1
|
Rajeev A, Balamurugan M, Sankaralingam M. Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogeneous Approach. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
2
|
Regiospecific Oxidation of Chlorobenzene to 4-Chlororesorcinol, Chlorohydroquinone, 3-Chlorocatechol and 4-Chlorocatechol by Engineered Toluene o-Xylene Monooxygenases. Appl Environ Microbiol 2022; 88:e0035822. [PMID: 35736230 PMCID: PMC9275245 DOI: 10.1128/aem.00358-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toluene o-xylene monooxygenase (ToMO) was found to oxidize chlorobenzene to form 2-chlorophenol (2-CP, 4%), 3-CP (12%), and 4-CP (84%) with a total product formation rate of 1.2 ± 0.17 nmol/min/mg protein. It was also discovered that ToMO forms 4-chlorocatechol (4-CC) from 3-CP and 4-CP with initial rates of 0.54 ± 0.10 and 0.40 ± 0.04 nmol/min/mg protein, respectively, and chlorohydroquinone (CHQ, 13%), 4-chlororesorcinol (4-CR, 3%), and 3-CC (84%) from 2-CP with an initial product formation rate of 1.1 ± 0.32 nmol/min/mg protein. To increase the oxidation rate and alter the oxidation regiospecificity of chloroaromatics, as well as to study the roles of active site residues L192 and A107 of the alpha hydroxylase fragment of ToMO (TouA), we used the saturation mutagenesis approach of protein engineering. Thirteen TouA variants were isolated, among which some of the best substitutions uncovered here have never been studied before. Specifically, TouA variant L192V was identified which had 1.8-, 1.4-, 2.4-, and 4.8-fold faster hydroxylation activity toward chlorobenzene, 2-CP, 3-CP, and 4-CP, respectively, compared to the native ToMO. The L192V variant also had the regiospecificity of chlorobenzene changed from 4% to 13% 2-CP and produced the novel product 3-CC (4%) from 3-CP. Most of the isolated variants were identified to change the regiospecificity of oxidation. For example, compared to the native ToMO, variants A107T, A107N, and A107M produced 6.3-, 7.0-, and 7.3-fold more 4-CR from 2-CP, respectively, and variants A107G and A107G/L192V produced 3-CC (33 and 39%, respectively) from 3-CP whereas native ToMO did not. IMPORTANCE Chlorobenzene is a commonly used toxic solvent and listed as a priority environmental pollutant by the US Environmental Protection Agency. Here, we report that Escherichia coli TG1 cells expressing toluene o-xylene monooxygenase (ToMO) can successfully oxidize chlorobenzene to form dihydroxy chloroaromatics, which are valuable industrial compounds. ToMO performs this at room temperature in water using only molecular oxygen and a cofactor supplied by the cells. Using protein engineering techniques, we also isolated ToMO variants with enhanced oxidation activity as well as fine-tuned regiospecificities which make direct microbial oxygenations even more attractive. The significance of this work lies in the ability to degrade environmental pollutants while at the same time producing valuable chemicals using environmentally benign biological methods rather than expensive, complex chemical processes.
Collapse
|
3
|
MhpA Is a Hydroxylase Catalyzing the Initial Reaction of 3-(3-Hydroxyphenyl)Propionate Catabolism in Escherichia coli K-12. Appl Environ Microbiol 2020; 86:AEM.02385-19. [PMID: 31811039 DOI: 10.1128/aem.02385-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 and some other strains have been reported to be capable of utilizing 3-(3-hydroxyphenyl)propionate (3HPP), one of the phenylpropanoids from lignin. Although other enzymes involved in 3HPP catabolism and their corresponding genes from its degraders have been identified, 3HPP 2-hydroxylase, catalyzing the first step of its catabolism, has yet to be functionally identified at biochemical and genetic levels. In this study, we investigated the function and characteristics of MhpA from E. coli strain K-12 (MhpAK-12). Gene deletion and complementation showed that mhpA was vital for its growth on 3HPP, but the mhpA deletion strain was still able to grow on 3-(2,3-dihydroxyphenyl)propionate (DHPP), the hydroxylation product transformed from 3HPP by MhpAK-12 MhpAK-12 was overexpressed and purified, and it was likely a polymer and tightly bound with an approximately equal number of moles of FAD. Using NADH or NADPH as a cofactor, purified MhpAK-12 catalyzed the conversion of 3HPP to DHPP at a similar efficiency. The conversion from 3HPP to DHPP by purified MhpAK-12 was confirmed using high-performance liquid chromatography and liquid chromatography-mass spectrometry. Bioinformatics analysis indicated that MhpAK-12 and its putative homologues belonged to taxa that were phylogenetically distant from functionally identified FAD-containing monooxygenases (hydroxylases). Interestingly, MhpAK-12 has approximately an extra 150 residues at its C terminus in comparison to its close homologues, but its truncated versions MhpAK-12 400 and MhpAK-12 480 (with 154 and 74 residues deleted from the C terminus, respectively) both lost their activities. Thus, MhpAK-12 has been confirmed to be a 3HPP 2-hydroxylase catalyzing the conversion of 3HPP to DHPP, the initial reaction of 3HPP degradation.IMPORTANCE Phenylpropionate and its hydroxylated derivatives resulted from lignin degradation ubiquitously exist on the Earth. A number of bacterial strains have the ability to grow on 3HPP, one of the above derivatives. The hydroxylation was thought to be the initial and vital step for its aerobic catabolism via the meta pathway. The significance of our research is the functional identification and characterization of the purified 3HPP 2-hydroxylase MhpA from Escherichia coli K-12 at biochemical and genetic levels, since this enzyme has not previously been expressed from its encoding gene, purified, and characterized in any bacteria. It will not only fill a gap in our understanding of 3HPP 2-hydroxylase and its corresponding gene for the critical step in microbial 3HPP catabolism but also provide another example of the diversity of microbial degradation of plant-derived phenylpropionate and its hydroxylated derivatives.
