1
|
Lunde NN, Osoble NMM, Fernandez AD, Antobreh AS, Jafari A, Singh S, Nyman TA, Rustan AC, Solberg R, Thoresen GH. Interplay between Cultured Human Osteoblastic and Skeletal Muscle Cells: Effects of Conditioned Media on Glucose and Fatty Acid Metabolism. Biomedicines 2023; 11:2908. [PMID: 38001909 PMCID: PMC10669731 DOI: 10.3390/biomedicines11112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter (GLUT) 1, while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter CD36 were decreased. This was supported by proteomic analysis, where expression of proteins involved in glucose uptake, glycolytic pathways, and the TCA cycle were enhanced, and expression of several proteins involved in fatty acid metabolism were reduced. Similar effects on energy metabolism were observed in human bone marrow stromal cells differentiated to osteoblastic cells incubated with conditioned medium from myotubes (SKM-CM), with increased glucose uptake and reduced oleic acid uptake. Proteomic analyses of the two conditioned media revealed many common proteins. Thus, our data may indicate a shift in fuel preference from fatty acid to glucose metabolism in both cell types, induced by conditioned media from the opposite cell type, possibly indicating a more general pattern in communication between these tissues.
Collapse
Affiliation(s)
- Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Nimo Mukhtar Mohamud Osoble
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Alfreda S. Antobreh
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Sachin Singh
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0372 Oslo, Norway; (S.S.); (T.A.N.)
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0372 Oslo, Norway; (S.S.); (T.A.N.)
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
2
|
Peng GX, Mao XL, Cao Y, Yao SY, Li QR, Chen X, Wang ED, Zhou XL. RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation. Nucleic Acids Res 2022; 50:12951-12968. [PMID: 36503967 PMCID: PMC9825176 DOI: 10.1093/nar/gkac1141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.
Collapse
Affiliation(s)
| | | | - Yating Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - En-Duo Wang
- Correspondence may also be addressed to En-Duo Wang. Tel: +86 21 5492 1241; Fax: +86 21 5492 1011;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247; Fax: +86 21 5492 1011;
| |
Collapse
|
3
|
Lysyl-tRNA synthetase, a target for urgently needed M. tuberculosis drugs. Nat Commun 2022; 13:5992. [PMID: 36220877 PMCID: PMC9552147 DOI: 10.1038/s41467-022-33736-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.
Collapse
|
4
|
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci 2021; 22:ijms22094524. [PMID: 33926074 PMCID: PMC8123711 DOI: 10.3390/ijms22094524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Dallabona
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| | - Paola Goffrini
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| |
Collapse
|
5
|
Structural analyses of a human lysyl-tRNA synthetase mutant associated with autosomal recessive nonsyndromic hearing impairment. Biochem Biophys Res Commun 2021; 554:83-88. [PMID: 33784510 DOI: 10.1016/j.bbrc.2021.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) catalyze the ligation of amino acids to their cognate tRNAs and therefore play an essential role in protein biosynthesis in all living cells. The KARS gene in human encodes both cytosolic and mitochondrial lysyl-tRNA synthetase (LysRS). A recent study identified a missense mutation in KARS gene (c.517T > C) that caused autosomal recessive nonsyndromic hearing loss. This mutation led to a tyrosine to histidine (YH) substitution in both cytosolic and mitochondrial LysRS proteins, and decreased their aminoacylation activity to different levels. Here, we report the crystal structure of LysRS YH mutant at a resolution of 2.5 Å. We found that the mutation did not interfere with the active center, nor did it cause any significant conformational changes in the protein. The loops involved in tetramer interface and tRNA anticodon binding site showed relatively bigger variations between the mutant and wild type proteins. Considering the differences between the cytosolic and mitochondrial tRNAlyss, we suggest that the mutation triggered subtle changes in the tRNA anticodon binding region, and the interferences were further amplified by the different D and T loops in mitochondrial tRNAlys, and led to a complete loss of the aminoacylation of mitochondrial tRNAlys.
