1
|
Barreiro-Lage D, Ledentu V, D'Ascenzi J, Huix-Rotllant M, Ferré N. Investigating the Origin of Automatic Rhodopsin Modeling Outliers Using the Microbial Gloeobacter Rhodopsin as Testbed. J Phys Chem B 2024; 128:12368-12378. [PMID: 39655718 DOI: 10.1021/acs.jpcb.4c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The automatic rhodopsin modeling (ARM) approach is a computational workflow devised for the automatic buildup of hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild-type rhodopsins and mutants, with the purpose of establishing trends in their photophysical and photochemical properties. Despite the success of ARM in accurately describing the visible light absorption maxima of many rhodopsins, for a few cases, called outliers, it might lead to large deviations with respect to experiments. Applying ARM toGloeobacter rhodopsin (GR), a microbial rhodopsin with important applications in optogenetics, we analyze the origin of such outliers in the absorption energies obtained for GR wild-type and mutants at neutral pH, with a total root-mean-square deviation (RMSD) of 0.42 eV with respect to the experimental GR excitation energies. Having discussed the importance and the uncertainty of one particular amino-acid pKa, namely histidine at position 87, we propose and test several modifications to the standard ARM protocol: (i) improved pKa predictions along with the consideration of several protonation microstates, (ii) attenuation of the opsin electrostatic potential at short-range, (iii) substitution of the state-average complete active space (CAS) electronic structure method by its state-specific approach, and (iv) complete replacement of CAS with mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT). The best RMSD result we obtain is 0.2 eV combining the protonation of H87 and using MRSF/CAMH-B3LYP.
Collapse
Affiliation(s)
| | | | - Jacopo D'Ascenzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli studi di Perugia, 06123 Perugia, Italy
| | | | - Nicolas Ferré
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
2
|
Brown LS. An affordable convertible: Engineering proton transfer pathways in microbial rhodopsins. Biophys J 2024; 123:4147-4149. [PMID: 39175197 DOI: 10.1016/j.bpj.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Hour C, Chuon K, Song MC, Shim JG, Cho SG, Kang KW, Kim JH, Jung KH. Unveiling the critical role of K + for xanthorhodopsin expression in E. coli. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112976. [PMID: 39002191 DOI: 10.1016/j.jphotobiol.2024.112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Xanthorhodopsin (XR), a retinal-binding 7-transmembrane protein isolated from the eubacterium Salinibacter ruber, utilizes two chromophores (retinal and salinixanthin (SAL)) as an outward proton pump and energy-donating carotenoid. However, research on XR has been impeded owing to limitations in achieving heterogeneous expression of stable forms and high production levels of both wild-type and mutants. We successfully expressed wild-type and mutant XRs in Escherichia coli in the presence of K+. Achieving XR expression requires significant K+ and a low inducer concentration. In particular, we highlight the significance of Ser-159 in helix E located near Gly-156 (a carotenoid-binding position) as a critical site for XR expression. Our findings indicate that replacing Ser-159 with a smaller amino acid, alanine, can enhance XR expression in a manner comparable to K+, implying that Ser-159 poses a steric hindrance for pigment formation in XR. In the presence of K+, the proton pumping and photocycle of the wild-type and mutants were characterized and compared; the wild-type result suggests similar properties to the first reported XR isolation from the S. ruber membrane fraction. We propose that the K+ gradient across the cell membrane of S. ruber serves to uphold the membrane potential of the organism and plays a role in the expression of proteins, such as XR, as demonstrated in our study. Our findings deepen the understanding of adaptive protein expression, particularly in halophilic organisms. We highlight salt selection as a promising strategy for improving protein yield and functionality.
Collapse
Affiliation(s)
- Chenda Hour
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Myung-Chul Song
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea; Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea
| | - Kun-Wook Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea.
| |
Collapse
|
4
|
Noji T, Chiba Y, Saito K, Ishikita H. Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin. Biochemistry 2024; 63:1505-1512. [PMID: 38745402 PMCID: PMC11155677 DOI: 10.1021/acs.biochem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Nikolaev DM, Shtyrov AA, Vyazmin SY, Vasin AV, Panov MS, Ryazantsev MN. Fluorescence of the Retinal Chromophore in Microbial and Animal Rhodopsins. Int J Mol Sci 2023; 24:17269. [PMID: 38139098 PMCID: PMC10743670 DOI: 10.3390/ijms242417269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Fluorescence of the vast majority of natural opsin-based photoactive proteins is extremely low, in accordance with their functions that depend on efficient transduction of absorbed light energy. However, several recently proposed classes of engineered rhodopsins with enhanced fluorescence, along with the discovery of a new natural highly fluorescent rhodopsin, NeoR, opened a way to exploit these transmembrane proteins as fluorescent sensors and draw more attention to studies on this untypical rhodopsin property. Here, we review the available data on the fluorescence of the retinal chromophore in microbial and animal rhodopsins and their photocycle intermediates, as well as different isomers of the protonated retinal Schiff base in various solvents and the gas phase.
Collapse
Affiliation(s)
- Dmitrii M. Nikolaev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
| | - Andrey A. Shtyrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
| | - Sergey Yu. Vyazmin
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., 195251 St. Petersburg, Russia
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
- Center for Biophysical Studies, St. Petersburg State Chemical Pharmaceutical University, Professor Popov str. 14, lit. A, 197022 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
| |
Collapse
|
6
|
Petrovskaya LE, Siletsky SA, Mamedov MD, Lukashev EP, Balashov SP, Dolgikh DA, Kirpichnikov MP. Features of the Mechanism of Proton Transport in ESR, Retinal Protein from Exiguobacterium sibiricum. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1544-1554. [PMID: 38105023 DOI: 10.1134/s0006297923100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
7
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Gorriti MF, Bamann C, Alonso-Reyes DG, Wood P, Bamberg E, Farías ME, Gärtner W, Albarracín VH. Functional characterization of xanthorhodopsin in Salinivibrio socompensis, a novel halophile isolated from modern stromatolites. Photochem Photobiol Sci 2023; 22:1809-1823. [PMID: 37036621 DOI: 10.1007/s43630-023-00412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.
