1
|
Read B, Cadzow AF, Alphey MS, Mitchell JBO, da Silva RG. Crystal Structure, Steady-State, and Pre-Steady-State Kinetics of Acinetobacter baumannii ATP Phosphoribosyltransferase. Biochemistry 2024; 63:230-240. [PMID: 38150593 PMCID: PMC10795190 DOI: 10.1021/acs.biochem.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
The first step of histidine biosynthesis in Acinetobacter baumannii, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to produce N1-(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate, is catalyzed by the hetero-octameric enzyme ATP phosphoribosyltransferase, a promising target for antibiotic design. The catalytic subunit, HisGS, is allosterically activated upon binding of the regulatory subunit, HisZ, to form the hetero-octameric holoenzyme (ATPPRT), leading to a large increase in kcat. Here, we present the crystal structure of ATPPRT, along with kinetic investigations of the rate-limiting steps governing catalysis in the nonactivated (HisGS) and activated (ATPPRT) forms of the enzyme. A pH-rate profile showed that maximum catalysis is achieved above pH 8.0. Surprisingly, at 25 °C, kcat is higher when ADP replaces ATP as substrate for ATPPRT but not for HisGS. The HisGS-catalyzed reaction is limited by the chemical step, as suggested by the enhancement of kcat when Mg2+ was replaced by Mn2+, and by the lack of a pre-steady-state burst of product formation. Conversely, the ATPPRT-catalyzed reaction rate is determined by PRATP diffusion from the active site, as gleaned from a substantial solvent viscosity effect. A burst of product formation could be inferred from pre-steady-state kinetics, but the first turnover was too fast to be directly observed. Lowering the temperature to 5 °C allowed observation of the PRATP formation burst by ATPPRT. At this temperature, the single-turnover rate constant was significantly higher than kcat, providing additional evidence for a step after chemistry limiting catalysis by ATPPRT. This demonstrates allosteric activation by HisZ accelerates the chemical step.
Collapse
Affiliation(s)
- Benjamin
J. Read
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Andrew F. Cadzow
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Magnus S. Alphey
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - John B. O. Mitchell
- EaStCHEM
School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Rafael G. da Silva
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
2
|
Bai S, Yang L, Wang H, Yang C, Hou X, Gao J, Zhang Z. Cellobiose phosphorylase from Caldicellulosiruptor bescii catalyzes reversible phosphorolysis via different kinetic mechanisms. Sci Rep 2022; 12:3978. [PMID: 35273293 PMCID: PMC8913831 DOI: 10.1038/s41598-022-08036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
In the process of yielding biofuels from cellulose degradation, traditional enzymatic hydrolysis, such as β-glucosidase catalyzing cellobiose, can barely resolve the contradiction between cellulose degradation and bioenergy conservation. However, it has been shown that cellobiose phosphorylase provides energetic advantages for cellobiose degradation through a phosphorolytic pathway, which has attracted wide attention. Here, the cellobiose phosphorylase gene from Caldicellulosiruptor bescii (CbCBP) was cloned, expressed, and purified. Analysis of the enzymatic properties and kinetic mechanisms indicated that CbCBP catalyzed reversible phosphorolysis and had good thermal stability and broad substrate selectivity. In addition, the phosphorolytic reaction of cellobiose by CbCBP proceeded via an ordered Bi Bi mechanism, while the synthetic reaction proceeded via a ping pong Bi Bi mechanism. The present study lays the foundation for optimizing the degradation of cellulose and the synthesis of functional oligosaccharides.
Collapse
Affiliation(s)
- Shaowei Bai
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Liangzhen Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Honglei Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Chao Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xuechen Hou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingjie Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Kaspar F, Neubauer P, Kurreck A. The Peculiar Case of the Hyper-thermostable Pyrimidine Nucleoside Phosphorylase from Thermus thermophilus*. Chembiochem 2021; 22:1385-1390. [PMID: 33258231 PMCID: PMC8247850 DOI: 10.1002/cbic.202000679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Indexed: 12/16/2022]
Abstract
The poor solubility of many nucleosides and nucleobases in aqueous solution demands harsh reaction conditions (base, heat, cosolvent) in nucleoside phosphorylase-catalyzed processes to facilitate substrate loading beyond the low millimolar range. This, in turn, requires enzymes that can withstand these conditions. Herein, we report that the pyrimidine nucleoside phosphorylase from Thermus thermophilus is active over an exceptionally broad pH (4-10), temperature (up to 100 °C) and cosolvent space (up to 80 % (v/v) nonaqueous medium), and displays tremendous stability under harsh reaction conditions with predicted total turnover numbers of more than 106 for various pyrimidine nucleosides. However, its use as a biocatalyst for preparative applications is critically limited due to its inhibition by nucleobases at low concentrations, which is unprecedented among nonspecific pyrimidine nucleoside phosphorylases.
