators of PC, in coordinating catalytic events within the multifunctional enzyme. Herein, we report a kinetic and thermodynamic analysis of acetyl-CoA activation of the Staphylococcus aureus PC (SaPC)-catalyzed carboxylation of pyruvate to identify novel means by which acetyl-CoA synchronizes catalytic events within the PC tetramer. Kinetic and linked-function analysis, or thermodynamic linkage analysis, indicates that the substrates of the biotin carboxylase and carboxyl transferase domain are energetically coupled in the presence of acetyl-CoA. In contrast, both kinetic and energetic coupling between the two domains is lost in the absence of acetyl-CoA, suggesting a functional role for acetyl-CoA in facilitating the long-range transmission of substrate-induced conformational changes within the PC tetramer. Interestingly, thermodynamic activation parameters for the SaPC-catalyzed carboxylation of pyruvate are largely independent of acetyl-CoA. Our results also reveal the possibility that global conformational changes give rise to observed species-specific thermodynamic activation parameters. Taken together, our kinetic and thermodynamic results provide a possible allosteric mechanism by which acetyl-CoA coordinates catalysis within the PC tetramer.
Collapse
Affiliation(s)
- Lauren E Westerhold
- Department of Biochemistry and Molecular Biology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States
| | - Lance C Bridges
- Department of Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education , Ft. Smith, Arkansas 72916, United States
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States
| |
Collapse
|
7
|
Abstract
Pyruvate carboxylase is a metabolic enzyme that fuels the tricarboxylic acid cycle with one of its intermediates and also participates in the first step of gluconeogenesis. This large enzyme is multifunctional, and each subunit contains two active sites that catalyze two consecutive reactions that lead to the carboxylation of pyruvate into oxaloacetate, and a binding site for acetyl-CoA, an allosteric regulator of the enzyme. Pyruvate carboxylase oligomers arrange in tetramers and covalently attached biotins mediate the transfer of carboxyl groups between distant active sites. In this chapter, some of the recent findings on pyruvate carboxylase functioning are presented, with special focus on the structural studies of the full length enzyme. The emerging picture reveals large movements of domains that even change the overall quaternary organization of pyruvate carboxylase tetramers during catalysis.
Collapse
Affiliation(s)
- Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160, Derio, Spain.
| |
Collapse
|
8
|
Lin Y, Boese CJ, St Maurice M. The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent. Protein Sci 2016; 25:1812-24. [PMID: 27452902 DOI: 10.1002/pro.2990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Urea amidolyase (UAL) is a multifunctional biotin-dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP-dependent cleavage of urea into ammonia and CO2 . UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.
Collapse
Affiliation(s)
- Yi Lin
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Cody J Boese
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201.
| |
Collapse
|
9
|
Sirithanakorn C, Jitrapakdee S, Attwood PV. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA. Biochemistry 2016; 55:4220-8. [PMID: 27379711 DOI: 10.1021/acs.biochem.6b00548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Department of Biochemistry, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Paul V Attwood
- School of Chemistry and Biochemistry, The University of Western Australia , 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Morad SAF, Ryan TE, Neufer PD, Zeczycki TN, Davis TS, MacDougall MR, Fox TE, Tan SF, Feith DJ, Loughran TP, Kester M, Claxton DF, Barth BM, Deering TG, Cabot MC. Ceramide-tamoxifen regimen targets bioenergetic elements in acute myelogenous leukemia. J Lipid Res 2016; 57:1231-42. [PMID: 27140664 PMCID: PMC4918852 DOI: 10.1194/jlr.m067389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
The objective of our study was to determine the mechanism of action of the short-chain ceramide analog, C6-ceramide, and the breast cancer drug, tamoxifen, which we show coactively depress viability and induce apoptosis in human acute myelogenous leukemia cells. Exposure to the C6-ceramide-tamoxifen combination elicited decreases in mitochondrial membrane potential and complex I respiration, increases in reactive oxygen species (ROS), and release of mitochondrial proapoptotic proteins. Decreases in ATP levels, reduced glycolytic capacity, and reduced expression of inhibitors of apoptosis proteins also resulted. Cytotoxicity of the drug combination was mitigated by exposure to antioxidant. Cells metabolized C6-ceramide by glycosylation and hydrolysis, the latter leading to increases in long-chain ceramides. Tamoxifen potently blocked glycosylation of C6-ceramide and long-chain ceramides. N-desmethyltamoxifen, a poor antiestrogen and the major tamoxifen metabolite in humans, was also effective with C6-ceramide, indicating that traditional antiestrogen pathways are not involved in cellular responses. We conclude that cell death is driven by mitochondrial targeting and ROS generation and that tamoxifen enhances the ceramide effect by blocking its metabolism. As depletion of ATP and targeting the "Warburg effect" represent dynamic metabolic insult, this ceramide-containing combination may be of utility in the treatment of leukemia and other cancers.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Terence E Ryan
