1
|
Behera DP, Subadini S, Freudenberg U, Sahoo H. Sulfation of hyaluronic acid reconfigures the mechanistic pathway of bone morphogenetic protein-2 aggregation. Int J Biol Macromol 2024; 263:130128. [PMID: 38350587 DOI: 10.1016/j.ijbiomac.2024.130128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a critical growth factor of bone extracellular matrix (ECM), pivotal for osteogenesis. Glycosaminoglycans (GAGs), another vital ECM biomolecules, interact with growth factors, affecting signal transduction. Our study primarily focused on hyaluronic acid (HA), a prevalent GAG, and its sulfated derivative (SHA). We explored their impact on BMP-2's conformation, aggregation, and mechanistic pathways of aggregation using diverse optical and rheological methods. In the presence of HA and SHA, the secondary structure of BMP-2 underwent a structured transformation, characterized by a substantial increase in beta sheet content, and a detrimental alteration, manifesting as a shift towards unstructured content, respectively. Although both HA and SHA induced BMP-2 aggregation, their mechanisms differed. SHA led to rapid amorphous aggregates, while HA promoted amyloid fibrils with a lag phase and sigmoidal kinetics. Aggregate size and shape varied; HA produced larger structures, SHA smaller. Each aggregation type followed distinct pathways influenced by viscosity and excluded volume. Higher viscosity, low diffusivity of protein and higher excluded volume In the presence of HA promotes fibrillation having size in micrometer range. Low viscosity, high diffusivity of protein and lesser excluded volume leads to amorphous aggregate of size in nanometer range.
Collapse
Affiliation(s)
- Devi Prasanna Behera
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Suchismita Subadini
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Uwe Freudenberg
- Institute of Polymer Research, Technical University Dresden, 01307 Dresden, Germany
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India; Center for Nanomaterials, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Solid state synthesis of bispyridyl-ferrocene conjugates with unusual site selective 1,4-Michael addition, as potential inhibitor and electrochemical probe for fibrillation in amyloidogenic protein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
4
|
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z, Zakany F. Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the K V1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Front Mol Biosci 2021; 8:735357. [PMID: 34805269 PMCID: PMC8599428 DOI: 10.3389/fmolb.2021.735357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, β-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.
Collapse
Affiliation(s)
- Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sohajda
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics 2021; 13:pharmaceutics13081180. [PMID: 34452141 PMCID: PMC8401481 DOI: 10.3390/pharmaceutics13081180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation—Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
- Correspondence: ; Tel.: +39-079228754
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy;
| |
Collapse
|
6
|
Korang-Yeboah M, Ketcham S, Shih M, Ako-Adounvo AM, Zhang J, Bandaranayake BM, Abbey-Berko Y, Faustino P, Ashraf M. Effect of formulation and peptide folding on the fibrillar aggregation, gelation, and oxidation of a therapeutic peptide. Int J Pharm 2021; 604:120677. [PMID: 33961953 DOI: 10.1016/j.ijpharm.2021.120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
The physical and chemical stability of therapeutic peptides presents challenges in developing robust formulations. The stability of the formulation affects product safety, efficacy and quality. Therefore, an understanding of the effects of formulation variables on the peptide's conformational structure and on its possible physical and chemical degradation is vital. To this end, computational and experimental analysis were employed to investigate the impact of formulation, peptide folding and product handling on oxidation, fibrillar aggregation and gelation of teriparatide. Teriparatide was used as a model drug due to the correlation of its conformation in solution with its pharmacological activity. Fibrillar aggregation and gelation were monitored using four orthogonal techniques. An innovative, automated platform coupled with ion mobility mass spectrometry was used for profiling chemical degradants. Increases in teriparatide concentration, pH, and ionic strength were found to increase the rate of fibrillar aggregation and gelation. Conversely, an increase in peptide folding and stabilization of the folded structures was found to decrease the rate of fibrillar aggregation and gelation. Moreover, the rate of oxidation was found to be inversely related to its solution concentration and extent of peptide folding. The present study provides an insight into formulation strategies designed to reduce the potential risk of physical and chemical degradation of peptides with a defined conformation.