Collapse
|
4
|
In-crystal reaction cycle of a toluene-bound diiron hydroxylase. Nature 2017; 544:191-195. [PMID: 28346937 DOI: 10.1038/nature21681] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.
Collapse
|
5
|
Kurt C, Sönmez B, Vardar N, Yanık-Yıldırım KC, Vardar-Schara G. Cavity residue leucine 95 and channel residues glutamine 204, aspartic acid 211, and phenylalanine 269 of toluene o-xylene monooxygenase influence catalysis. Appl Microbiol Biotechnol 2016; 100:7599-609. [PMID: 27311562 DOI: 10.1007/s00253-016-7658-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Structural analysis of toluene-o-xylene monooxygenase (ToMO) hydroxylase revealed the presence of three hydrophobic cavities, a channel, and a pore leading from the protein surface to the active site. Here, saturation mutagenesis was used to investigate the catalytic roles of alpha-subunit (TouA) second cavity residue L95 and TouA channel residues Q204, D211, and F269. By testing the substrates toluene, phenol, nitrobenzene, and/or naphthalene, these positions were found to influence the catalytic activity of ToMO. Several regiospecific variants were identified from TouA positions Q204, F269, and L95. For example, TouA variant Q204H had the regiospecificity of nitrobenzene changed significantly from 30 to 61 % p-nitrophenol. Interestingly, a combination of mutations at Q204H and A106V altered the regiospecificity of nitrobenzene back to 27 % p-nitrophenol. TouA variants F269Y, F269P, Q204E, and L95D improved the meta-hydroxylating capability of nitrobenzene by producing 87, 85, 82, and 77 % m-nitrophenol, respectively. For naphthalene oxidation, TouA variants F269V, Q204A, Q204S/S222N, and F269T had the regiospecificity changed from 16 to 9, 10, 23, and 25 % 2-naphthol, respectively. Here, two additional TouA residues, S222 and A106, were also identified that may have important roles in catalysis. Most of the isolated variants from D211 remained active, whereas having a hydrophobic residue at this position appeared to diminish the catalytic activity toward naphthalene. The mutational effects on the ToMO regiospecificity described here suggest that it is possible to further fine tune and engineer the reactivity of multicomponent diiron monooxygenases toward different substrates at positions that are relatively distant from the active site.
Collapse
Affiliation(s)
- Cansu Kurt
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - Burcu Sönmez
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - Nurcan Vardar
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - K Cansu Yanık-Yıldırım
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey
| | - Gönül Vardar-Schara
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, 34500, Istanbul, Turkey.
| |
Collapse
|
6
|
Komor AJ, Rivard BS, Fan R, Guo Y, Que L, Lipscomb JD. Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI. J Am Chem Soc 2016; 138:7411-21. [PMID: 27203126 PMCID: PMC4914076 DOI: 10.1021/jacs.6b03341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ultimate step in chloramphenicol (CAM) biosynthesis is a six-electron oxidation of an aryl-amine precursor (NH2-CAM) to the aryl-nitro group of CAM catalyzed by the non-heme diiron cluster-containing oxygenase CmlI. Upon exposure of the diferrous cluster to O2, CmlI forms a long-lived peroxo intermediate, P, which reacts with NH2-CAM to form CAM. Since P is capable of at most a two-electron oxidation, the overall reaction must occur in several steps. It is unknown whether P is the oxidant in each step or whether another oxidizing species participates in the reaction. Mass spectrometry product analysis of reactions under (18)O2 show that both oxygen atoms in the nitro function of CAM derive from O2. However, when the single-turnover reaction between (18)O2-P and NH2-CAM is carried out in an (16)O2 atmosphere, CAM nitro groups contain both (18)O and (16)O, suggesting that P can be reformed during the reaction sequence. Such reformation would require reduction by a pathway intermediate, shown here to be NH(OH)-CAM. Accordingly, the aerobic reaction of NH(OH)-CAM with diferric CmlI yields P and then CAM without an external reductant. A catalytic cycle is proposed in which NH2-CAM reacts with P to form NH(OH)-CAM and diferric CmlI. Then the NH(OH)-CAM rereduces the enzyme diiron cluster, allowing P to reform upon O2 binding, while itself being oxidized to NO-CAM. Finally, the reformed P oxidizes NO-CAM to CAM with incorporation of a second O2-derived oxygen atom. The complete six-electron oxidation requires only two exogenous electrons and could occur in one active site.