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - P Darrell Neufer
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Traci S Davis
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Matthew R MacDougall
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Todd E Fox
- Cancer Center, Division of Hematology Oncology, Department of Medicine Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Su-Fern Tan
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - David J Feith
- Cancer Center, Division of Hematology Oncology, Department of Medicine Oncology, Department of Medicine
| | - Thomas P Loughran
- Cancer Center, Division of Hematology Oncology, Department of Medicine Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mark Kester
- Cancer Center, Division of Hematology Oncology, Department of Medicine
| | - David F Claxton
- Penn State Hershey Cancer Institute, The Pennsylvania State University, Hershey, PA
| | - Brian M Barth
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Tye G Deering
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| |
Collapse
|
11
|
Westerhold LE, Adams SL, Bergman HL, Zeczycki TN. Pyruvate Occupancy in the Carboxyl Transferase Domain of Pyruvate Carboxylase Facilitates Product Release from the Biotin Carboxylase Domain through an Intermolecular Mechanism. Biochemistry 2016; 55:3447-60. [PMID: 27254467 DOI: 10.1021/acs.biochem.6b00372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein structure, ligand binding, and catalytic turnover contributes to the governance of catalytic events occurring at spatially distinct domains in multifunctional enzymes. Coordination of these catalytic events partially rests on the ability of spatially discrete active sites to communicate with other allosteric and active sites on the same polypeptide chain (intramolecular) or on different polypeptide chains (intermolecular) within the holoenzyme. Often, communication results in long-range effects on substrate binding or product release. For example, pyruvate binding to the carboxyl transferase (CT) domain of pyruvate carboxylase (PC) increases the rate of product release in the biotin carboxylase (BC) domain. In order to address how CT domain ligand occupancy is "sensed" by other domains, we generated functional, mixed hybrid tetramers using the E218A (inactive BC domain) and T882S (low pyruvate binding, low activity) mutant forms of PC. The apparent Ka pyruvate for the pyruvate-stimulated release of Pi catalyzed by the T882S:E218A[1:1] hybrid tetramer was comparable to the wild-type enzyme and nearly 10-fold lower than that for the T882S homotetramer. In addition, the ratio of the rates of oxaloacetate formation to Pi release for the WT:T882S[1:1] and E218A:T882S[1:1] hybrid tetramer-catalyzed reactions was 0.5 and 0.6, respectively, while the T882S homotetramer exhibited a near 1:1 coupling of the two domains, suggesting that the mechanisms coordinating catalytic events is more complicated that we initially assumed. The results presented here are consistent with an intermolecular communication mechanism, where pyruvate binding to the CT domain is "sensed" by domains on a different polypeptide chain within the tetramer.
Collapse
Affiliation(s)
- Lauren E Westerhold
- Department of Biochemistry and Molecular Biology and the ‡East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States
| | - Stephanie L Adams
- Department of Biochemistry and Molecular Biology and the ‡East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States
| | - Hanna L Bergman
- Department of Biochemistry and Molecular Biology and the ‡East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology and the ‡East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States
| |
Collapse
|
12
|
A. Alhasawi A, D. Appanna V. Manganese orchestrates a metabolic shift leading to the increased bioconversion of glycerol into α-ketoglutarate. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2017.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Choosangtong K, Sirithanakorn C, Adina-Zada A, Wallace JC, Jitrapakdee S, Attwood PV. Residues in the acetyl CoA binding site of pyruvate carboxylase involved in allosteric regulation. FEBS Lett 2015; 589:2073-9. [PMID: 26149215 DOI: 10.1016/j.febslet.2015.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
We have examined the roles of Asp1018, Glu1027, Arg469 and Asp471 in the allosteric domain of Rhizobium etli pyruvate carboxylase. Arg469 and Asp471 interact directly with the allosteric activator acetyl coenzyme A (acetyl CoA) and the R469S and R469K mutants showed increased enzymic activity in the presence and absence of acetyl CoA, whilst the D471A mutant exhibited no acetyl CoA-activation. E1027A, E1027R and D1018A mutants had increased activity in the absence of acetyl CoA, but not in its presence. These results suggest that most of these residues impose restrictions on the structure and/or dynamics of the enzyme to affect activity.