Collapse
Affiliation(s)
- Maxwell Korang-Yeboah
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Stephanie Ketcham
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Mack Shih
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Ann-Marie Ako-Adounvo
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Jinhui Zhang
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Bandaranayake M Bandaranayake
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Yvonne Abbey-Berko
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Patrick Faustino
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Muhammad Ashraf
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| |
Collapse
|
7
|
Exploring Charged Polymeric Cyclodextrins for Biomedical Applications. Molecules 2021; 26:molecules26061724. [PMID: 33808780 PMCID: PMC8003440 DOI: 10.3390/molecules26061724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, cyclodextrin uses have been widely reviewed and their proprieties provide a very attractive approach in different biomedical applications. Cyclodextrins, due to their characteristics, are used to transport drugs and have also been studied as molecular chaperones with potential application in protein misfolding diseases. In this study, we designed cyclodextrin polymers containing different contents of β- or γ-cyclodextrin, and a different number of guanidinium positive charges. This allowed exploration of the influence of the charge in delivering a drug and the effect in the protein anti-aggregant ability. The polymers inhibit Amiloid β peptide aggregation; such an ability is modulated by both the type of CyD cavity and the number of charges. We also explored the effect of the new polymers as drug carriers. We tested the Doxorubicin toxicity in different cell lines, A2780, A549, MDA-MB-231 in the presence of the polymers. Data show that the polymers based on γ-cyclodextrin modified the cytotoxicity of doxorubicin in the A2780 cell line.
Collapse
|
8
|
Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Chemical Exchange of Hydroxyl Groups in Lipidic Cubic Phases Characterized by NMR. J Phys Chem B 2021; 125:571-580. [PMID: 33251799 DOI: 10.1021/acs.jpcb.0c08699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proton transportation in proximity to the lipid bilayer membrane surface, where chemical exchange represents a primary pathway, is of significant interest in many applications including cellular energy turnover underlying ATP synthesis, transmembrane mobility, and transport. Lipidic inverse bicontinuous cubic phases (LCPs) are unique membrane structures formed via the spontaneous self-assembly of certain lipids in an aqueous environment. They feature two networks of water channels, separated by a single lipid bilayer which approximates the geometry of a triply periodic minimal surface. When composed of monoolein, the LCP bilayer features two glycerol hydroxyl groups at the lipid-water interface which undergo exchange with water. Depending on the conditions of the aqueous solution used in the formation of LCPs, both resonances of the glycerol hydroxyl groups may be observed by solution 1H NMR. In this study, PFG-NMR and 1D EXSY were employed to gain insight into chemical exchange between the monoolein hydroxyl groups and water in LCPs. Results including the relative population of hydroxyl protons in exchange with water for a number of LCPs at different hydration levels and the exchange rate constants at 35 wt % hydration are reported. Several technical aspects of PFG-NMR and EXSY-NMR for the characterization of chemical exchange in LCPs are discussed, including an alternative way to analyze PFG-NMR data of exchange systems which overcomes the inherent low sensitivity at high diffusion encoding.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.,School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
9
|
Nicolosi M, Bellia F, Giuffrida ML, Zimbone S, Oliveri V, Vecchio G. Synthesis and biological evaluation of novel β-cyclodextrin-fluvastatin conjugates. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. Int J Biol Macromol 2020; 163:824-832. [PMID: 32653370 DOI: 10.1016/j.ijbiomac.2020.07.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023]
Abstract
In this study, multifunctional hydrogels containing host-guest complex formation between azobenzene-grafted carboxymethyl cellulose (CMC-Azo) and β-cyclodextrin (CD) dimers connected by disulfide bonds with agarose for structural support were prepared. The obtained hydrogels exhibited self-healing properties by host-guest complexation as well as gel-sol phase transition in response to ultraviolet (UV) light and reducing agents. Photo-switchable properties of the hydrogels depend on changes in the complex formation of CD-dimers through the trans(450 nm) to cis(365 nm) photo-isomerization of azobenzene. The tensile and strain sweep tests confirmed that the hydrogel's self-healing ability was 79.44% and 81.59%, respectively. In addition, drug release from the hydrogels was controlled to accelerate to 80% in 3 h using UV light or reducing agent. Since the suggested photo-switchable, reduction-responsive, and self-healable hydrogels are non-cytotoxic, they can be potentially applied as biomedical materials in the development of hydrogel-based drug release systems.