Collapse
Affiliation(s)
- Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Brent S. Rivard
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - John D. Lipscomb
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Liang AD, Lippard SJ. Single Turnover Reveals Oxygenated Intermediates in Toluene/o-Xylene Monooxygenase in the Presence of the Native Redox Partners. J Am Chem Soc 2015; 137:10520-3. [PMID: 26267757 DOI: 10.1021/jacs.5b07055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Toluene/o-xylene monooxygenase (ToMO) is a non-heme diiron protein that activates O2 for subsequent arene oxidation. ToMO utilizes four protein components, a catalytic hydroxylase, a regulatory protein, a Rieske protein, and a reductase. O2 activation and substrate hydroxylation in the presence of all four protein components is examined. These studies demonstrate the importance of native reductants by revealing reactivity unobserved when dithionite and mediators are used as the reductant. This reactivity is compared with that of other O2-activating diiron enzymes.
Collapse
Affiliation(s)
- Alexandria Deliz Liang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Liang A, Lippard SJ. Component interactions and electron transfer in toluene/o-xylene monooxygenase. Biochemistry 2014; 53:7368-75. [PMID: 25402597 PMCID: PMC4255640 DOI: 10.1021/bi500892n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/28/2014] [Indexed: 01/19/2023]
Abstract
The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC-ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.
Collapse
Affiliation(s)
- Alexandria
Deliz Liang
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Acheson JF, Bailey LJ, Elsen NL, Fox BG. Structural basis for biomolecular recognition in overlapping binding sites in a diiron enzyme system. Nat Commun 2014; 5:5009. [PMID: 25248368 PMCID: PMC4200526 DOI: 10.1038/ncomms6009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
Productive biomolecular recognition requires exquisite control of affinity and specificity. Accordingly, nature has devised many strategies to achieve proper binding interactions. Bacterial multicomponent monooxygenases provide a fascinating example, where a diiron hydroxylase must reversibly interact with both ferredoxin and catalytic effector in order to achieve electron transfer and O2 activation during catalysis. Because these two accessory proteins have distinct structures, and because the hydroxylase-effector complex covers the entire surface closest to the hydroxylase diiron centre, how ferredoxin binds to the hydroxylase has been unclear. Here we present high-resolution structures of toluene 4-monooxygenase hydroxylase complexed with its electron transfer ferredoxin and compare them with the hydroxylase-effector structure. These structures reveal that ferredoxin or effector protein binding produce different arrangements of conserved residues and customized interfaces on the hydroxylase in order to achieve different aspects of catalysis.
Collapse
Affiliation(s)
- Justin F Acheson
- Department of Biochemistry, University of Wisconsin, Biochemistry Addition, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | - Lucas J Bailey
- Department of Biochemistry, University of Wisconsin, Biochemistry Addition, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | - Nathaniel L Elsen
- Department of Biochemistry, University of Wisconsin, Biochemistry Addition, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin, Biochemistry Addition, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Saturation mutagenesis of Bradyrhizobium sp. BTAi1 toluene 4-monooxygenase at alpha-subunit residues proline 101, proline 103, and histidine 214 for regiospecific oxidation of aromatics. Appl Microbiol Biotechnol 2014; 98:8975-86. [DOI: 10.1007/s00253-014-5913-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
11
|
Liang AD, Wrobel AT, Lippard SJ. A flexible glutamine regulates the catalytic activity of toluene o-xylene monooxygenase. Biochemistry 2014; 53:3585-92. [PMID: 24873259 PMCID: PMC4059525 DOI: 10.1021/bi500387y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Toluene/o-xylene
monooxygenase (ToMO) is a bacterial
multicomponent monooxygenase capable of oxidizing aromatic substrates.