Collapse
Affiliation(s)
- Marta F Gorriti
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Christian Bamann
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT) CCT, CONICET, Facultad de Agronomía, Zootecnia y Veterinaria, Finca El Manantial, UNT, Camino de Sirga s/n (4107), Yerba Buena, Tucumán, Argentina
- Institute for Analytical Chemistry, University of Leipzig, Johannisallee 29, Leipzig, 04103, Germany
| | - Phillip Wood
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - Ernst Bamberg
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, 60438, Germany
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Johannisallee 29, Leipzig, 04103, Germany
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica (CIME, CONICET, UNT) CCT, CONICET, Facultad de Agronomía, Zootecnia y Veterinaria, Finca El Manantial, UNT, Camino de Sirga s/n (4107), Yerba Buena, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina.
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Centro Universitario Ing. R. Herrera (Ex Quinta Agronómica), Avda. Pte. N. Kirchner 1900., San Miguel de Tucumán, 4000, Tucumán, Argentina.
| |
Collapse
|
9
|
Okhrimenko IS, Kovalev K, Petrovskaya LE, Ilyinsky NS, Alekseev AA, Marin E, Rokitskaya TI, Antonenko YN, Siletsky SA, Popov PA, Zagryadskaya YA, Soloviov DV, Chizhov IV, Zabelskii DV, Ryzhykau YL, Vlasov AV, Kuklin AI, Bogorodskiy AO, Mikhailov AE, Sidorov DV, Bukhalovich S, Tsybrov F, Bukhdruker S, Vlasova AD, Borshchevskiy VI, Dolgikh DA, Kirpichnikov MP, Bamberg E, Gordeliy VI. Mirror proteorhodopsins. Commun Chem 2023; 6:88. [PMID: 37130895 PMCID: PMC10154332 DOI: 10.1038/s42004-023-00884-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.
Collapse
Affiliation(s)
- Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Lada E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr A Popov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Igor V Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil V Sidorov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin I Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, Grenoble, France.
| |
Collapse
|
10
|
Petrovskaya LE, Lukashev EP, Mamedov MD, Kryukova EA, Balashov SP, Dolgikh DA, Rubin AB, Kirpichnikov MP, Siletsky SA. Oriented Insertion of ESR-Containing Hybrid Proteins in Proteoliposomes. Int J Mol Sci 2023; 24:ijms24087369. [PMID: 37108532 PMCID: PMC10138546 DOI: 10.3390/ijms24087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from Exiguobacterium sibiricum, ESR, as a model. Three ESR hybrids with soluble protein domains (mCherry or thioredoxin at the C-terminus and Caf1M chaperone at the N-terminus) were obtained and characterized. The photocycle of the hybrid proteins incorporated in proteoliposomes demonstrated a higher pKa of the M state accumulation compared to that of the wild-type ESR. Large negative electrogenic phases and an increase in the relative amplitude of kinetic components in the microsecond time range in the kinetics of membrane potential generation of ESR-Cherry and ESR-Trx indicate a decrease in the efficiency of transmembrane proton transport. On the contrary, Caf-ESR demonstrates a native-like kinetics of membrane potential generation and the corresponding electrogenic stages. Our experiments show that the hybrid with Caf1M promotes the unidirectional orientation of ESR in proteoliposomes.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Evgeniy P Lukashev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Dmitry A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Andrei B Rubin
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Petrovskaya LE, Lukashev EP, Lyukmanova EN, Shulepko MA, Kryukova EA, Ziganshin RH, Dolgikh DA, Maksimov EG, Rubin AB, Kirpichnikov MP, Lanyi JK, Balashov SP. Expression of Xanthorhodopsin in Escherichia coli. Protein J 2023:10.1007/s10930-023-10109-5. [DOI: 10.1007/s10930-023-10109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
|
12
|
Belikov NE, Petrovskaya LE, Kryukova EA, Dolgikh DA, Lukashev EP, Lukin AY, Demina OV, Varfolomeev SD, Chupin VV, Khodonov AA. Interaction of the Fluorophenyl Analog of Retinal with Proteorhodopsin from Exiguobacterium sibiricum. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract—
We have developed an alternative method for the synthesis of an analog of natural retinal, which contains the p-fluorophenyl fragment instead of the trimethylcyclohexene ring. The proposed scheme for the synthesis of the target all-E-isomer of the target retinoid consists of using C5-phosphonate that contains the terminal nitrile group under Horner–Emmons reaction conditions. It has been shown that this scheme is more efficient and provides a higher total yield of the target product than the previously described variant. The procedure has been developed for the preparation of an analog of microbial proteorhodopsin ESRh from Exiguobacterium sibiricum, which contains a modified chromophore. It has been found that, as in the case of bacterioopsin from Halobacterium salinarum, the replacement of the trimethylcyclohexene ring in the natural chromophore by the p-fluorophenyl fragment does not prevent the formation of the artificial pigment F-Phe-ESRh from proteorhodopsin ESRh, which preserves the cycle of photochemical reactions. Certain differences have been found between the properties of native recombinant ESRh and its analog F-Phe-ESRh including a shift in the absorption maximum to the short-wavelength region, the formation of M intermediate at lower pH values, the presence of “long-lived M,” and a general slowdown in the photocycle. The reduced stability of the resulting proteorhodopsin analog F-Phe-ESRh to prolonged exposure to visible light has been also demonstrated.
