1
|
Irgen-Gioro S, Gururangan K, Spencer AP, Harel E. Non-Uniform Excited State Electronic-Vibrational Coupling of Pigment-Protein Complexes. J Phys Chem Lett 2020; 11:10388-10395. [PMID: 33238100 DOI: 10.1021/acs.jpclett.0c02454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photosynthetic organisms exploit interacting quantum degrees of freedom, namely intrapigment electron-vibrational (vibronic) and interpigment dipolar couplings (J-coupling), to rapidly and efficiently convert light into chemical energy. These interactions result in wave function configurations that delocalize excitation between pigments and pigment vibrations. Our study uses multidimensional spectroscopy to compare two model photosynthetic proteins, the Fenna-Matthews Olson (FMO) complex and light harvesting 2 (LH2), and confirm that long-lived excited state coherences originate from the vibrational modes of the pigment. Within this framework, the J-coupling of vibronic pigments should have a cascading effect in modifying the structured spectral density of excitonic states. We show that FMO effectively couples all of its excitations to a uniform set of vibrations while in LH2, its two chromophore rings each couple to a unique vibrational environment. We simulate energy transfer in a simple model system with non-uniform vibrational coupling to demonstrate how modification of the vibronic coupling strength can modulate energy transfer. Because increasing vibronic coupling increases internal relaxation, strongly coupled vibronic states can act as an energy funnel, which can potentially benefit energy transport.
Collapse
Affiliation(s)
- Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karthik Gururangan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Austin P Spencer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Elad Harel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Magdaong NCM, Niedzwiedzki DM, Saer RG, Goodson C, Blankenship RE. Excitation energy transfer kinetics and efficiency in phototrophic green sulfur bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1180-1190. [DOI: 10.1016/j.bbabio.2018.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
|
3
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
4
|
Saer RG, Stadnytskyi V, Magdaong NC, Goodson C, Savikhin S, Blankenship RE. Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:288-296. [PMID: 28159567 DOI: 10.1016/j.bbabio.2017.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/17/2022]
Abstract
In this paper we report the steady-state optical properties of a series of site-directed mutants in the Fenna-Matthews-Olson (FMO) complex of Chlorobaculum tepidum, a photosynthetic green sulfur bacterium. The FMO antenna complex has historically been used as a model system for energy transfer due to the water-soluble nature of the protein, its stability at room temperature, as well as the availability of high-resolution structural data. Eight FMO mutants were constructed with changes in the environment of each of the bacteriochlorophyll a pigments found within each monomer of the homotrimeric FMO complex. Our results reveal multiple changes in low temperature absorption, as well as room temperature CD in each mutant compared to the wild-type FMO complex. These datasets were subsequently used to model the site energies of each pigment in the FMO complex by employing three different Hamiltonians from the literature. This enabled a basic approximation of the site energy shifts imparted on each pigment by the changed amino acid residue. These simulations suggest that, while the three Hamiltonians used in this work provide good fits to the wild-type FMO absorption spectrum, further efforts are required to obtain good fits to the mutant minus wild-type absorption difference spectra. This demonstrates that the use of FMO mutants can be a valuable tool to refine and iterate the current models of energy transfer in this system.