Collapse
|
11
|
Drug-based magnetic imprinted nanoparticles: Enhanced lysozyme amyloid fibrils cleansing and anti-amyloid fibrils toxicity. Int J Biol Macromol 2020; 153:723-735. [DOI: 10.1016/j.ijbiomac.2020.03.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
|
12
|
Du XY, Ma K, Cheng R, She XJ, Zhang YW, Wang CF, Chen S, Xu C. Host-guest supramolecular assembly directing beta-cyclodextrin based nanocrystals towards their robust performances. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:329-337. [PMID: 30245255 DOI: 10.1016/j.jhazmat.2018.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Fluorescent CdTe nanocrystals (NCs) capped with beta-cyclodextrin (β-CD) are successfully synthesized by host-guest supramolecular assembly of the hydrophobic alkyl chains of N-acetyl-l-cysteine (NAC) on the surface of CdTe NCs and eco-friendly β-CD via the promising simple hydrothermal method in our experiments. The as-prepared NCs display better stability and lower toxicity compared with traditional those only capped with NAC. Specially, cytotoxicity experiments to human umbilical vein endothelial cells in vitro and zebrafish embryo toxicological tests in vivo are performed to determine the toxicity of CdTe NCs. For their practical applications, the promising red-luminescent NCs are employed as stable and low poison red phosphors to fabricate white light-emitting diodes (WLEDs) with remarkable color-rendering index (CRI) being 91.6. This research offers significance for solving the difficulty in toxicity and instability of heavy metal based NCs, which has potential applications in future optoelectronic devices and biomarkers.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Kangzhe Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Xing-Jin She
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Ya-Wen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials and College of Chemical Engineering, Nanjing Tech University (Former Nanjing University of Technology), Nanjing 210009, PR China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology and School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
13
|
Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat Chem 2018; 11:86-93. [DOI: 10.1038/s41557-018-0164-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/21/2018] [Indexed: 01/22/2023]
|
14
|
Kundu N, Banik D, Sarkar N. Self-Assembly of Amphiphiles into Vesicles and Fibrils: Investigation of Structure and Dynamics Using Spectroscopy and Microscopy Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11637-11654. [PMID: 29544249 DOI: 10.1021/acs.langmuir.7b04355] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphiles are a class of molecules which are known to assemble into a variety of nanostructures. The understanding and applications of self-assembled systems are based on what has been learned from biology. Among the vast number of self-assemblies, in this article, we have described the formation, characterization, and dynamics of two important biologically inspired assemblies: vesicles and fibrils. Vesicles, which can be classified into several categories depending on the sizes and components, are of great interest due to their potential applications in drug delivery and as nanoscale reactors. The structure and dynamics of vesicles can also mimic the complex geometry of the cell membrane. On the other hand, the self-assembly of proteins, peptides, and even single amino acids leads to a number of degenerative disorders. Thus, a complete understanding of these self-assembled systems is necessary. In this article, we discuss recent work on vesicular aggregates composed of phospholipids, fatty acids, and ionic as well as nonionic surfactants and single amino acid-based fibrils such as phenylalanine and tyrosine. Beside the characterization, we also emphasize the excited-state dynamics inside the aggregates for a proper understanding of the organization, reactivity, and heterogeneity of the aggregates.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Debasis Banik
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Nilmoni Sarkar
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| |
Collapse
|
15
|
Yao S, Meikle TG, Sethi A, Separovic F, Babon JJ, Keizer DW. Measuring translational diffusion of 15N-enriched biomolecules in complex solutions with a simplified 1H- 15N HMQC-filtered BEST sequence. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:891-902. [PMID: 29785510 DOI: 10.1007/s00249-018-1311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 01/29/2023]
Abstract
Pulsed-field gradient nuclear magnetic resonance has seen an increase in applications spanning a broad range of disciplines where molecular translational diffusion properties are of interest. The current study introduces and experimentally evaluates the measurement of translational diffusion coefficients of 15N-enriched biomolecules using a 1H-15N HMQC-filtered band-selective excitation short transient (BEST) sequence as an alternative to the previously described SOFAST-XSTE sequence. The results demonstrate that accurate translational diffusion coefficients of 15N-labelled peptides and proteins can be obtained using this alternative 1H-15N HMQC-filtered BEST sequence which is implementable on NMR spectrometers equipped with probes fitted with a single-axis field gradient, including most cryoprobes dedicated to bio-NMR. The sequence is of potential use for direct quantification of protein or peptide translational diffusion within complex systems, such as in mixtures of macromolecules, crowded solutions, membrane-mimicking media and in bicontinuous cubic phases, where conventional sequences may not be readily applicable due to the presence of intense signals arising from sources other than the protein or peptide under investigation.
Collapse
Affiliation(s)
- Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ashish Sethi
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
16
|
Kumar S, Henning-Knechtel A, Magzoub M, Hamilton AD. Peptidomimetic-Based Multidomain Targeting Offers Critical Evaluation of Aβ Structure and Toxic Function. J Am Chem Soc 2018; 140:6562-6574. [PMID: 29648815 DOI: 10.1021/jacs.7b13401] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevailing hypothesis stipulates that the preamyloid oligomers of Aβ are the main culprits associated with the onset and progression of Alzheimer's disease (AD), which has prompted efforts to search for therapeutic agents with the ability to inhibit Aβ oligomerization and amyloidogenesis. However, clinical progress is impeded by the limited structural information about the neurotoxic oligomers. To address this issue, we have adopted a synthetic approach, where a library of oligopyridylamide-based small molecules was tested against various microscopic events implicated in the self-assembly of Aβ. Two oligopyridylamides bind to different domains of Aβ and affect distinct microscopic events in Aβ self-assembly. The study lays the foundations for a dual recognition strategy to simultaneously target different domains of Aβ for further improvement in antiamyloidogenic activity. The data demonstrate that one of the most effective oligopyridylamides forms a high affinity complex with Aβ, which sustains the compound's activity in cellular milieu. The oligopyridylamide was able to rescue cells when introduced 24 h after the incubation of Aβ. The rescue of Aβ toxicity is potentially a consequence of the colocalization of the oligopyridylamide with Aβ. The synthetic tools utilized here provide a straightforward strategic framework to identify a range of potent antagonists of Aβ-mediated toxic functions. This approach could be a powerful route to the design of candidate drugs for various amyloid diseases that have so far proven to be "untargetable".