Collapse
|
13
|
Petrovskaya LE, Lukashev EP, Siletsky SA, Imasheva ES, Wang JM, Mamedov MD, Kryukova EA, Dolgikh DA, Rubin AB, Kirpichnikov MP, Balashov SP, Lanyi JK. Proton transfer reactions in donor site mutants of ESR, a retinal protein from Exiguobacterium sibiricum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112529. [PMID: 35878544 DOI: 10.1016/j.jphotobiol.2022.112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Light-driven proton transport by microbial retinal proteins such as archaeal bacteriorhodopsin involves carboxylic residues as internal proton donors to the catalytic center which is a retinal Schiff base (SB). The proton donor, Asp96 in bacteriorhodopsin, supplies a proton to the transiently deprotonated Schiff base during the photochemical cycle. Subsequent proton uptake resets the protonated state of the donor. This two step process became a distinctive signature of retinal based proton pumps. Similar steps are observed also in many natural variants of bacterial proteorhodopsins and xanthorhodopsins where glutamic acid residues serve as a proton donor. Recently, however, an exception to this rule was found. A retinal protein from Exiguobacterium sibiricum, ESR, contains a Lys residue in place of Asp or Glu, which facilitates proton transfer from the bulk to the SB. Lys96 can be functionally replaced with the more common donor residues, Asp or Glu. Proton transfer to the SB in the mutants containing these replacements (K96E and K96D/A47T) is much faster than in the proteins lacking the proton donor (K96A and similar mutants), and in the case of K96D/A47T, comparable with that in the wild type, indicating that carboxylic residues can replace Lys96 as proton donors in ESR. We show here that there are important differences in the functioning of these residues in ESR from the way Asp96 functions in bacteriorhodopsin. Reprotonation of the SB and proton uptake from the bulk occur almost simultaneously during the M to N transition (as in the wild type ESR at neutral pH), whereas in bacteriorhodopsin these two steps are well separated in time and occur during the M to N and N to O transitions, respectively.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
| | - Evgeniy P Lukashev
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| | - Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jennifer M Wang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Andrei B Rubin
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| | - Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Sumikawa M, Abe-Yoshizumi R, Uchihashi T, Kandori H. Mechanism of the Irreversible Transition from Pentamer to Monomer at pH 2 in a Blue Proteorhodopsin. Biochemistry 2022; 61:1936-1944. [PMID: 36007110 DOI: 10.1021/acs.biochem.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified as blue-absorbing PRs (BPR; λmax ∼ 490 nm) and green-absorbing PRs (GPR; λmax ∼ 525 nm). We previously converted BPR into GPR using an anomalous pH effect, which was achieved by an irreversible process at around pH 2. Recent size-exclusion chromatography (SEC) and atomic force microscopy (AFM) analyses of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect owing to the irreversible transition from pentamer to monomer. Different pKa values of the Schiff base counterion between pentamer and monomer lead to different colors at the same pH. Here, we incorporate systematic mutation into VcBPR and examine the anomalous pH effect. The anomalous pH effect was observed for the mutants of key residues near the retinal chromophore such as D76N, D206N, and Q84L, indicating that the Schiff base counterions and the L/Q switch do not affect the irreversible transition from pentamer to monomer at pH ∼ 2. We then focus on the two specific interactions at the intermonomer interface in a pentamer, E29/R30/D31 and W13/H54. Single mutants such as E29Q, R30A, W13A, and H54A and the wild type (WT) exhibited an anomalous pH effect. In contrast, the anomalous pH effect was lost for E29Q/H54A, R30A/H54A, and W13A/E29Q. Size-exclusion chromatography (SEC) and atomic force microscopy (AFM) measurements showed monomer forms in the original states of the double mutants, being a clear contrast to the pentamer forms of all single mutants in the original states. It was concluded that the pentamer structure of VcBPR was stabilized by an electrostatic interaction in the E29/R30/D31 region and a hydrogen-bonding interaction in the W13/H54 region, which was disrupted at pH 2 and converted into monomers.
Collapse
Affiliation(s)
- Mizuki Sumikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
15
|
Application of direct electrometry in studies of microbial rhodopsins reconstituted in proteoliposomes. Biophys Rev 2022; 14:771-778. [PMID: 36124261 PMCID: PMC9481854 DOI: 10.1007/s12551-022-00986-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial rhodopsins are the family of retinal-containing proteins that perform primarily the light-driven transmembrane ion transport and sensory functions. They are widely distributed in nature and can be used for optogenetic control of the cellular activities by light. Functioning of microbial rhodopsins results in generation of the transmembrane electric potential in response to a flash that can be measured by direct time-resolved electrometry. This method was developed by L. Drachev and his colleagues at the Belozersky Institute and successfully applied in the functional studies of microbial rhodopsins. First measurements were performed using bacteriorhodopsin from Halobacterium salinarum-the prototype member of the microbial retinal protein family. Later, direct electrometric studies were conducted with proteorhodopsin from Exiguobacterium sibiricum (ESR), the sodium pump from Dokdonia, and other proteins. They allowed detailed characterization of the charge transfer steps during the photocycle of microbial rhodopsins and provided new insights for profound understanding of their mechanism of action.