Collapse
Affiliation(s)
- Kamonman Choosangtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Chaiyos Sirithanakorn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Abdul Adina-Zada
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - John C Wallace
- School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Paul V Attwood
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
14
|
Lietzan AD, Lin Y, St Maurice M. The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase. Arch Biochem Biophys 2014; 562:70-9. [PMID: 25157442 PMCID: PMC4197081 DOI: 10.1016/j.abb.2014.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
Abstract
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. During catalysis, carboxybiotin is translocated to the carboxyltransferase domain where the carboxyl group is transferred to the acceptor substrate, pyruvate. Many studies on the carboxyltransferase domain of PC have demonstrated an enhanced oxaloacetate decarboxylation activity in the presence of oxamate and it has been shown that oxamate accepts a carboxyl group from carboxybiotin during oxaloacetate decarboxylation. The X-ray crystal structure of the carboxyltransferase domain from Rhizobium etli PC reveals that oxamate is positioned in the active site in an identical manner to the substrate, pyruvate, and kinetic data are consistent with the oxamate-stimulated decarboxylation of oxaloacetate proceeding through a simple ping-pong bi bi mechanism in the absence of the biotin carboxylase domain. Additionally, analysis of truncated PC enzymes indicates that the BCCP domain devoid of biotin does not contribute directly to the enzymatic reaction and conclusively demonstrates a biotin-independent oxaloacetate decarboxylation activity in PC. These findings advance the description of catalysis in PC and can be extended to the study of related biotin-dependent enzymes.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Yi Lin
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
15
|
Sirithanakorn C, Adina-Zada A, Wallace JC, Jitrapakdee S, Attwood PV. Mechanisms of inhibition of Rhizobium etli pyruvate carboxylase by L-aspartate. Biochemistry 2014; 53:7100-6. [PMID: 25330457 PMCID: PMC4238798 DOI: 10.1021/bi501113u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
L-aspartate is a regulatory feedback inhibitor of the biotin-dependent enzyme pyruvate carboxylase in response to increased levels of tricarboxylic acid cycle intermediates. Detailed studies of L-aspartate inhibition of pyruvate carboxylase have been mainly confined to eukaryotic microbial enzymes, and aspects of its mode of action remain unclear. Here we examine its inhibition of the bacterial enzyme Rhizobium etli pyruvate carboxylase. Kinetic studies demonstrated that L-aspartate binds to the enzyme cooperatively and inhibits the enzyme competitively with respect to acetyl-CoA. L-aspartate also inhibits activation of the enzyme by MgTNP-ATP. The action of L-aspartate was not confined to inhibition of acetyl-CoA binding, because the acetyl-CoA-independent activity of the enzyme was also inhibited by increasing concentrations of L-aspartate. This inhibition of acetyl-CoA-independent activity was demonstrated to be focused in the biotin carboxylation domain of the enzyme, and it had no effect on the oxamate-induced oxaloacetate decarboxylation reaction that occurs in the carboxyl transferase domain. L-aspartate was shown to competitively inhibit bicarbonate-dependent MgATP cleavage with respect to MgATP but also probably inhibits carboxybiotin formation and/or translocation of the carboxybiotin to the site of pyruvate carboxylation. Unlike acetyl-CoA, L-aspartate has no effect on the coupling between MgATP cleavage and oxaloacetate formation. The results suggest that the three allosteric effector sites (acetyl-CoA, MgTNP-ATP, and L-aspartate) are spatially distinct but connected by a network of allosteric interactions.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Department of Biochemistry, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
16
|
Menefee AL, Zeczycki TN. Nearly 50 years in the making: defining the catalytic mechanism of the multifunctional enzyme, pyruvate carboxylase. FEBS J 2014; 281:1333-1354. [PMID: 24476417 DOI: 10.1111/febs.12713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 01/04/2023]
Abstract
Numerous steady-state kinetic studies have examined the complex catalytic reaction mechanism of the multifunctional enzyme, pyruvate carboxylase (PC). Through initial velocity, product inhibition, isotopic exchange and alternate substrate experiments, early investigators established that PC catalyzes the MgATP-dependent carboxylation of pyruvate by HCO3 (-) through a nonclassical sequential Bi Bi Uni Uni reaction mechanism. This review surveys previous steady-state kinetic investigations of PC and evaluates the proposed hypotheses concerning the overall catalytic mechanism, nonlinear kinetics and active site coupling in the context of recent structural and mutagenic analyses of this multifunctional enzyme. The determination several PC holoenzyme structures have aided in corroborating the proposed molecular mechanisms by which catalysis occurs and established the inextricable link between the dynamic protein motions and complex kinetic mechanisms associated with PC activity. Unexpectedly, the conclusions drawn from these early steady-state kinetic investigations have consistently proven to be in fundamental agreement with our current understanding of PC catalysis, which is a testament to the overarching sophistication of the methods pioneered by Michaelis and Menten and further developed by Northrop, Cleland and others.