The carboxylate-rich diiron active site is located in the hydroxylase
component of ToMO (ToMOH), buried 12 Å from the surface of the
protein. A small, hydrophilic pore is the shortest pathway between
the diiron active site and the protein exterior. In this study of
ToMOH from Pseudomonas sp. OX1, the
functions of two residues lining this pore, N202 and Q228, were investigated
using site-directed mutagenesis. Steady-state characterization of
WT and the three mutant enzymes demonstrates that residues N202 and
Q228 are critical for turnover. Kinetic isotope effects and pH profiles
reveal that these residues govern the kinetics of water egress and
prevent quenching of activated oxygen intermediates formed at the
diiron active site. We propose that this activity arises from movement
of these residues, opening and closing the pore during catalysis,
as seen in previous X-ray crystallographic studies. In addition, N202
and Q228 are important for the interactions of the reductase and regulatory
components to ToMOH, suggesting that they bind competitively to the
hydroxylase. The role of the pore in the hydroxylase components of
other bacterial multicomponent monooxygenases within the superfamily
is discussed in light of these conclusions.
Collapse
Affiliation(s)
- Alexandria Deliz Liang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
12
|
Hosseini A, Brouk M, Lucas MF, Glaser F, Fishman A, Guallar V. Atomic picture of ligand migration in toluene 4-monooxygenase. J Phys Chem B 2014; 119:671-8. [PMID: 24798294 DOI: 10.1021/jp502509a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Computational modeling combined with mutational and activity assays was used to underline the substrate migration pathways in toluene 4-monooxygenase, a member of the important family of bacterial multicomponent monooxygenases (BMMs). In all structurally defined BMM hydroxylases, several hydrophobic cavities in the α-subunit map a preserved path from the protein surface to the diiron active site. Our results confirm the presence of two pathways by which different aromatic molecules can enter/escape the active site. While the substrate is observed to enter from both channels, the more hydrophilic product is withdrawn mainly from the shorter channel ending at residues D285 and E214. The long channel ends in the vicinity of S395, whose variants have been seen to affect activity and specificity. These mutational effects are clearly reproduced and rationalized by the in silico studies. Furthermore, the combined computational and experimental results highlight the importance of residue F269, which is located at the intersection of the two channels.
Collapse
Affiliation(s)
- Ali Hosseini
- Department of Life Sciences, Barcelona Supercomputing Center , Nexus II Building, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Sönmez B, Yanık-Yıldırım KC, Wood TK, Vardar-Schara G. The role of substrate binding pocket residues phenylalanine 176 and phenylalanine 196 on Pseudomonas sp. OX1 toluene o-xylene monooxygenase activity and regiospecificity. Biotechnol Bioeng 2014; 111:1506-12. [PMID: 24519264 DOI: 10.1002/bit.25212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/27/2013] [Accepted: 02/06/2014] [Indexed: 11/10/2022]
Abstract
Saturation mutagenesis was used to generate eleven substitutions of toluene-o-xylene monooxygenase (ToMO) at alpha subunit (TouA) positions F176 and F196 among which nine were novel: F176H, F176N, F176S, F176T, F196A, F196L, F196T, F196Y, F196H, F196I, and F196V. By testing the substrates phenol, toluene, and naphthalene, these positions were found to influence ToMO oxidation activity and regiospecificity. Specifically, TouA variant F176H was identified that had 4.7-, 4.3-, and 1.8-fold faster hydroxylation activity towards phenol, toluene, and naphthalene, respectively, compared to native ToMO. The F176H variant also produced the novel product hydroquinone (61%) from phenol, made twofold more 2-naphthol from naphthalene (34% vs. 16% by the wild-type ToMO), and had the regiospecificity of toluene changed from 51% to 73% p-cresol. The TouA F176N variant had the most para-hydroxylation capability, forming p-cresol (92%) from toluene and hydroquinone (82%) from phenol as the major product, whereas native ToMO formed 30% o-cresol, 19% m-cresol, and 51% of p-cresol from toluene and 100% catechol from phenol. For naphthalene oxidation, TouA variant F176S exhibited the largest shift in the product distribution by producing threefold more 2-naphthol. Among the other F196 variants, F196L produced catechol from phenol two times faster than the wild-type enzyme. The TouA F196I variant produced twofold less o-cresol and 19% more p-cresol from toluene, and the TouA F196A variant produced 62% more 2-naphthol from naphthalene compared to wild-type ToMO. Both of these positions have never been studied through the saturation mutagenesis and some of the best substitutions uncovered here have never been predicted and characterized for aromatics hydroxylation.
Collapse
Affiliation(s)
- Burcu Sönmez
- Department of Genetics and Biongineering, Fatih University, Buyukcekmece, Istanbul, 34500, Turkey
| | | | | | | |
Collapse
|
14
|
Dror A, Fishman A. Engineering non-heme mono- and dioxygenases for biocatalysis. Comput Struct Biotechnol J 2012; 2:e201209011. [PMID: 24688652 PMCID: PMC3962191 DOI: 10.5936/csbj.201209011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022] Open
Abstract
Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.
Collapse
Affiliation(s)
- Adi Dror
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|