Collapse
Affiliation(s)
- Rafael G Saer
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, United States; Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Valentyn Stadnytskyi
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States
| | - Nikki C Magdaong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, United States; Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, United States; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Carrie Goodson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, United States; Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, United States; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
5
|
Conformational modulation of the farnesoid X receptor by prenylflavonoids: Insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1667-1677. [PMID: 27596062 DOI: 10.1016/j.bbapap.2016.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
We report on the molecular interactions of the farnesoid X receptor (FXR) with prenylflavonoids, an emerging class of FXR modulators. FXR is an attractive therapeutic target for mitigating metabolic syndromes (MetS) because FXR activates the inhibitory nuclear receptor, small heterodimer partner (SHP), thereby inhibiting both gluconeogenesis and de novo lipogenesis. We and others have shown that xanthohumol (XN), the principal prenylflavonoid of the hop plant (Humulus lupulus L.), is a FXR agonist based on its ability to affect lipid and glucose metabolism in vivo and to induces FXR target genes in biliary carcinoma cells and HEK293 cells. However, studies are currently lacking to rationalize the molecular mechanisms of FXR modulation by prenylflavonoids. We addressed this deficiency and report the first systematic study of FXR prenylflavonoid interactions. We combined hydrogen deuterium exchange mass spectrometry (HDX-MS) with computational studies for dissecting molecular recognition and conformational impact of prenylflavonoid interactions on the ligand binding domain (LBD) of human FXR. Four prenylflavonoids were tested: xanthohumol, a prenylated chalcone, two prenylated flavonones, namely isoxanthohumol (IX) and 8-prenylnaringenin (8PN), and a semisynthetic prenylflavonoid derivative, tetrahydroxanthohumol (TX). Enhancement of the HDX protection profile data by in silico predicted models of FXR prenylflavonoid complexes resulted in mapping of the prenylflavonoid interactions within the canonical ligand binding pocket. Our findings provide a foundation for the exploration of the chemical scaffolds of prenylated chalcones and flavanones as leads for future structure activity studies of this important nuclear receptor with potential relevance for ameliorating lipid metabolic disorders associated with obesity and MetS.
Collapse
|
6
|
In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum. Nat Commun 2016; 7:12454. [PMID: 27534696 PMCID: PMC4992139 DOI: 10.1038/ncomms12454] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. Here we present the first high-resolution structure of the CsmA baseplate using intact fully functional, light-harvesting organelles from Cba. tepidum, following a hybrid approach combining five complementary methods: solid-state NMR spectroscopy, cryo-electron microscopy, isotropic and anisotropic circular dichroism and linear dichroism. The structure calculation was facilitated through development of new software, GASyCS for efficient geometry optimization of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix. The chlorosome of the photosynthetic bacterium C. tepidum harvests light and transfers the energy to the photosynthetic reaction centre. Here the authors determine the structure of the baseplate, a scaffolding super-structure, to show that the baseplate consists of rods of repeated CsmA dimers containing pigment molecules.
Collapse
|
7
|
Gallagher ES, Hudgens JW. Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry. Methods Enzymol 2016; 566:357-404. [DOI: 10.1016/bs.mie.2015.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Zhang J, Kitova EN, Li J, Eugenio L, Ng K, Klassen JS. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:83-90. [PMID: 26423923 DOI: 10.1007/s13361-015-1263-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Jun Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Luiz Eugenio
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - Kenneth Ng
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Alberta Glycomics Centre, Edmonton, Alberta, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
- Alberta Glycomics Centre, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Jia X, Mei Y, Zhang JZH, Mo Y. Hybrid QM/MM study of FMO complex with polarized protein-specific charge. Sci Rep 2015; 5:17096. [PMID: 26611739 PMCID: PMC4661465 DOI: 10.1038/srep17096] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
The Fenna-Matthews-Olson (FMO) light-harvesting complex is now one of the primary model systems for the study of excitation energy transfer (EET). However, the mechanism of the EET in this system is still controversial. In this work, molecular dynamics simulations and the electrostatic-embedding quantum-mechanics/molecular-mechanics single-point calculations have been employed to predict the energy transfer pathways utilizing the polarized protein-specific charge (PPC), which provides a more realistic description of Coulomb interaction potential in the protein than conventional mean-field charge scheme. The recently discovered eighth pigment has also been included in this study. Comparing with the conventional mean-field charges, more stable structures of FMO complex were found under PPC scheme during molecular dynamic simulation. Based on the electronic structure calculations, an exciton model was constructed to consider the couplings during excitation. The results show that pigments 3 and 4 dominate the lowest exciton levels whereas the highest exciton level are mainly constituted of pigments 1 and 6. This observation agrees well with the assumption based on the spatial distribution of the pigments. Moreover, the obtained spectral density in this study gives a reliable description of the diverse local environment embedding each pigment.
Collapse
Affiliation(s)
- Xiangyu Jia
- State Key Laboratory of Precision Spectroscopy and Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy and Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy and Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York, NY 10003
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy and Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
10
|
Liang XT. Simulating signatures of two-dimensional electronic spectra of the Fenna-Matthews-Olson complex: By using a numerical path integral. J Chem Phys 2015; 141:044116. [PMID: 25084890 DOI: 10.1063/1.4890533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time.