Collapse
|
16
|
Brown LS. Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183867. [PMID: 35051382 DOI: 10.1016/j.bbamem.2022.183867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
In the last twenty years, our understanding of the rules and mechanisms for the outward light-driven proton transport (and underlying proton transfers) by microbial rhodopsins has been changing dramatically. It transitioned from a very detailed atomic-level understanding of proton transport by bacteriorhodopsin, the prototypical proton pump, to a confounding variety of sequence motifs, mechanisms, directions, and modes of transport in its newly found homologs. In this review, we will summarize and discuss experimental data obtained on new microbial rhodopsin variants, highlighting their contribution to the refinement and generalization of the ideas crystallized in the previous century. In particular, we will focus on the proton transport (and transfers) vectoriality and their structural determinants, which, in many cases, remain unidentified.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
17
|
Sugimoto T, Katayama K, Kandori H. Role of Thr82 for the unique photochemistry of TAT rhodopsin. Biophys Physicobiol 2021; 18:108-115. [PMID: 34026400 PMCID: PMC8116198 DOI: 10.2142/biophysico.bppb-v18.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022] Open
Abstract
Marine bacterial TAT rhodopsin possesses the pKa of the retinal Schiff base, the chromophore, at neutral pH, and photoexcitation of the visible protonated state forms the isomerized 13-cis state, but reverts to the original state within 10–5 sec. To understand the origin of these unique molecular properties of TAT rhodopsin, we mutated Thr82 into Asp, because many microbial rhodopsins contain Asp at the corresponding position as the Schiff base counterion. A pH titration study revealed that the pKa of the Schiff base increased considerably in T82D (>10.5), and that the pKa of the counterion, which is likely to be D82, is 8.1. It was thus concluded that T82 is the origin of the neutral pKa of the Schiff base in TAT rhodopsin. The photocycle of T82D TAT rhodopsin exhibited strong pH dependence. When pH is lower than the pKa of the counterion (pH <8.1), formation of the primary K intermediate was observed by low-temperature UV-visible spectroscopy, but flash photolysis failed to monitor photointermdiates at >10–5 sec. The results were identical for the wild-type TAT rhodopsin. In contrast, when pH was higher than the pKa of the counterion, we observed the formation of the M intermediate, which decayed with the time constants of 3.75 ms and 12.2 sec. It is likely that the protonation state of D82 dramatically switches the photoreaction dynamics of T82D, whose duration lies between <10–5 sec and >10 sec. It was thus concluded that T82 is one of the determinants of the unique photochemistry of TAT rhodopsin.
Collapse
Affiliation(s)
- Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
18
|
Smitienko OA, Feldman TB, Petrovskaya LE, Nekrasova OV, Yakovleva MA, Shelaev IV, Gostev FE, Cherepanov DA, Kolchugina IB, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. J Phys Chem B 2021; 125:995-1008. [PMID: 33475375 DOI: 10.1021/acs.jpcb.0c07763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stages of the Exiguobacterium sibiricum rhodopsin (ESR) photocycle were investigated by femtosecond absorption laser spectroscopy in the spectral range of 400-900 nm with a time resolution of 25 fs. The dynamics of the ESR photoreaction were compared with the reactions of bacteriorhodopsin (bR) in purple membranes (bRPM) and in recombinant form (bRrec). The primary intermediates of the ESR photocycle were similar to intermediates I, J, and K in bacteriorhodopsin photoconversion. The CONTIN program was applied to analyze the characteristic times of the observed processes and to clarify the reaction scheme. A similar photoreaction pattern was observed for all studied retinal proteins, including two consecutive dynamic Stokes shift phases lasting ∼0.05 and ∼0.15 ps. The excited state decays through a femtosecond reactive pathway, leading to retinal isomerization and formation of product J, and a picosecond nonreactive pathway that leads only to the initial state. Retinal photoisomerization in ESR takes 0.69 ps, compared with 0.48 ps in bRPM and 0.74 ps in bRrec. The nonreactive excited state decay takes 5 ps in ESR and ∼3 ps in bR. We discuss the similarity of the primary reactions of ESR and other retinal proteins.
Collapse
Affiliation(s)
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Oksana V Nekrasova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | | | - Ivan V Shelaev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | | | - Irina B Kolchugina
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Dolgikh
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
19
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
20
|
His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148328. [PMID: 33075275 DOI: 10.1016/j.bbabio.2020.148328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
ESR, a light-driven proton pump from Exiguobacterium sibiricum, contains a lysine residue (Lys96) in the proton donor site. Substitution of Lys96 with a nonionizable residue greatly slows reprotonation of the retinal Schiff base. The recent study of electrogenicity of the K96A mutant revealed that overall efficiency of proton transport is decreased in the mutant due to back reactions (Siletsky et al., BBA, 2019). Similar to members of the proteorhodopsin and xanthorhodopsin families, in ESR the primary proton acceptor from the Schiff base, Asp85, closely interacts with His57. To examine the role of His57 in the efficiency of proton translocation by ESR, we studied the effects of H57N and H57N/K96A mutations on the pH dependence of light-induced pH changes in suspensions of Escherichia coli cells, kinetics of absorption changes and electrogenic proton transfer reactions during the photocycle. We found that at low pH (<5) the proton pumping efficiency of the H57N mutant in E. coli cells and its electrogenic efficiency in proteoliposomes is substantially higher than in the WT, suggesting that interaction of His57 with Asp85 sets the low pH limit for H+ pumping in ESR. The electrogenic components that correspond to proton uptake were strongly accelerated at low pH in the mutant indicating that Lys96 functions as a very efficient proton donor at low pH. In the H57N/K96A mutant, a higher H+ pumping efficiency compared with K96A was observed especially at high pH, apparently from eliminating back reactions between Asp85 and the Schiff base by the H57N mutation.