Collapse
|
6
|
Phongsavanh X, Al-Qatabi N, Shaban MS, Khoder-Agha F, El Asri M, Comisso M, Guérois R, Mirande M. How HIV-1 Integrase Associates with Human Mitochondrial Lysyl-tRNA Synthetase. Viruses 2020; 12:v12101202. [PMID: 33096929 PMCID: PMC7589778 DOI: 10.3390/v12101202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) requires the packaging of tRNALys,3 from the host cell into the new viral particles. The GagPol viral polyprotein precursor associates with mitochondrial lysyl-tRNA synthetase (mLysRS) in a complex with tRNALys, an essential step to initiate reverse transcription in the virions. The C-terminal integrase moiety of GagPol is essential for its association with mLysRS. We show that integrases from HIV-1 and HIV-2 bind mLysRS with the same efficiency. In this work, we have undertaken to probe the three-dimensional (3D) architecture of the complex of integrase with mLysRS. We first established that the C-terminal domain (CTD) of integrase is the major interacting domain with mLysRS. Using the pBpa-photo crosslinking approach, inter-protein cross-links were observed involving amino acid residues located at the surface of the catalytic domain of mLysRS and of the CTD of integrase. In parallel, using molecular docking simulation, a single structural model of complex was found to outscore other alternative conformations. Consistent with crosslinking experiments, this structural model was further probed experimentally. Five compensatory mutations in the two partners were successfully designed which supports the validity of the model. The complex highlights that binding of integrase could stabilize the tRNALys:mLysRS interaction.
Collapse
|
7
|
Wang Y, Zhou JB, Zeng QY, Wu S, Xue MQ, Fang P, Wang ED, Zhou XL. Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA Lys. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1227-1239. [PMID: 32189241 DOI: 10.1007/s11427-019-1619-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 01/20/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitously expressed, essential enzymes, synthesizing aminoacyl-tRNAs for protein synthesis. Functional defects of aaRSs frequently cause various human disorders. Human KARS encodes both cytosolic and mitochondrial lysyl-tRNA synthetases (LysRSs). Previously, two mutations (c.1129G>A and c.517T>C) were identified that led to hearing impairment; however, the underlying biochemical mechanism is unclear. In the present study, we found that the two mutations have no impact on the incorporation of LysRS into the multiple-synthetase complex in the cytosol, but affect the cytosolic LysRS level, its tertiary structure, and cytosolic tRNA aminoacylation in vitro. As for mitochondrial translation, the two mutations have little effect on the steady-state level, mitochondrial targeting, and tRNA binding affinity of mitochondrial LysRS. However, they exhibit striking differences in charging mitochondrial tRNALys, with the c.517T>C mutant being completely deficient in vitro and in vivo. We constructed two yeast genetic models, which are powerful tools to test the in vivo aminoacylation activity of KARS mutations at both the cytosolic and mitochondrial levels. Overall, our data provided biochemical insights into the potentially molecular pathological mechanism of KARS c.1129G>A and c.517T>C mutations and provided yeast genetic bases to investigate other KARS mutations in the future.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mei-Qin Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
8
|
Balboa S, Hu Y, Dean FB, Bullard JM. Lysyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization and Identification of Inhibitory Compounds. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:57-69. [PMID: 31498734 PMCID: PMC6925310 DOI: 10.1177/2472555219873095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections and has highly developed systems for acquiring resistance against numerous antibiotics. The gene (lysS) encoding P. aeruginosa lysyl-tRNA synthetase (LysRS) was cloned and overexpressed, and the resulting protein was purified to 98% homogeneity. LysRS was kinetically evaluated, and the Km values for the interaction with lysine, adenosine triphosphate (ATP), and tRNALys were determined to be 45.5, 627, and 3.3 µM, respectively. The kcatobs values were calculated to be 13, 22.8, and 0.35 s-1, resulting in kcatobs/KM values of 0.29, 0.036, and 0.11 s-1µM-1, respectively. Using scintillation proximity assay technology, natural product and synthetic compound libraries were screened to identify inhibitors of function of the enzyme. Three compounds (BM01D09, BT06F11, and BT08F04) were identified with inhibitory activity against LysRS. The IC50 values were 17, 30, and 27 µM for each compound, respectively. The minimum inhibitory concentrations were determined against a panel of clinically important pathogens. All three compounds were observed to inhibit the growth of gram-positive organisms with a bacteriostatic mode of action. However, two compounds (BT06F11 and BT08F04) were bactericidal against cultures of gram-negative bacteria. When tested against human cell cultures, BT06F11 was not toxic at any concentration tested, and BM01D09 was toxic only at elevated levels. However, BT08F04 displayed a CC50 of 61 µg/mL. In studies of the mechanism of inhibition, BM01D09 inhibited LysRS activity by competing with ATP for binding, and BT08F04 was competitive with ATP and uncompetitive with the amino acid. BT06F11 inhibited LysRS activity by a mechanism other than substrate competition.