Collapse
Affiliation(s)
- Xian-Ting Liang
- Department of Physics and Institute of Optics, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Kihara S, Hartzler DA, Orf GS, Blankenship RE, Savikhin S. The Fate of the Triplet Excitations in the Fenna–Matthews–Olson Complex. J Phys Chem B 2015; 119:5765-72. [DOI: 10.1021/jp512222c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shigeharu Kihara
- Department
of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Daniel A. Hartzler
- Department
of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Gregory S. Orf
- Photosynthetic
Antenna Research Center, Departments of Chemistry and Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Robert E. Blankenship
- Photosynthetic
Antenna Research Center, Departments of Chemistry and Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Sergei Savikhin
- Department
of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Affiliation(s)
- Gregory
F. Pirrone
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - Roxana E. Iacob
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - John R. Engen
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| |
Collapse
|
13
|
He G, Zhang H, King JD, Blankenship RE. Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. Biochemistry 2014; 53:4924-30. [PMID: 25014729 PMCID: PMC4372062 DOI: 10.1021/bi5006464] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The reaction center (RC) complex
of the green sulfur bacterium Chlorobaculum tepidum is composed of the Fenna–Matthews–Olson
antenna protein (FMO) and the reaction center core (RCC) complex.
The RCC complex has four subunits: PscA, PscB, PscC, and PscD. We
studied the FMO/RCC complex by chemically cross-linking the purified
sample followed by biochemical and spectroscopic analysis. Blue-native
gels showed that there were two types of FMO/RCC complexes, which
are consistent with complexes with one copy of FMO per RCC and two
copies of FMO per RCC. Sodium dodecyl sulfate–polyacrylamide
gel electrophoresis analysis of the samples after cross-linking showed
that all five subunits of the RC can be linked by three different
cross-linkers: bissulfosuccinimidyl suberate, disuccinimidyl suberate,
and 3,3-dithiobis-sulfosuccinimidyl propionate. The interaction sites
of the cross-linked complex were also studied using liquid chromatography
coupled to tandem mass spectrometry. The results indicated that FMO,
PscB, PscD, and part of PscA are exposed on the cytoplasmic side of
the membrane. PscD helps stabilize FMO to the reaction center and
may facilitate transfer of the electron from the RC to ferredoxin.
The soluble domain of the heme-containing cytochrome subunit PscC
and part of the core subunit PscA are located on the periplasmic side
of the membrane. There is a close relationship between the periplasmic
portions of PscA and PscC, which is needed for the efficient transfer
of the electron between PscC and P840.
Collapse
Affiliation(s)
- Guannan He
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
14
|
Yang L, Broderick D, Jiang Y, Hsu V, Maier CS. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: insights into the antagonism of the hypolipidemic agent Z-guggulsterone. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1684-93. [PMID: 24953769 DOI: 10.1016/j.bbapap.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023]
Abstract
Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of transcription factors that plays a key role in the regulation of bile acids, lipid and glucose metabolisms. The regulative function of FXR is governed by conformational changes of the ligand binding domain (LBD) upon ligand binding. Although FXR is a highly researched potential therapeutic target, only a limited number of FXR-agonist complexes have been successfully crystallized and subsequently yielded high resolution structures. There is currently no structural information of any FXR-antagonist complexes publically available. We therefore explored the use of amide hydrogen/deuterium exchange (HDX) coupled with mass spectrometry for characterizing conformational changes in the FXR-LBD upon ligand binding. Ligand-specific deuterium incorporation profiles were obtained for three FXR ligand chemotypes: GW4064, a synthetic non-steroidal high affinity agonist; the bile acid chenodeoxycholic acid (CDCA), the endogenous low affinity agonist of FXR; and Z-guggulsterone (GG), an in vitro antagonist of the steroid chemotype. A comparison of the HDX profiles of their ligand-bound FXR-LBD complexes revealed a unique mode of interaction for GG. The conformational features of the FXR-LBD-antagonist interaction are discussed.