Collapse
|
21
|
Bandyopadhyay D, Bhatnagar A, Jain S, Pratyaksh P. Selective Stabilization of Aspartic Acid Protonation State within a Given Protein Conformation Occurs via Specific "Molecular Association". J Phys Chem B 2020; 124:5350-5361. [PMID: 32484348 DOI: 10.1021/acs.jpcb.0c02629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins involved in proton-/electron-transfer processes often possess "functional" aspartates/aspartic acids (Asp) with variable protonation states. The mechanism of Asp protonation-deprotonation within proteins is unclear. Two questions were asked-the possible types of determinants responsible for Asp protonation-deprotonation and the spatial arrangements of the determinants leading to selective stabilization. The questions were analyzed using nine different solvent models, which scanned the complete protein dielectric range, and four protein models, which illustrated the spatial arrangements around Asp, termed as "molecular association". The methods employed were quantum chemical calculations and constant pH simulations. The types of the determinants identified were charge-charge interaction, H bonding, dipole-π interaction, extended electronic conjugation, dielectric effect, and solvent accessibility. All solvent-exposed Asp [buried fraction (BF) less than 0.5] were aspartates, and buried Asp were either aspartic acids or aspartates, each having a different "molecular association". The exposed aspartates were stabilized via a H-bonding network with bulk water, buried aspartates via salt bridge or, minimum, two intramolecular H bonds, and buried aspartic acids via, minimum, one intramolecular H bond. An "acid-alcohol pair" (involving Ser/Thr/Tyr) was a common determinant to any "functional" buried aspartate/aspartic acid. Higher energy "molecular associations" observed within proteins compared to those within water, presumably, indicated easy molecular restructuring and alteration of the Asp protonation states during a protein-mediated proton/electron transfer.
Collapse
Affiliation(s)
- Debashree Bandyopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad campus, Hyderabad 500078, India
| | - Akshay Bhatnagar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad campus, Hyderabad 500078, India
| | - Shobhit Jain
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad campus, Hyderabad 500078, India
| | - Prabhav Pratyaksh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad campus, Hyderabad 500078, India
| |
Collapse
|
22
|
Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:1-11. [DOI: 10.1016/j.bbabio.2018.09.365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 11/20/2022]
|
23
|
The effect of the chromophoric group modification on the optical properties of retinal proteins. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
25
|
Shevchenko V, Mager T, Kovalev K, Polovinkin V, Alekseev A, Juettner J, Chizhov I, Bamann C, Vavourakis C, Ghai R, Gushchin I, Borshchevskiy V, Rogachev A, Melnikov I, Popov A, Balandin T, Rodriguez-Valera F, Manstein DJ, Bueldt G, Bamberg E, Gordeliy V. Inward H + pump xenorhodopsin: Mechanism and alternative optogenetic approach. SCIENCE ADVANCES 2017; 3:e1603187. [PMID: 28948217 PMCID: PMC5609834 DOI: 10.1126/sciadv.1603187] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina (NsXeR) and suggest a mechanism of inward proton pumping. We demonstrate that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.
Collapse
Affiliation(s)
- Vitaly Shevchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Thomas Mager
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kirill Kovalev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes–Commissariat à l’Energie Atomique et aux Energies Alternatives–CNRS, Grenoble, France
| | - Alexey Alekseev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Josephine Juettner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Charlotte Vavourakis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ivan Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, Dubna, Russia
| | - Igor Melnikov
- European Synchrotron Radiation Facility, 38027 Grenoble, France
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38027 Grenoble, France
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Georg Bueldt
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes–Commissariat à l’Energie Atomique et aux Energies Alternatives–CNRS, Grenoble, France
| |
Collapse
|
26
|
Urmann D, Lorenz C, Linker SM, Braun M, Wachtveitl J, Bamann C. Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson. Photochem Photobiol 2017; 93:782-795. [DOI: 10.1111/php.12741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- David Urmann
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Charlotte Lorenz
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Stephanie M. Linker
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Christian Bamann
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| |
Collapse
|
27
|
Köhler T, Weber I, Glaubitz C, Wachtveitl J. Proteorhodopsin Photocycle Kinetics Between pH 5 and pH 9. Photochem Photobiol 2017; 93:762-771. [DOI: 10.1111/php.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Köhler
- Institute of Physical and Theoretical Chemistry; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Ingrid Weber
- Institut für Biophysikalische Chemie; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Clemens Glaubitz
- Institut für Biophysikalische Chemie; Goethe Universität Frankfurt am Main; Frankfurt Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Goethe Universität Frankfurt am Main; Frankfurt Germany
| |
Collapse
|
28
|
Smolensky Koganov E, Leitus G, Rozin R, Weiner L, Friedman N, Sheves M. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies. J Phys Chem B 2017; 121:4333-4340. [PMID: 28379004 DOI: 10.1021/acs.jpcb.6b12670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn2+ and Ca2+, to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn2+ cations to xR is due to the formation of Mn2+ clusters. Our data demonstrate that Ca2+ cations bind to DI-xR with a lower affinity than Mn2+, supporting the assumption that binding of Mn2+ occurs through cluster formation, because Ca2+ cations cannot form clusters in contrast to Mn2+.