Collapse
Affiliation(s)
- Ann L Menefee
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA; The East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
17
|
Lietzan AD, St Maurice M. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase. J Biol Chem 2013; 288:19915-25. [PMID: 23698000 DOI: 10.1074/jbc.m113.477828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp(590) and Tyr(628) and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA
| | | |
Collapse
|
18
|
Marlier JF, Cleland WW, Zeczycki TN. Oxamate Is an Alternative Substrate for Pyruvate Carboxylase from Rhizobium etli. Biochemistry 2013; 52:2888-94. [DOI: 10.1021/bi400075t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- John F. Marlier
- Department of Chemistry and
Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - W. W. Cleland
- Institute for Enzyme Research
and Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| | - Tonya N. Zeczycki
- Department of Biochemistry and
Molecular Biology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
19
|
Adina-Zada A, Sereeruk C, Jitrapakdee S, Zeczycki TN, St Maurice M, Cleland WW, Wallace JC, Attwood PV. Roles of Arg427 and Arg472 in the binding and allosteric effects of acetyl CoA in pyruvate carboxylase. Biochemistry 2012; 51:8208-17. [PMID: 22985389 DOI: 10.1021/bi301060d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mutation of Arg427 and Arg472 in Rhizobium etli pyruvate carboxylase to serine or lysine greatly increased the activation constant (K(a)) of acetyl CoA, with the increase being greater for the Arg472 mutants. These results indicate that while both these residues are involved in the binding of acetyl CoA to the enzyme, Arg472 is more important than Arg427. The mutations had substantially smaller effects on the k(cat) for pyruvate carboxylation. Part of the effects of the mutations was to increase the K(m) for MgATP and the K(a) for activation by free Mg(2+) determined at saturating acetyl CoA concentrations. The inhibitory effects of the mutations on the rates of the enzyme-catalyzed bicarbonate-dependent ATP cleavage, carboxylation of biotin, and phosphorylation of ADP by carbamoyl phosphate indicate that the major locus of the effects of the mutations was in the biotin carboxylase (BC) domain active site. Even though both Arg427 and Arg472 are distant from the BC domain active site, it is proposed that their contacts with other residues in the allosteric domain, either directly or through acetyl CoA, affect the positioning and orientation of the biotin-carboxyl carrier protein (BCCP) domain and thus the binding of biotin at the BC domain active site. On the basis of the kinetic analysis proposed here, it is proposed that mutations of Arg427 and Arg472 perturb these contacts and consequently the binding of biotin at the BC domain active site. Inhibition of pyruvate carboxylation by the allosteric inhibitor l-aspartate was largely unaffected by the mutation of either Arg427 or Arg472.
Collapse
Affiliation(s)
- Abdussalam Adina-Zada
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Allosteric regulation of the biotin-dependent enzyme pyruvate carboxylase by acetyl-CoA. Biochem Soc Trans 2012; 40:567-72. [PMID: 22616868 DOI: 10.1042/bst20120041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.
Collapse
|
21
|
Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2012; 70:863-91. [PMID: 22869039 DOI: 10.1007/s00018-012-1096-0] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT), and biotin-carboxyl carrier protein components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC, or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC, and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes.
Collapse
|
22
|
Zeczycki TN, Menefee AL, Adina-Zada A, Jitrapakdee S, Surinya KH, Wallace JC, Attwood PV, St. Maurice M, Cleland WW. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli. Biochemistry 2011; 50:9724-37. [PMID: 21957995 PMCID: PMC3211089 DOI: 10.1021/bi2012788] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.
Collapse
Affiliation(s)
- Tonya N. Zeczycki
- Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53726
| | - Ann L. Menefee
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Abdussalam Adina-Zada
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley WA, 6009 Australia
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kathy H. Surinya
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide S.A., 5005, Australia
| | - John C. Wallace
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide S.A., 5005, Australia
| | - Paul V. Attwood
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley WA, 6009 Australia
| | - Martin St. Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - W. Wallace Cleland
- Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53726
| |
Collapse
|
23
|
Lietzan AD, Menefee AL, Zeczycki TN, Kumar S, Attwood PV, Wallace JC, Cleland WW, St Maurice M. Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli. Biochemistry 2011; 50:9708-23. [PMID: 21958016 DOI: 10.1021/bi201277j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, United States
| | | | | | | | | | | | | | | |
Collapse
|