Collapse
Affiliation(s)
- Liping Yang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - David Broderick
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Victor Hsu
- Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
15
|
Li Z, Huang RYC, Yopp DC, Hileman TH, Santangelo TJ, Hurwitz J, Hudgens JW, Kelman Z. A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein. Nucleic Acids Res 2014; 42:5776-89. [PMID: 24728986 PMCID: PMC4027161 DOI: 10.1093/nar/gku239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that associates with and influences the activity of many proteins participating in DNA metabolic processes and cell cycle progression. Previously, an uncharacterized small protein, encoded by TK0808 in the archaeon Thermococcus kodakarensis, was shown to stably interact with PCNA in vivo. Here, we show that this protein, designated Thermococcales inhibitor of PCNA (TIP), binds to PCNA in vitro and inhibits PCNA-dependent activities likely by preventing PCNA trimerization. Using hydrogen/deuterium exchange mass spectrometry and site-directed mutagenesis, the interacting regions of PCNA and TIP were identified. Most proteins bind to PCNA via a PCNA-interacting peptide (PIP) motif that interacts with the inter domain connecting loop (IDCL) on PCNA. TIP, however, lacks any known PCNA-interacting motif, suggesting a new mechanism for PCNA binding and regulation of PCNA-dependent activities, which may support the development of a new subclass of therapeutic biomolecules for inhibiting PCNA.
Collapse
Affiliation(s)
- Zhuo Li
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Richard Y-C Huang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Daniel C Yopp
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Travis H Hileman
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jeffrey W Hudgens
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
16
|
Herascu N, Kell A, Acharya K, Jankowiak R, Blankenship RE, Zazubovich V. Modeling of Various Optical Spectra in the Presence of Slow Excitation Energy Transfer in Dimers and Trimers with Weak Interpigment Coupling: FMO as an Example. J Phys Chem B 2014; 118:2032-40. [DOI: 10.1021/jp410586f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nicoleta Herascu
- Department
of Physics, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | | | | | | | | | - Valter Zazubovich
- Department
of Physics, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| |
Collapse
|
17
|
Orf GS, Niedzwiedzki DM, Blankenship RE. Intensity Dependence of the Excited State Lifetimes and Triplet Conversion Yield in the Fenna–Matthews–Olson Antenna Protein. J Phys Chem B 2014; 118:2058-69. [DOI: 10.1021/jp411020a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gregory S. Orf
- Departments of Chemistry and Biology, §Photosynthetic Antenna
Research Center
(PARC), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Dariusz M. Niedzwiedzki
- Departments of Chemistry and Biology, §Photosynthetic Antenna
Research Center
(PARC), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert E. Blankenship
- Departments of Chemistry and Biology, §Photosynthetic Antenna
Research Center
(PARC), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
18
|
Kovács SÁ, Bricker WP, Niedzwiedzki DM, Colletti PF, Lo CS. Computational determination of the pigment binding motif in the chlorosome protein a of green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2013; 118:231-247. [PMID: 24078352 DOI: 10.1007/s11120-013-9920-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
We present a molecular-scale model of Bacteriochlorophyll a (BChl a) binding to the chlorosome protein A (CsmA) of Chlorobaculum tepidum, and the aggregated pigment–protein dimer, as determined from protein–ligand docking and quantum chemistry calculations. Our calculations provide strong evidence that the BChl a molecule is coordinated to the His25 residue of CsmA, with the magnesium center of the bacteriochlorin ring situated\3 A° from the imidazole nitrogen atom of the histidine sidechain, and the phytyl tail aligned along the nonpolar residues of the a-helix of CsmA. We also confirm that the Qy band in the absorption spectra of BChl a experiences a large (?16 to ?43 nm) redshift when aggregated with another BChl a molecule in the CsmA dimer, compared to the BChl a in solvent; this redshift has been previously established by experimental researchers. We propose that our model of the BChl a–CsmA binding motif, where the dimer contains parallel aligned N-terminal regions, serves as the smallest repeating unit in a larger model of the para-crystalline chlorosome baseplate protein.
Collapse
|
19
|
Orf GS, Blankenship RE. Chlorosome antenna complexes from green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 116:315-31. [PMID: 23761131 DOI: 10.1007/s11120-013-9869-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.