Collapse
Affiliation(s)
- Felix Kaspar
- Department of Biotechnology, Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| | - Peter Neubauer
- Department of Biotechnology, Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Anke Kurreck
- Department of Biotechnology, Chair of Bioprocess EngineeringTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| |
Collapse
|
4
|
Chen J, Yu Y, Gao J, Yang S. UDP-glucose Dehydrogenase: The First-step Oxidation Is an NAD +-dependent Bimolecular Nucleophilic Substitution Reaction (S N2). Int J Biol Sci 2019; 15:341-350. [PMID: 30745825 PMCID: PMC6367545 DOI: 10.7150/ijbs.28904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/11/2018] [Indexed: 11/05/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) catalyzes the conversion of UDP-glucose to UDP-glucuronic acid by NAD+-dependent two-fold oxidation. Despite extensive investigation into the catalytic mechanism of UGDH, the previously proposed mechanisms regarding the first-step oxidation are somewhat controversial and inconsistent with some biochemical evidence, which instead supports a mechanism involving an NAD+-dependent bimolecular nucleophilic substitution (SN2) reaction. To verify this speculation, the essential Cys residue of Streptococcus zooepidemicus UGDH (SzUGDH) was changed to an Ala residue, and the resulting Cys260Ala mutant and SzUGDH were then co-expressed in vivo via a single-crossover homologous recombination method. Contrary to the previously proposed mechanisms, which predict the formation of the capsular polysaccharide hyaluronan, the resulting strain instead produced an amide derivative of hyaluronan, as validated via proteinase K digestion, ninhydrin reaction, FT-IR and NMR. This result is compatible with the NAD+-dependent SN2 mechanism.
Collapse
Affiliation(s)
- Jun Chen
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, China, 210094
| | - Yang Yu
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, China, 210094
| | - Jiaojiao Gao
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, China, 210094
| | - Shulin Yang
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, China, 210094
| |
Collapse
|
5
|
Torini JR, Romanello L, Batista FAH, Serrão VHB, Faheem M, Zeraik AE, Bird L, Nettleship J, Reddivari Y, Owens R, DeMarco R, Borges JC, Brandão-Neto J, Pereira HD. The molecular structure of Schistosoma mansoni PNP isoform 2 provides insights into the nucleoside selectivity of PNPs. PLoS One 2018; 13:e0203532. [PMID: 30192840 PMCID: PMC6128611 DOI: 10.1371/journal.pone.0203532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Purine nucleoside phosphorylases (PNPs) play an important role in the blood fluke parasite Schistosoma mansoni as a key enzyme of the purine salvage pathway. Here we present the structural and kinetic characterization of a new PNP isoform from S. mansoni, SmPNP2. Thermofluorescence screening of different ligands suggested cytidine and cytosine are potential ligands. The binding of cytosine and cytidine were confirmed by isothermal titration calorimetry, with a KD of 27 μM for cytosine, and a KM of 76.3 μM for cytidine. SmPNP2 also displays catalytic activity against inosine and adenosine, making it the first described PNP with robust catalytic activity towards both pyrimidines and purines. Crystal structures of SmPNP2 with different ligands were obtained and comparison of these structures with the previously described S. mansoni PNP (SmPNP1) provided clues for the unique capacity of SmPNP2 to bind pyrimidines. When compared with the structure of SmPNP1, substitutions in the vicinity of SmPNP2 active site alter the architecture of the nucleoside base binding site thus permitting an alternative binding mode for nucleosides, with a 180° rotation from the canonical binding mode. The remarkable plasticity of this binding site enhances our understanding of the correlation between structure and nucleotide selectivity, thus suggesting new ways to analyse PNP activity.
Collapse
Affiliation(s)
- Juliana Roberta Torini
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Larissa Romanello
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Fernanda Aparecida Heleno Batista
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, São Paulo, Brazil
- Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Biociências, Campinas, São Paulo, Brazil
| | - Vitor Hugo Balasco Serrão
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Muhammad Faheem
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District, Brazil
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Federal District, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Louise Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Joanne Nettleship
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Yamini Reddivari
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Ray Owens
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Ricardo DeMarco
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Júlio César Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, São Paulo, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Humberto D’Muniz Pereira
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
6
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
7
|
Roy S, Karmakar T, S. Prahlada Rao V, K. Nagappa L, Balasubramanian S, Balaram H. Slow ligand-induced conformational switch increases the catalytic rate in Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase. MOLECULAR BIOSYSTEMS 2015; 11:1410-24. [DOI: 10.1039/c5mb00136f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupled events of ligand-induced isomerization and oligomerization in catalysis by PfHGXPRT.