Collapse
Affiliation(s)
- Elena Smolensky Koganov
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Gregory Leitus
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Rinat Rozin
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Lev Weiner
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Noga Friedman
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
29
|
Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1741-1750. [DOI: 10.1016/j.bbabio.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 02/01/2023]
|
30
|
Albarracín VH, Kraiselburd I, Bamann C, Wood PG, Bamberg E, Farias ME, Gärtner W. Functional Green-Tuned Proteorhodopsin from Modern Stromatolites. PLoS One 2016; 11:e0154962. [PMID: 27187791 PMCID: PMC4871484 DOI: 10.1371/journal.pone.0154962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 11/18/2022] Open
Abstract
The sequenced genome of the poly-extremophile Exiguobacterium sp. S17, isolated from modern stromatolites at Laguna Socompa (3,570 m), a High-Altitude Andean Lake (HAAL) in Argentinean Puna revealed a putative proteorhodopsin-encoding gene. The HAAL area is exposed to the highest UV irradiation on Earth, making the microbial community living in the stromatolites test cases for survival strategies under extreme conditions. The heterologous expressed protein E17R from Exiguobacterium (248 amino acids, 85% sequence identity to its ortholog ESR from E. sibiricum) was assembled with retinal displaying an absorbance maximum at 524 nm, which makes it a member of the green-absorbing PR-subfamily. Titration down to low pH values (eventually causing partial protein denaturation) indicated a pK value between two and three. Global fitting of data from laser flash-induced absorption changes gave evidence for an early red-shifted intermediate (its formation being below the experimental resolution) that decayed (τ1 = 3.5 μs) into another red-shifted intermediate. This species decayed in a two-step process (τ2 = 84 μs, τ3 = 11 ms), to which the initial state of E17-PR was reformed with a kinetics of 2 ms. Proton transport capability of the HAAL protein was determined by BLM measurements. Additional blue light irradiation reduced the proton current, clearly identifying a blue light absorbing, M-like intermediate. The apparent absence of this intermediate is explained by closely matching formation and decay kinetics.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET. Av. Belgrano y Pasaje Caseros. 4000- S. M. de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, 4000, S. M. de Tucumán, Argentina
- * E-mail: (VHA); (WG)
| | - Ivana Kraiselburd
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Christian Bamann
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Phillip G. Wood
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Ernst Bamberg
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - María Eugenia Farias
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D-45470 Mülheim, Germany
- * E-mail: (VHA); (WG)
| |
Collapse
|
31
|
Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, Sudo Y. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION. J Biol Chem 2016; 291:12223-32. [PMID: 27129243 DOI: 10.1074/jbc.m116.719815] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/01/2023] Open
Abstract
Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- From the Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Kenji Mizutani
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, the Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Taisuke Hasegawa
- the Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Megumi Takahashi
- the Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Naoya Honda
- From the Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Naoki Hashimoto
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Kazumi Shimono
- the Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan, and
| | | | | | - Seiji Miyauchi
- the Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan, and
| | - Shin Takagi
- the Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shigehiko Hayashi
- the Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, the Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan,
| | - Yuki Sudo
- From the Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
32
|
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AHJ. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 2015; 290:29567-77. [PMID: 26483542 PMCID: PMC4705956 DOI: 10.1074/jbc.m115.685065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.
Collapse
Affiliation(s)
- Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| | - Hsu-Yuan Fu
- the Department of Biochemical Science and Technology, College of Life Science, Yen Tjing Ling Industrial Research Institute, and
| | - Chun-Jie Cai
- the Department of Biochemical Science and Technology, College of Life Science
| | - Hsiu-Pin Yi
- the Department of Biochemical Science and Technology, College of Life Science
| | - Chii-Shen Yang
- the Department of Biochemical Science and Technology, College of Life Science, Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Andrew H-J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| |
Collapse
|
33
|
Harris A, Ljumovic M, Bondar AN, Shibata Y, Ito S, Inoue K, Kandori H, Brown LS. A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1518-29. [PMID: 26260121 DOI: 10.1016/j.bbabio.2015.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
One of the main functions of microbial rhodopsins is outward-directed light-driven proton transport across the plasma membrane, which can provide sources of energy alternative to respiration and chlorophyll photosynthesis. Proton-pumping rhodopsins are found in Archaea (Halobacteria), multiple groups of Bacteria, numerous fungi, and some microscopic algae. An overwhelming majority of these proton pumps share the common transport mechanism, in which a proton from the retinal Schiff base is first transferred to the primary proton acceptor (normally an Asp) on the extracellular side of retinal. Next, reprotonation of the Schiff base from the cytoplasmic side is mediated by a carboxylic proton donor (Asp or Glu), which is located on helix C and is usually hydrogen-bonded to Thr or Ser on helix B. The only notable exception from this trend was recently found in Exiguobacterium, where the carboxylic proton donor is replaced by Lys. Here we describe a new group of efficient proteobacterial retinal-binding light-driven proton pumps which lack the carboxylic proton donor on helix C (most often replaced by Gly) but possess a unique His residue on helix B. We characterize the group spectroscopically and propose that this histidine forms a proton-donating complex compensating for the loss of the carboxylic proton donor.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, ON, Canada
| | | | | | - Yohei Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan; PRESTO, Japan Science and Technology Agency, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.
| | - Leonid S Brown
- Department of Physics, University of Guelph, ON, Canada.
| |
Collapse
|
34
|
Inoue K, Kato Y, Kandori H. Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol 2015; 23:91-8. [PMID: 25432080 DOI: 10.1016/j.tim.2014.10.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/25/2022]
Abstract
Microbial rhodopsins are the photoreceptive membrane proteins found in diverse microorganisms from within Archaea, Eubacteria, and eukaryotes. They have a hep-tahelical transmembrane structure that binds to an all-trans retinal chromophore. Since 2000, thousands of proteorhodopsins, genes of light-driven proton pump rhodopsins, have been identified from various species of marine bacteria. This suggests that they are used for the conversion of light into chemical energy, contribut-ing to carbon circulation related to ATP synthesis in the ocean. Furthermore, novel types of rhodopsin (sodium and chloride pumps) have recently been discovered. Here, we review recent progress in our understanding of ion-transporting rhodopsins of marine bacteria, based mainly on biophysical and biochemical research.