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Anja Henning-Knechtel
- Biology Program , New York University Abu Dhabi , P.O. Box 129188, Saadiyat Island Campus , Abu Dhabi , United Arab Emirates
| | - Mazin Magzoub
- Biology Program , New York University Abu Dhabi , P.O. Box 129188, Saadiyat Island Campus , Abu Dhabi , United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry , New York University , New York , New York 10003 , United States
| |
Collapse
|
17
|
Kumar S, Henning-Knechtel A, Chehade I, Magzoub M, Hamilton AD. Foldamer-Mediated Structural Rearrangement Attenuates Aβ Oligomerization and Cytotoxicity. J Am Chem Soc 2017; 139:17098-17108. [PMID: 29058422 DOI: 10.1021/jacs.7b08259] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of the native random coil amyloid beta (Aβ) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aβ oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aβ conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aβ oligomers. A library of oligoquinolines was screened to identify antagonists of Aβ oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aβ fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aβ oligomerization and fibrillation. The antagonist activity of 5 toward Aβ aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aβ. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aβ. 5 effectively rescues neuroblastoma cells from Aβ-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aβ and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Anja Henning-Knechtel
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|
18
|
Banik D, Banerjee P, Sabeehuddin G, Sarkar N. Effects of a common worldwide drink (Beer) on l-Phenylalanine and l-Tyrosine fibrillar assemblies. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Kundu S, Banerjee C, Sarkar N. Inhibiting the Fibrillation of Serum Albumin Proteins in the Presence of Surface Active Ionic Liquids (SAILs) at Low pH: Spectroscopic and Microscopic Study. J Phys Chem B 2017; 121:7550-7560. [DOI: 10.1021/acs.jpcb.7b03457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
20
|
Abstract
A key molecular species in Alzheimer's disease (AD) is the Aβ42 alloform of Aβ peptide, which is dominant in the amyloid plaques deposited in the brains of AD patients. Recent studies have decisively demonstrated that the prefibrillar soluble oligomers are the neurotoxic culprits and are associated with the pathology of AD. Nascent Aβ42 is predominantly disordered but samples α-helical conformations covering residues 15-24 and 29-35 in the presence of micelles and structure-inducing solvents. In this report, a focused library of oligopyridylamide based α-helical mimetics was designed to target the central α-helix subdomain of Aβ (Aβ13-26). A tripyridylamide, ADH-41, was identified as one of the most potent antagonists of Aβ fibrillation. Amyloid-assembly kinetics, transmission electron microscopy (TEM), and atomic force microscopy (AFM) show that ADH-41 wholly suppresses the aggregation of Aβ at a substoichiometric dose. Dot blot and ELISA assays demonstrate the inhibition of the putative neurotoxic Aβ oligomers. ADH-41 targets Aβ in a sequence and structure-specific manner, as it did not have any effect on the aggregation of islet amyloid polypeptide (IAPP), a peptide which shares sequence similarity with Aβ. Spectroscopic studies using NMR and CD confirm induction of α-helicity in Aβ mediated by ADH-41. Calorimetric and fluorescence titrations yielded binding affinity in the low micromolar range. ADH-41 was also effective at inhibiting the seed-catalyzed aggregation of Aβ probably by modulating the Aβ conformation into a fiber incompetent structure. Overall, we speculate that ADH-41 directs Aβ into off-pathway structures, and thereby alters various solution based functions of Aβ. Cell-based assays to assess the effect of ADH-41 on Aβ are underway and will be presented in due course.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Andrew D Hamilton
- Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|
21
|
Banik D, Kundu S, Banerjee P, Dutta R, Sarkar N. Investigation of Fibril Forming Mechanisms of l-Phenylalanine and l-Tyrosine: Microscopic Insight toward Phenylketonuria and Tyrosinemia Type II. J Phys Chem B 2017; 121:1533-1543. [DOI: 10.1021/acs.jpcb.6b12220] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debasis Banik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
22
|
Bhasikuttan AC, Mohanty J. Detection, inhibition and disintegration of amyloid fibrils: the role of optical probes and macrocyclic receptors. Chem Commun (Camb) 2017; 53:2789-2809. [DOI: 10.1039/c6cc08727b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article provides a brief account of the recent reports on the early detection of amyloid fibril formation using fluorescent dyes and inhibition and disintegration of fibrils using macrocyclic receptors, which find applications in the treatment of fibril associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Achikanath C. Bhasikuttan
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
23
|
Pagès G, Gilard V, Martino R, Malet-Martino M. Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping. Analyst 2017; 142:3771-3796. [DOI: 10.1039/c7an01031a] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advent of Diffusion Ordered SpectroscopY (DOSY) NMR has enabled diffusion coefficients to be routinely measured and used to characterize chemical systems in solution. Indeed, DOSY NMR allows the separation of the chemical entities present in multicomponent systems and provides information on their intermolecular interactions as well as on their size and shape.