Collapse
Affiliation(s)
- Sourav Roy
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - Vasudeva S. Prahlada Rao
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - Lakshmeesha K. Nagappa
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560064
- India
| |
Collapse
|
8
|
Wijeratne EMK, Xu YM, Scherz-Shouval R, Marron MT, Rocha DD, Liu MX, Costa-Lotufo LV, Santagata S, Lindquist S, Whitesell L, Gunatilaka AAL. Structure–Activity Relationships for Withanolides as Inducers of the Cellular Heat-Shock Response. J Med Chem 2014; 57:2851-63. [DOI: 10.1021/jm401279n] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- E. M. Kithsiri Wijeratne
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Ruth Scherz-Shouval
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Marilyn T. Marron
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Danilo D. Rocha
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
- Laboratório
de Oncologia Experimental, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, P.O. Box 3157, Fortaleza, Ceará 60430-270, Brazil
| | - Manping X. Liu
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Leticia V. Costa-Lotufo
- Laboratório
de Oncologia Experimental, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, P.O. Box 3157, Fortaleza, Ceará 60430-270, Brazil
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, United States
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - A. A. Leslie Gunatilaka
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
9
|
Spenkuch F, Motorin Y, Helm M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 2014; 11:1540-54. [PMID: 25616362 PMCID: PMC4615568 DOI: 10.4161/15476286.2014.992278] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Pseudouridine (Ψ) is the most abundant of >150 nucleoside modifications in RNA. Although Ψ was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of Ψ synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Humans
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA/genetics
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Mitochondrial
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Felix Spenkuch
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| | - Yuri Motorin
- Laboratoire IMoPA; Ingénierie Moléculaire et Physiopathologie Articulaire; BioPôle de l'Université de Lorraine; Campus Biologie-Santé; Faculté de Médecine; Vandoeuvre-les-Nancy Cedex, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| |
Collapse
|
10
|
Lenz SAP, Kellie JL, Wetmore SD. Glycosidic bond cleavage in deoxynucleotides: effects of solvent and the DNA phosphate backbone in the computational model. J Phys Chem B 2012; 116:14275-84. [PMID: 23167947 DOI: 10.1021/jp3096677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Density functional theory (B3LYP) was employed to examine the hydrolysis of the canonical 2'-deoxynucleotides in varied environments (gas phase or water) using different computational models for the sugar residue (methyl or phosphate group at C5') and nucleophile (water activated through full or partial proton abstraction). Regardless of the degree of nucleophile activation, our results show that key geometrical parameters along the reaction pathway are notably altered upon direct inclusion of solvent effects in the optimization routine, which leads to significant changes in the reaction energetics and better agreement with experiment. Therefore, despite the wide use of gas-phase calculations in the literature, small model computational work, as well as large-scale enzyme models, that strive to understand nucleotide deglycosylation must adequately describe the environment. Alternatively, although inclusion of the phosphate group at C5' also affects the geometries of important stationary points, the effects cancel to yield unchanged deglycosylation barriers, and therefore smaller computational models can be used to estimate the energy associated with nucleotide deglycosylation, with the 5' phosphate group included if full (geometric) details of the reaction are desired. Hydrogen-bonding interactions with the nucleobase can significantly reduce the barrier to deglycosylation, which supports suggestions that discrete hydrogen-bonding interactions with active-site amino acid residues can play a significant role in enzyme-catalyzed nucleobase excision. Taken together with previous studies, the present work provides vital clues about the components that must be included in future studies of the deglycosylation of isolated noncanonical nucleotides, as well as the corresponding enzyme-catalyzed reactions.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | | | | |
Collapse
|
11
|
Silva RG, Kipp DR, Schramm VL. Constrained bonding environment in the Michaelis complex of Trypanosoma cruzi uridine phosphorylase. Biochemistry 2012; 51:6715-7. [PMID: 22870934 DOI: 10.1021/bi300914q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition state for the Trypanosoma cruzi uridine phosphorylase (TcUP) reaction has an expanded S(N)2 character. We used binding isotope effects (BIE's) to probe uridine distortion in the complex with TcUP and sulfate to mimic the Michaelis complex. Inverse 1'-(3)H and 5'-(3)H BIE's indicate a constrained bonding environment of these groups in the complex. Quantum chemical modeling identified a uridine conformer whose calculated BIE's match the experimental values. This conformer differs in sugar pucker and uracil orientation from the unbound conformer and the transition-state structure. These results support ground-state stabilization in the Michaelis complex.
Collapse
Affiliation(s)
- Rafael G Silva
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|