Collapse
|
35
|
Petrovskaya LE, Balashov SP, Lukashev EP, Imasheva ES, Gushchin IY, Dioumaev AK, Rubin AB, Dolgikh DA, Gordeliy VI, Lanyi JK, Kirpichnikov MP. ESR — A retinal protein with unusual properties from Exiguobacterium sibiricum. BIOCHEMISTRY (MOSCOW) 2015; 80:688-700. [DOI: 10.1134/s000629791506005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Balashov SP, Imasheva ES, Dioumaev A, Wang JM, Jung KH, Lanyi JK. Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle. Biochemistry 2014; 53:7549-61. [PMID: 25375769 PMCID: PMC4263435 DOI: 10.1021/bi501064n] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/17/2014] [Indexed: 02/06/2023]
Abstract
A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type.
Collapse
Affiliation(s)
- Sergei P. Balashov
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Eleonora S. Imasheva
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Andrei
K. Dioumaev
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Jennifer M. Wang
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Kwang-Hwan Jung
- Department
of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Korea
| | - Janos K. Lanyi
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| |
Collapse
|
37
|
Abstract
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life. A member of this protein family, Archaerhodopsin-3 (Arch) of halobacterium Halorubrum sodomense, was recently shown to function as a fluorescent indicator of membrane potential when expressed in mammalian neurons. Arch fluorescence, however, is very dim and is not optimal for applications in live-cell imaging. We used directed evolution to identify mutations that dramatically improve the absolute brightness of Arch, as confirmed biochemically and with live-cell imaging (in Escherichia coli and human embryonic kidney 293 cells). In some fluorescent Arch variants, the pK(a) of the protonated Schiff-base linkage to retinal is near neutral pH, a useful feature for voltage-sensing applications. These bright Arch variants enable labeling of biological membranes in the far-red/infrared and exhibit the furthest red-shifted fluorescence emission thus far reported for a fluorescent protein (maximal excitation/emission at ∼ 620 nm/730 nm).
Collapse
|
38
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
39
|
Vogt A, Wietek J, Hegemann P. Gloeobacter rhodopsin, limitation of proton pumping at high electrochemical load. Biophys J 2013; 105:2055-63. [PMID: 24209850 PMCID: PMC3824519 DOI: 10.1016/j.bpj.2013.08.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/05/2013] [Accepted: 08/28/2013] [Indexed: 12/29/2022] Open
Abstract
We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pH(o) and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H(+) into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pK(a) of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pK(a) is an acceleration of the photocycle and high pump turnover at high light intensities.
Collapse
Affiliation(s)
| | | | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
41
|
Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, Luecke H. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1965-80. [DOI: 10.1107/s0907444913017575] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/26/2013] [Indexed: 11/10/2022]
Abstract
Proteorhodopsins (PRs), members of the microbial rhodopsin superfamily of seven-transmembrane-helix proteins that use retinal chromophores, comprise the largest subfamily of rhodopsins, yet very little structural information is available. PRs are ubiquitous throughout the biosphere and their genes have been sequenced in numerous species of bacteria. They have been shown to exhibit ion-pumping activity like their archaeal homolog bacteriorhodopsin (BR). Here, the first crystal structure of a proteorhodopsin, that of a blue-light-absorbing proteorhodopsin (BPR) isolated from the Mediterranean Sea at a depth of 12 m (Med12BPR), is reported. Six molecules ofMed12BPR form a doughnut-shapedC6hexameric ring, unlike BR, which forms a trimer. Furthermore, the structures of two mutants of a related BPR isolated from the Pacific Ocean near Hawaii at a depth of 75 m (HOT75BPR), which show aC5pentameric arrangement, are reported. In all three structures the retinal polyene chain is shifted towards helixCwhen compared with other microbial rhodopsins, and the putative proton-release group in BPR differs significantly from those of BR and xanthorhodopsin (XR). The most striking feature of proteorhodopsin is the position of the conserved active-site histidine (His75, also found in XR), which forms a hydrogen bond to the proton acceptor from the same molecule (Asp97) and also to Trp34 of a neighboring protomer. Trp34 may function by stabilizing His75 in a conformation that favors a deprotonated Asp97 in the dark state, and suggests cooperative behavior between protomers when the protein is in an oligomeric form. Mutation-induced alterations in proton transfers in the BPR photocycle inEscherichia colicells provide evidence for a similar cross-protomer interaction of BPR in living cells and a functional role of the inter-protomer Trp34–His75 interaction in ion transport. Finally, Wat402, a key molecule responsible for proton translocation between the Schiff base and the proton acceptor in BR, appears to be absent in PR, suggesting that the ion-transfer mechanism may differ between PR and BR.
Collapse
|
42
|
Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc Natl Acad Sci U S A 2013; 110:12631-6. [PMID: 23872846 DOI: 10.1073/pnas.1221629110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-driven proton pumps are present in many organisms. Here, we present a high-resolution structure of a proteorhodopsin from a permafrost bacterium, Exiguobacterium sibiricum rhodopsin (ESR). Contrary to the proton pumps of known structure, ESR possesses three unique features. First, ESR's proton donor is a lysine side chain that is situated very close to the bulk solvent. Second, the α-helical structure in the middle of the helix F is replaced by 3(10)- and π-helix-like elements that are stabilized by the Trp-154 and Asn-224 side chains. This feature is characteristic for the proteorhodopsin family of proteins. Third, the proton release region is connected to the bulk solvent by a chain of water molecules already in the ground state. Despite these peculiarities, the positions of water molecule and amino acid side chains in the immediate Schiff base vicinity are very well conserved. These features make ESR a very unusual proton pump. The presented structure sheds light on the large family of proteorhodopsins, for which structural information was not available previously.