Collapse
Affiliation(s)
- G. Pagès
- INRA
- AgroResonance – UR370 Qualité des Produits Animaux
- Saint Genès Champanelle
- France
| | - V. Gilard
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| | - R. Martino
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| | - M. Malet-Martino
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| |
Collapse
|
24
|
Duez Q, Knight G, Daly S, De Winter J, Halin E, MacAleese L, Antoine R, Gerbaux P, Dugourd P. Action-FRET of β-cyclodextrin inclusion complexes. NEW J CHEM 2017. [DOI: 10.1039/c6nj03250h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Action-FRET is introduced as an original method to probe the structure of gaseous non-covalent complexes.
Collapse
Affiliation(s)
- Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Geoffrey Knight
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Steven Daly
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Emilie Halin
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Luke MacAleese
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Rodolphe Antoine
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Philippe Dugourd
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| |
Collapse
|
25
|
Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F. Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules 2016; 21:E1748. [PMID: 27999408 PMCID: PMC6273856 DOI: 10.3390/molecules21121748] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, like atherosclerosis, and neurodegenerative diseases affecting the central nervous system (CNS) are closely linked to alterations of cholesterol metabolism. Therefore, innovative pharmacological approaches aiming at counteracting cholesterol imbalance display promising therapeutic potential. However, these approaches need to take into account the existence of biological barriers such as intestinal and blood-brain barriers which participate in the organ homeostasis and are major defense systems against xenobiotics. Interest in cyclodextrins (CDs) as medicinal agents has increased continuously based on their ability to actively extract lipids from cell membranes and to provide suitable carrier system for drug delivery. Many novel CD derivatives are constantly generated with the objective to improve CD bioavailability, biocompatibility and therapeutic outcomes. Newly designed drug formulation complexes incorporating CDs as drug carriers have demonstrated better efficiency in treating cardiovascular and neurodegenerative diseases. CD-based therapies as cholesterol-sequestrating agent have recently demonstrated promising advances with KLEPTOSE® CRYSMEB in atherosclerosis as well as with the 2-hydroxypropyl-β-cyclodextrin (HPβCD) in clinical trials for Niemann-Pick type C disease. Based on this success, many investigations evaluating the therapeutical beneficial of CDs in Alzheimer's, Parkinson's and Huntington's diseases are currently on-going.
Collapse
Affiliation(s)
- Caroline Coisne
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| | - Sébastien Tilloy
- Unité de Catalyse et de Chimie du Solide (UCCS), University Artois, CNRS, UMR 8181, Lens, F-62300, France.
| | - Eric Monflier
- Unité de Catalyse et de Chimie du Solide (UCCS), University Artois, CNRS, UMR 8181, Lens, F-62300, France.
| | - Daniel Wils
- ROQUETTE, Nutrition & Health R & D, 62136 Lestrem, France.
| | - Laurence Fenart
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| | - Fabien Gosselet
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| |
Collapse
|
26
|
Banik D, Dutta R, Banerjee P, Kundu S, Sarkar N. Inhibition of Fibrillar Assemblies of l-Phenylalanine by Crown Ethers: A Potential Approach toward Phenylketonuria. J Phys Chem B 2016; 120:7662-70. [DOI: 10.1021/acs.jpcb.6b05209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Debasis Banik
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Rupam Dutta
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Pavel Banerjee
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sangita Kundu
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
27
|
Giglio V, Bellia F, Oliveri V, Vecchio G. Aminocyclodextrin Oligomers as Protective Agents of Protein Aggregation. Chempluschem 2016; 81:660-665. [PMID: 31968719 DOI: 10.1002/cplu.201600239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Indexed: 12/12/2022]
Abstract
Over 30 different amyloid proteins and a number of corresponding protein-misfolding diseases have been identified. Among these is Alzheimer's disease, the most common neurodegenerative disorder. The treatment of these diseases is still a goal to reach and many molecules have been studied in this context. Among these, the cyclodextrins have shown interesting potential as agents against protein aggregation (antiaggregants). On the basis of this interest, we investigated the effect on protein aggregation of some oligomers of β-cyclodextrins. In particular, it was found that amino oligomers show good inhibition of β-amyloid aggregation in the micromolar concentration range. The presence of both a multicavity system and amino groups seems to be essential for preventing protein aggregation.