Collapse
Affiliation(s)
- Gregory S Orf
- Departments of Chemistry and Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | | |
Collapse
|
20
|
Huang RYC, Hudgens JW. Effects of desialylation on human α1-acid glycoprotein-ligand interactions. Biochemistry 2013; 52:7127-36. [PMID: 24041412 DOI: 10.1021/bi4011094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human α1-acid glycoprotein (AGP), an acute-phase glycoprotein, exists predominantly in blood. With its ability to bind basic, lipophilic, and acidic drugs, AGP has served as a drug carrier. It has been shown that the carbohydrate composition of AGP changes in response to tissue injury, inflammation, or infection and can have a great impact on AGP's drug binding activities. The molecular-level details of the effects of desialylation on the AGP conformation and AGP-ligand interactions, however, are unknown. Here we report the use of hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) to reveal the changes in AGP conformational dynamics induced by the removal of terminal sialic acid. HDX-MS also reveals the changes in the conformational dynamics of sialylated and unsialylated AGP upon formation of complexes of holo-AGP with progesterone or propranolol. Our HDX-MS results demonstrate that desialylation stabilizes two loop regions that are exterior to the β-sheet barrel in AGP, and this stabilization minimizes the conformational changes of AGP upon binding with progesterone or propranolol.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioprocess Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
21
|
Zhang H, Cui W, Gross ML, Blankenship RE. Native mass spectrometry of photosynthetic pigment-protein complexes. FEBS Lett 2013; 587:1012-20. [PMID: 23337874 PMCID: PMC3856239 DOI: 10.1016/j.febslet.2013.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/25/2012] [Accepted: 01/06/2013] [Indexed: 12/16/2022]
Abstract
Native mass spectrometry (MS), or as is sometimes called "native electrospray ionization" allows proteins in their native or near-native states in solution to be introduced into the gas phase and interrogated by mass spectrometry. This approach is now a powerful tool to investigate protein complexes. This article reviews the background of native MS of protein complexes and describes its strengths, taking photosynthetic pigment-protein complexes as examples. Native MS can be utilized in combination with other MS-based approaches to obtain complementary information to that provided by tools such as X-ray crystallography and NMR spectroscopy to understand the structure-function relationships of protein complexes. When additional information beyond that provided by native MS is required, other MS-based strategies can be successfully applied to augment the results of native MS.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
22
|
Orf GS, Tank M, Vogl K, Niedzwiedzki DM, Bryant DA, Blankenship RE. Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:493-501. [DOI: 10.1016/j.bbabio.2013.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
23
|
Kaltashov IA, Bobst CE, Abzalimov RR. Mass spectrometry-based methods to study protein architecture and dynamics. Protein Sci 2013; 22:530-44. [PMID: 23436701 DOI: 10.1002/pro.2238] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Abstract
Mass spectrometry is now an indispensable tool in the armamentarium of molecular biophysics, where it is used for tasks ranging from protein sequencing and mapping of post-translational modifications to studies of higher order structure, conformational dynamics, and interactions of proteins with small molecule ligands and other biopolymers. This mini-review highlights several popular mass spectrometry-based tools that are now commonly used for structural studies of proteins beyond their covalent structure with a particular emphasis on hydrogen exchange and direct electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
24
|
Zhang J, Ramachandran P, Kumar R, Gross ML. H/D exchange centroid monitoring is insufficient to show differences in the behavior of protein states. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:450-3. [PMID: 23397137 PMCID: PMC3594389 DOI: 10.1007/s13361-012-0555-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/25/2012] [Accepted: 12/01/2012] [Indexed: 05/19/2023]
Abstract
Differential hydrogen/deuterium exchange (H/DX) coupled with mass spectrometry (H/DX-MS) offers a rapid and sensitive characterization of changes in proteins following perturbations induced by changes in folding, ligand binding, oligomerization, and modification. The characterization of H/DX rates by software tools and automated data processing often relies on the centroid mass calculation and, thereby, the deuterium distribution in the mass spectra is neglected. Here we present an example demonstrating the clear limitation of using only a centroid approach to characterize the H/DX rate, in which the change in protein is not reflected as the difference in deuterium uptake based on centroid calculation.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Pradeep Ramachandran
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|