Collapse
|
43
|
Dioumaev AK, Petrovskaya LE, Wang JM, Balashov SP, Dolgikh DA, Kirpichnikov MP, Lanyi JK. Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible. J Phys Chem B 2013; 117:7235-53. [PMID: 23718558 DOI: 10.1021/jp402430w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photocycle of the retinal protein from Exiguobacterium sibiricum, which differs from bacteriorhodopsin in both its primary donor and acceptor, is characterized by visible and infrared spectroscopy. At pH above pKa ~6.5, we find a bacteriorhodopsin-like photocycle, which originates from excitation of the all-trans retinal chromophore with K-, L-, M-, and N-like intermediates. At pH below pKa ~6.5, the M state, which reflects Schiff base deprotonation during proton pumping, is not accumulated. However, using the infrared band at ~1760 cm(-1) as a marker for transient protonation of the primary acceptor, we find that Schiff base deprotonation must have occurred at pH not only above but also below the pKa ~6.5. Thus, the M state is formed but not accumulated for kinetic reasons. Further, chromophore reisomerization from the 13-cis to the all-trans conformation occurs very late in the photocycle. The strongly red-shifted states that dominate the second half of the cycle are produced before the reisomerization step, and by this criterion, they are not O-like but rather N-like states. The assignment of photocycle intermediates enables reevaluation of the photocycle; its specific features are discussed in relation to the general mechanism of proton transport in retinal proteins.
Collapse
Affiliation(s)
- Andrei K Dioumaev
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Brown LS. Eubacterial rhodopsins - unique photosensors and diverse ion pumps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:553-61. [PMID: 23748216 DOI: 10.1016/j.bbabio.2013.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Since the discovery of proteorhodopsins, the ubiquitous marine light-driven proton pumps of eubacteria, a large number of other eubacterial rhodopsins with diverse structures and functions have been characterized. Here, we review the body of knowledge accumulated on the four major groups of eubacterial rhodopsins, with the focus on their biophysical characterization. We discuss advances and controversies on the unique eubacterial sensory rhodopsins (as represented by Anabaena sensory rhodopsin), proton-pumping proteorhodopsins and xanthorhodopsins, as well as novel non-proton ion pumps. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
45
|
Tsukamoto T, Inoue K, Kandori H, Sudo Y. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile. J Biol Chem 2013; 288:21581-92. [PMID: 23740255 DOI: 10.1074/jbc.m113.479394] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
46
|
Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:562-77. [PMID: 23732219 DOI: 10.1016/j.bbabio.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023]
Abstract
Retinal proteins (~rhodopsins) are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices which bind the chromophore retinal (vitamin A aldehyde). They are widely distributed through all three biological kingdoms, eukarya, bacteria and archaea, indicating the biological significance of the retinal proteins. Light absorption by the retinal proteins triggers a photoisomerization of the chromophore, leading to the biological function, light-energy conversion or light-signal transduction. This article reviews molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors and their related proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Japan.
| |
Collapse
|
47
|
Balashov SP, Petrovskaya LE, Imasheva ES, Lukashev EP, Dioumaev AK, Wang JM, Sychev SV, Dolgikh DA, Rubin AB, Kirpichnikov MP, Lanyi JK. Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum. J Biol Chem 2013; 288:21254-21265. [PMID: 23696649 DOI: 10.1074/jbc.m113.465138] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ε-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein.
Collapse
Affiliation(s)
- Sergei P Balashov
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| | - Lada E Petrovskaya
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and.
| | - Eleonora S Imasheva
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Evgeniy P Lukashev
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei K Dioumaev
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Jennifer M Wang
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Sergey V Sychev
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and
| | - Dmitriy A Dolgikh
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei B Rubin
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Janos K Lanyi
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| |
Collapse
|
48
|
Janke C, Scholz F, Becker-Baldus J, Glaubitz C, Wood PG, Bamberg E, Wachtveitl J, Bamann C. Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry 2013; 52:2750-63. [PMID: 23586665 DOI: 10.1021/bi301412n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Retinylidene photoreceptors are ubiquitously present in marine protists as first documented by the identification of green proteorhodopsin (GPR). We present a detailed investigation of a rhodopsin from the protist Oxyrrhis marina (OR1) with respect to its spectroscopic properties and to its vectorial proton transport. Despite its homology to GPR, OR1's features differ markedly in its pH dependence. Protonation of the proton acceptor starts at pH below 4 and is sensitive to the ionic conditions. The mutation of a conserved histidine H62 did not influence the pK(a) value in a similar manner as in other proteorhodopsins where the charged histidine interacts with the proton acceptor forming the so-called His-Asp cluster. Mutational and pH-induced effects were further reflected in the temporal behavior upon light excitation ranging from femtoseconds to seconds. The primary photodynamics exhibits a high sensitivity to the environment of the proton acceptor D100 that are correlated to the different initial states. The mutation of the H62 does not affect photoisomerization at neutral pH. This is in agreement with NMR data indicating the absence of the His-Asp cluster. The subsequent steps in the photocycle revealed protonation reactions at the Schiff base coupled to proton pumping even at low pH. The main electrogenic steps are associated with the reprotonation of the Schiff base and internal proton donor. Hence, OR1 shows a different theme of the His-Asp organization where the low pK(a) of the proton acceptor is not dominated by this interaction, but by other electrostatic factors.
Collapse
Affiliation(s)
- Christian Janke
- Max-Planck-Institut für Biophysik, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Salt bridge in the conserved His-Asp cluster inGloeobacterrhodopsin contributes to trimer formation. FEBS Lett 2013; 587:322-7. [DOI: 10.1016/j.febslet.2012.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022]
|