Collapse
Affiliation(s)
- Valentina Giglio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Francesco Bellia
- Istituto di Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy.,Consorzio Interuniversitario di Ricerca, in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B., Unità di Ricerca di Catania, 95125, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
28
|
Oliveri V, Vecchio G. Cyclodextrins as Protective Agents of Protein Aggregation: An Overview. Chem Asian J 2016; 11:1648-57. [PMID: 27037956 DOI: 10.1002/asia.201600259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 11/08/2022]
Abstract
Cyclodextrins are extensively used in different fields (e.g., catalysis, chromatography, pharma, supramolecular chemistry, bioorganic chemistry, and bioinorganic chemistry), and their applications have been widely reviewed. Their main application in the field of pharmaceutical is as a drug carrier. This review overviews, for the first time, the use of cyclodextrins and their derivatives as antiaggregant agents in a number of proteins (e.g., amyloid-β, insulin, recombinant human growth hormone, prion protein, transthyretin, and α-synuclein) and some multimeric enzymes. There are many diseases that are correlated to protein misfolding and amyloid formation processes affecting numerous organs and tissues. There are over 30 different amyloid proteins and a number of corresponding diseases. Alzheimer's disease is the most common neurodegenerative disease. Treatment of these diseases is still a goal to reach, and many molecules are studied in this perspective. Cyclodextrins have also been studied, and they show great potential; as such, further studies could be very promising. This review aims to be a stimulus for the design of new cyclodextrin derivatives to obtain multifunctional systems with antiaggregant activity.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy.,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B, Unità di Ricerca di Catania, 95125, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
29
|
de Oliveira CX, Ferreira NS, Mota GVS. A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:102-107. [PMID: 26296254 DOI: 10.1016/j.saa.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
In this paper, we report a theoretical study of the inclusion complexes of Praziquantel (PZQ) and β-cyclodextrin (β-CD) in liquid water. The starting geometry has been carried out by molecular mechanics simulations, and afterwards optimized in B3LYP level with a 6-311G(d) basis set. Monte Carlo simulations have been used to calculate the solvation shell of the PZQ/β-CD inclusion complexes. Moreover, the vibrational frequencies and the infrared intensities for the PZQ/β-CD complex were computed using the B3LYP method. It is demonstrated that this combined model can yield well-converged thermodynamic data even for a modest number of sample configurations, which makes the methodology particularly adequate for understanding the solute-solvent interaction used for generating the liquid structures of one solute surrounded by solvent molecules. The complex solvation shell showed an increase of the water molecule level in relation to the isolated PZQ molecule because of the hydrophilic effect of the CD molecule. The infrared spectra showed that the contribution that originated in the PZQ molecule was not predominant in the upper-wave number region in the drug/β-CD. The movement that purely originated in the PZQ molecule was localized in the absorption band, ranging from 1328 to 1688cm(-1).
Collapse
Affiliation(s)
- C X de Oliveira
- Instituto de Física, Universidade de Brasília, UnB, 70919-970 Brasília, DF, Brazil
| | - N S Ferreira
- Departamento de Física, Universidade Federal do Amapá, UNIFAP, 68902-280 Macapá, AP, Brazil
| | - G V S Mota
- Instituto de Ciências Exatas e Naturais, UFPA, 66075-110 Belém, PA, Brazil; Department of Physics, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
30
|
Oliveri V, Bellia F, Pietropaolo A, Vecchio G. Unusual Cyclodextrin Derivatives as a New Avenue to Modulate Self- and Metal-Induced Aβ Aggregation. Chemistry 2015; 21:14047-59. [PMID: 26298549 DOI: 10.1002/chem.201502155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/19/2022]
Abstract
Mounting evidence suggests an important role of cyclodextrins in providing protection in neurodegenerative disorders. Metal dyshomeostasis is reported to be a pathogenic factor in neurodegeneration because it could be responsible for damage involving oxidative stress and protein aggregation. As such, metal ions represent an effective target. To improve the metal-binding ability of cyclodextrin, we synthesized three new 8-hydroxyquinoline-cyclodextrin conjugates with difunctionalized cyclodextrins. In particular, the 3-difunctionalized regioisomer represents the first example of cyclodextrin with two pendants at the secondary rim, resulting in a promising compound. The derivatives have significant antioxidant capacity and the powerful activity in inhibiting self-induced amyloid-β aggregation seems to be led by synergistic effects of both cyclodextrin and hydroxyquinoline. Moreover, the derivatives are also able to complex metal ions and to inhibit metal-induced protein aggregation. Therefore, these compounds could have potential as therapeutic agents in diseases related to protein aggregation and metal dyshomeostasis.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania (Italy).,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B, Unità di Ricerca di Catania, 95125 Catania (Italy)
| | - Francesco Bellia
- Istituto di Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania (Italy).