Collapse
Affiliation(s)
- Samantha Balboa
- The University of Texas–RGV, Edinburg, TX, USA
- Department of Chemistry, The University of North Carolina, Chapel Hill, NC, USA
| | - Yanmei Hu
- The University of Texas–RGV, Edinburg, TX, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
9
|
Scheidecker S, Bär S, Stoetzel C, Geoffroy V, Lannes B, Rinaldi B, Fischer F, Becker HD, Pelletier V, Pagan C, Acquaviva-Bourdain C, Kremer S, Mirande M, Tranchant C, Muller J, Friant S, Dollfus H. Mutations in KARS cause a severe neurological and neurosensory disease with optic neuropathy. Hum Mutat 2019; 40:1826-1840. [PMID: 31116475 DOI: 10.1002/humu.23799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022]
Abstract
Mutations in genes encoding aminoacyl-tRNA synthetases have been reported in several neurological disorders. KARS is a dual localized lysyl-tRNA synthetase and its cytosolic isoform belongs to the multiple aminoacyl-tRNA synthetase complex (MSC). Biallelic mutations in the KARS gene were described in a wide phenotypic spectrum ranging from nonsyndromic deafness to complex impairments. Here, we report on a patient with severe neurological and neurosensory disease investigated by whole-exome sequencing and found to carry biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one being novel, in the KARS gene. The patient presented with an atypical clinical presentation with an optic neuropathy not previously reported. At the cellular level, we show that cytoplasmic KARS was expressed at a lower level in patient cells and displayed decreased interaction with MSC. In vitro, these two KARS variants have a decreased aminoacylation activity compared with wild-type KARS, the p.Pro228Leu being the most affected. Our data suggest that dysfunction of cytoplasmic KARS resulted in a decreased level of translation of the nuclear-encoded lysine-rich proteins belonging to the respiratory chain complex, thus impairing mitochondria functions.
Collapse
Affiliation(s)
- Sophie Scheidecker
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Séverine Bär
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Béatrice Lannes
- Service d'Anatomo-pathologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Bruno Rinaldi
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Frédéric Fischer
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Hubert D Becker
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valérie Pelletier
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cécile Pagan
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Kremer
- Service de Neuroradiologie/Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Tranchant
- Service de Neurologie Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sylvie Friant
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France.,Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Ruzzenente B, Assouline Z, Barcia G, Rio M, Boddaert N, Munnich A, Rötig A, Metodiev MD. Inhibition of mitochondrial translation in fibroblasts from a patient expressing the KARS p.(Pro228Leu) variant and presenting with sensorineural deafness, developmental delay, and lactic acidosis. Hum Mutat 2018; 39:2047-2059. [PMID: 30252186 DOI: 10.1002/humu.23657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/03/2018] [Accepted: 09/22/2018] [Indexed: 01/12/2023]
Abstract
Aminoacyl-tRNA synthetases are ubiquitous enzymes, which universally charge tRNAs with their cognate amino acids for use in cytosolic or organellar translation. In humans, mutations in mitochondrial tRNA synthetases have been linked to different tissue-specific pathologies. Mutations in the KARS gene, which encodes both the cytosolic and mitochondrial isoform of lysyl-tRNA synthetase, cause predominantly neurological diseases that often involve deafness, but have also been linked to cardiomyopathy, developmental delay, and lactic acidosis. Using whole exome sequencing, we identified two compound heterozygous mutations, NM_001130089.1:c.683C>T p.(Pro228Leu) and NM_001130089.1:c.1438del p.(Leu480TrpfsX3), in a patient presenting with sensorineural deafness, developmental delay, hypotonia, and lactic acidosis. Nonsense-mediated mRNA decay eliminated the truncated mRNA transcript, rendering the patient hemizygous for the missense mutation. The c.683C>T mutation was previously described, but its pathogenicity remained unexamined. Molecular characterization of patient fibroblasts revealed a multiple oxidative phosphorylation deficiency due to impaired mitochondrial translation, but no evidence of inhibition of cytosolic translation. Reintroduction of wild-type mitochondrial KARS, but not the cytosolic isoform, rescued this phenotype confirming the disease-causing nature of p.(Pro228Leu) exchange and demonstrating the mitochondrial etiology of the disease. We propose that mitochondrial translation deficiency is the probable disease culprit in this and possibly other patients with mutations in KARS.
Collapse
Affiliation(s)
- Benedetta Ruzzenente
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Zahra Assouline
- Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Giulia Barcia
- Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Marlène Rio
- Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Nathalie Boddaert
- Department of pediatric radiology, INSERM 1000 and INSERM UMR1136, Hôpital Necker-Enfants-Malades AP-HP, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Arnold Munnich
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France.,Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Agnès Rötig
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Metodi D Metodiev
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| |
Collapse
|
11
|
Khoder-Agha F, Dias JM, Comisso M, Mirande M. Characterization of association of human mitochondrial lysyl-tRNA synthetase with HIV-1 Pol and tRNA 3Lys. BMC BIOCHEMISTRY 2018; 19:2. [PMID: 29562886 PMCID: PMC5863373 DOI: 10.1186/s12858-018-0092-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/14/2018] [Indexed: 11/21/2022]
Abstract
Background An important step in human immunodeficiency virus type 1 (HIV-1) replication is the packaging of tRNA3Lys from the host cell, which plays the role of primer RNA in the process of initiation of reverse transcription. The viral GagPol polyprotein precursor, and the human mitochondrial lysyl-tRNA synthetase (mLysRS) from the host cell, have been proposed to be involved in the packaging process. More specifically, the catalytic domain of mLysRS is supposed to interact with the transframe (TF or p6*) and integrase (IN) domains of the Pol region of the GagPol polyprotein. Results In this work, we report a quantitative characterization of the protein:protein interactions between mLysRS and its viral partners, the Pol polyprotein, and the isolated integrase and transframe domains of Pol. A dissociation constant of 1.3 ± 0.2 nM was determined for the Pol:mLysRS interaction, which exemplifies the robustness of this association. The protease and reverse transcriptase domains of GagPol are dispensable in this association, but the TF and IN domains have to be connected by a linker polypeptide to recapitulate a high affinity partner for mLysRS. The binding of the viral proteins to mLysRS does not dramatically enhance the binding affinity of mLysRS for tRNA3Lys. Conclusions These data support the conclusion that the complex formed between GagPol, mLysRS and tRNA3Lys, which involves direct interactions between the IN and TF domains of Pol with mLysRS, is more robust than suggested by the previous models supposed to be involved in the packaging of tRNA3Lys into HIV-1 particles.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - José M Dias
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Kobbi L, Dias J, Comisso M, Mirande M. Association of human mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol does not require other viral proteins. BIOCHIMIE OPEN 2016; 2:52-61. [PMID: 29632838 PMCID: PMC5889485 DOI: 10.1016/j.biopen.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/25/2016] [Indexed: 01/31/2023]
Abstract
In human, the cytoplasmic (cLysRS) and mitochondrial (mLysRS) species of lysyl-tRNA synthetase are encoded by a single gene. Following HIV-1 infection, mLysRS is selectively taken up into viral particles along with the three tRNALys isoacceptors. The GagPol polyprotein precursor is involved in this process. With the aim to reconstitute in vitro the HIV-1 tRNA3Lys packaging complex, we first searched for the putative involvement of another viral protein in the selective viral hijacking of mLysRS only. After screening all the viral proteins, we observed that Vpr and Rev have the potential to interact with mLysRS, but that this association does not take place at the level of the assembly of mLysRS into the packaging complex. We also show that tRNA3Lys can form a ternary complex with the two purified proteins mLysRS and the Pol domain of GagPol, which mimicks its packaging complex. HIV-1 Rev and Vpr proteins have the capacity to bind human mitochondrial LysRS. In the complex between HIV-1 Pol and mitochondrial LysRS, Rev and Vpr are excluded. Association of Pol with mLysRS recapitulates the tRNA3Lys packaging complex of HIV-1.