| |
Collapse
|
31
|
Arosio P, Knowles TPJ, Linse S. On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 2015; 17:7606-18. [PMID: 25719972 PMCID: PMC4498454 DOI: 10.1039/c4cp05563b] [Citation(s) in RCA: 548] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022]
Abstract
The formation of nanoscale amyloid fibrils from normally soluble peptides and proteins is a common form of self-assembly phenomenon that has fundamental connections with biological functions and human diseases. The kinetics of this process has been widely studied and exhibits on a macroscopic level three characteristic stages: a lag phase, a growth phase and a final plateau regime. The question of which molecular events take place during each one of these phases has been a central element in the quest for a mechanism of amyloid formation. In this review, we discuss the nature and molecular origin of the lag-phase in amyloid formation by making use of tools and concepts from physical chemistry, in particular from chemical reaction kinetics. We discuss how, in macroscopic samples, it has become apparent that the lag-phase is not a waiting time for nuclei to form. Rather, multiple parallel processes exist and typically millions of primary nuclei form during the lag phase from monomers in solution. Thus, the lag-time represents a time that is required for the nuclei that are formed early on in the reaction to grow and proliferate in order to reach an aggregate concentration that is readily detected in bulk assays. In many cases, this proliferation takes place through secondary nucleation, where fibrils may present a catalytic surface for the formation of new aggregates. Fibrils may also break (fragmentation) and thereby provide new ends for elongation. Thus, at least two - primary nucleation and elongation - and in many systems at least four - primary nucleation, elongation, secondary nucleation and fragmentation - microscopic processes occur during the lag phase. Moreover, these same processes occur during all three phases of the macroscopic aggregation process, albeit at different rates as governed by rate constants and by the concentration of reacting species at each point in time.
Collapse
Affiliation(s)
- Paolo Arosio
- Chemistry Department , University of Cambridge , Lensfield road , Cambridge , UK
| | - Tuomas P. J. Knowles
- Chemistry Department , University of Cambridge , Lensfield road , Cambridge , UK
| | - Sara Linse
- Department of Biochemistry and Structural Biology , Chemical Centre , Lund University , P. O. Box 124 , SE221 00 Lund , Sweden .
| |
Collapse
|
32
|
Oliveri V, Bellia F, Vecchio G. Cyclodextrin 3-Functionalized with 8-Hydroxyquinoline as an Antioxidant Inhibitor of Metal-Induced Amyloid Aggregation. Chempluschem 2015; 80:762-770. [DOI: 10.1002/cplu.201402450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/07/2022]
|
33
|
Volmer DA, Qi Y. Letter: β-Cyclodextrin affects the formation of isomerization products during peptide deamidation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:701-705. [PMID: 26353992 DOI: 10.1255/ejms.1385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cyclodextrins (CDs) are a group of nontoxic oligosaccharides that are widely used as drug excipients and protein stabilizers. CDs have also been found to reduce the neurotoxicity and fibrillation of amyloid beta (Aβ), the major component of the amyloid plaques found in the brain of patients suffering from Alzheimer's disease. The formation of these plaques was found to be enhanced by the presence of iso-aspartic acid (isoAsp) residues in the Aβ peptide, which can be formed by deamidation from asparagine (Asn). To explore further the influence of CDs on Aβ, we investigated three Asn-containing peptides, including Aβ25-35, by electrospray ionization, electron capture dissociation, and Fourier-transform ion cyclotron resonance mass spectrometry to explore details of the deamidation process in the presence and absence of peptide/CD adducts. The results showed that CDs reduced the formation of the isomerization product isoAsp during peptide deamidation. This finding might help to better understand the role of CDs during the protein-aggregation process.