Collapse
Affiliation(s)
- Lydia Kobbi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - José Dias
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Fang P, Guo M. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Life (Basel) 2015; 5:1703-25. [PMID: 26670257 PMCID: PMC4695845 DOI: 10.3390/life5041703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
Collapse
Affiliation(s)
- Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
14
|
A dual-targeted aminoacyl-tRNA synthetase in Plasmodium falciparum charges cytosolic and apicoplast tRNACys. Biochem J 2014; 458:513-23. [PMID: 24428730 DOI: 10.1042/bj20131451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium parasites possess two endosymbiotic organelles: a mitochondrion and a relict plastid called the apicoplast. To accommodate the translational requirements of these organelles in addition to its cytosolic translation apparatus, the parasite must maintain a supply of charged tRNA molecules in each of these compartments. In the present study we investigate how the parasite manages these translational requirements for charged tRNACys with only a single gene for CysRS (cysteinyl-tRNA synthetase). We demonstrate that the single PfCysRS (Plasmodium falciparum CysRS) transcript is alternatively spliced, and, using a combination of endogenous and heterologous tagging experiments in both P. falciparum and Toxoplasma gondii, we show that CysRS isoforms traffic to the cytosol and apicoplast. PfCysRS can recognize and charge the eukaryotic tRNACys encoded by the Plasmodium nucleus as well as the bacterial-type tRNA encoded by the apicoplast genome, albeit with a preference for the eukaryotic type cytosolic tRNA. The results of the present study indicate that apicomplexan parasites have lost their original plastidic cysteinyl-tRNA synthetase, and have replaced it with a dual-targeted eukaryotic type CysRS that recognizes plastid and nuclear tRNACys. Inhibitors of the Plasmodium dual-targeted CysRS would potentially offer a therapy capable of the desirable immediate effects on parasite growth as well as the irreversibility of inhibitors that disrupt apicoplast inheritance.
Collapse
|
15
|
Idiosyncrasies in decoding mitochondrial genomes. Biochimie 2014; 100:95-106. [PMID: 24440477 DOI: 10.1016/j.biochi.2014.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022]
Abstract
Mitochondria originate from the α-proteobacterial domain of life. Since this unique event occurred, mitochondrial genomes of protozoans, fungi, plants and metazoans have highly derived and diverged away from the common ancestral DNA. These resulting genomes highly differ from one another, but all present-day mitochondrial DNAs have a very reduced coding capacity. Strikingly however, ATP production coupled to electron transport and translation of mitochondrial proteins are the two common functions retained in all mitochondrial DNAs. Paradoxically, most components essential for these two functions are now expressed from nuclear genes. Understanding how mitochondrial translation evolved in various eukaryotic models is essential to acquire new knowledge of mitochondrial genome expression. In this review, we provide a thorough analysis of the idiosyncrasies of mitochondrial translation as they occur between organisms. We address this by looking at mitochondrial codon usage and tRNA content. Then, we look at the aminoacyl-tRNA-forming enzymes in terms of peculiarities, dual origin, and alternate function(s). Finally we give examples of the atypical structural properties of mitochondrial tRNAs found in some organisms and the resulting adaptive tRNA-protein partnership.
Collapse
|
16
|
A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol Cell Biol 2013; 33:4872-88. [PMID: 24126051 DOI: 10.1128/mcb.00711-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development.
Collapse
|
17
|
Gowher A, Smirnov A, Tarassov I, Entelis N. Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase. PLoS One 2013; 8:e66228. [PMID: 23799079 PMCID: PMC3683045 DOI: 10.1371/journal.pone.0066228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNA(Lys)(CUU) into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNA(Lys)(CUU) and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms.
Collapse
Affiliation(s)
- Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Alexandre Smirnov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|