Collapse
Affiliation(s)
- Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | - Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
34
|
Healey RD, Prasad S, Rajendram V, Thordarson P. Unravelling the interaction between α-cyclodextrin with the thaumatin protein and a peptide mimic. Supramol Chem 2014. [DOI: 10.1080/10610278.2014.956745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Robert D. Healey
- School of Chemistry and Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW2052, Australia
| | - Shiva Prasad
- Neptune Bio-Innovations Pty. Ltd., 140 Wicks Road, North Ryde, NSW2113, Australia
| | - Vijaya Rajendram
- Neptune Bio-Innovations Pty. Ltd., 140 Wicks Road, North Ryde, NSW2113, Australia
| | - Pall Thordarson
- School of Chemistry and Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
35
|
Chemerovski-Glikman M, Richman M, Rahimipour S. Structure-based study of antiamyloidogenic cyclic d,l-α-peptides. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
|
37
|
Lee HH, Choi TS, Lee SJC, Lee JW, Park J, Ko YH, Kim WJ, Kim K, Kim HI. Supramolecular Inhibition of Amyloid Fibrillation by Cucurbit[7]uril. Angew Chem Int Ed Engl 2014; 53:7461-5. [DOI: 10.1002/anie.201402496] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/26/2014] [Indexed: 11/11/2022]
|
38
|
Lee HH, Choi TS, Lee SJC, Lee JW, Park J, Ko YH, Kim WJ, Kim K, Kim HI. Supramolecular Inhibition of Amyloid Fibrillation by Cucurbit[7]uril. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402496] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:331-9. [DOI: 10.1007/s00249-014-0965-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
40
|
Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. Chembiochem 2013; 14:1692-704. [PMID: 23983094 DOI: 10.1002/cbic.201300262] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is the most common of the protein misfolding ("amyloid") diseases. The deposits in the brains of afflicted patients contain as a major fraction an aggregated insoluble form of the so-called amyloid β-peptides (Aβ peptides): fragments of the amyloid precursor protein of 39-43 residues in length. This review focuses on biophysical studies of the Aβ peptides: that is, of the aggregation pathways and intermediates observed during aggregation, of the molecular structures observed along these pathways, and of the interactions of Aβ with Cu and Zn ions and with small molecules that modify the aggregation pathways. Particular emphasis is placed on studies based on high-resolution and solid-state NMR methods. Theoretical studies relating to the interactions are also included. An emerging picture is that of Aβ peptides in aqueous solution undergoing hydrophobic collapse together with identical partners. There then follows a relatively slow process leading to more ordered secondary and tertiary (quaternary) structures in the growing aggregates. These aggregates eventually assemble into elongated fibrils visible by electron microscopy. Small molecules or metal ions that interfere with the aggregation processes give rise to a variety of aggregation products that may be studied in vitro and considered in relation to observations in cell cultures or in vivo. Although the heterogeneous nature of the processes makes detailed structural studies difficult, knowledge and understanding of the underlying physical chemistry might provide a basis for future therapeutic strategies against the disease. A final part of the review deals with the interactions that may occur between the Aβ peptides and the prion protein, where the latter is involved in other protein misfolding diseases.
Collapse
Affiliation(s)
- Sebastian Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 106 91 Stockholm (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wong HE, Irwin JA, Kwon I. Halogenation generates effective modulators of amyloid-Beta aggregation and neurotoxicity. PLoS One 2013; 8:e57288. [PMID: 23468958 PMCID: PMC3585355 DOI: 10.1371/journal.pone.0057288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Halogenation of organic compounds plays diverse roles in biochemistry, including selective chemical modification of proteins and improved oral absorption/blood-brain barrier permeability of drug candidates. Moreover, halogenation of aromatic molecules greatly affects aromatic interaction-mediated self-assembly processes, including amyloid fibril formation. Perturbation of the aromatic interaction caused by halogenation of peptide building blocks is known to affect the morphology and other physical properties of the fibrillar structure. Consequently, in this article, we investigated the ability of halogenated ligands to modulate the self-assembly of amyloidogenic peptide/protein. As a model system, we chose amyloid-beta peptide (Aβ), which is implicated in Alzheimer’s disease, and a novel modulator of Aβ aggregation, erythrosine B (ERB). Considering that four halogen atoms are attached to the xanthene benzoate group in ERB, we hypothesized that halogenation of the xanthene benzoate plays a critical role in modulating Aβ aggregation and cytotoxicity. Therefore, we evaluated the modulating capacities of four ERB analogs containing different types and numbers of halogen atoms as well as fluorescein as a negative control. We found that fluorescein is not an effective modulator of Aβ aggregation and cytotoxicity. However, halogenation of either the xanthenes or benzoate ring of fluorescein substantially enhanced the inhibitory capacity on Aβ aggregation. Such Aβ aggregation inhibition by ERB analogs except rose bengal correlated well to the inhibition of Aβ cytotoxicity. To our knowledge, this is the first report demonstrating that halogenation of aromatic rings substantially enhance inhibitory capacities of small molecules on Aβ-associated neurotoxicity via Aβ aggregation modulation.
Collapse
Affiliation(s)
- H. Edward Wong
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, Unites States of America
| | - Jacob A. Irwin
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, Unites States of America
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, Unites States of America
- Institutes on Aging, University of Virginia, Charlottesville, Virginia, Unites States of America
- * E-mail:
| |
Collapse
|