1
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Tuo W, Xu Y, Fan Y, Li J, Qiu M, Xiong X, Li X, Sun Y. Biomedical applications of Pt(II) metallacycle/metallacage-based agents: From mono-chemotherapy to versatile imaging contrasts and theranostic platforms. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Interference between copper transport systems and platinum drugs. Semin Cancer Biol 2021; 76:173-188. [PMID: 34058339 DOI: 10.1016/j.semcancer.2021.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
Cisplatin, or cis-diamminedichloridoplatinum(II) cis-[PtCl2(NH3)2], is a platinum-based anticancer drug largely used for the treatment of various types of cancers, including testicular, ovarian and colorectal carcinomas, sarcomas, and lymphomas. Together with other platinum-based drugs, cisplatin triggers malignant cell death by binding to nuclear DNA, which appears to be the ultimate target. In addition to passive diffusion across the cell membrane, other transport systems, including endocytosis and some active or facilitated transport mechanisms, are currently proposed to play a pivotal role in the uptake of platinum-based drugs. In this review, an updated view of the current literature regarding the intracellular transport and processing of cisplatin will be presented, with special emphasis on the plasma membrane copper permease CTR1, the Cu-transporting ATPases, ATP7A and ATP7B, located in the trans-Golgi network, and the soluble copper chaperone ATOX1. Their role in eliciting cisplatin efficacy and their exploitation as pharmacological targets will be addressed.
Collapse
|
5
|
Chikhirzhina E, Starkova T, Beljajev A, Polyanichko A, Tomilin A. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int J Mol Sci 2020; 21:E7948. [PMID: 33114717 PMCID: PMC7662367 DOI: 10.3390/ijms21217948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
The functioning of DNA in the cell nucleus is ensured by a multitude of proteins, whose interactions with DNA as well as with other proteins lead to the formation of a complicated, organized, and quite dynamic system known as chromatin. This review is devoted to the description of properties and structure of the progenitors of the most abundant non-histone protein of the HMGB family-the HmgB1 protein. The proteins of the HMGB family are also known as "architectural factors" of chromatin, which play an important role in gene expression, transcription, DNA replication, and repair. However, as soon as HmgB1 goes outside the nucleus, it acquires completely different functions, post-translational modifications, and change of its redox state. Despite a lot of evidence of the functional activity of HmgB1, there are still many issues to be solved related to the mechanisms of the influence of HmgB1 on the development and treatment of different diseases-from oncological and cardiovascular diseases to pathologies during pregnancy and childbirth. Here, we describe molecular structure of the HmgB1 protein and discuss general mechanisms of its interactions with other proteins and DNA in cell.
Collapse
Affiliation(s)
| | | | | | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Tikhoretsky Av. 4, Russia; (T.S.); (A.B.); (A.T.)
| | | |
Collapse
|
6
|
Chikhirzhina EV, Starkova TY, Polyanichko AM. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Lv WL, Arnesano F, Carloni P, Natile G, Rossetti G. Effect of in vivo post-translational modifications of the HMGB1 protein upon binding to platinated DNA: a molecular simulation study. Nucleic Acids Res 2019; 46:11687-11697. [PMID: 30407547 PMCID: PMC6294504 DOI: 10.1093/nar/gky1082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs. Its efficiency is unfortunately severely hampered by resistance. The High Mobility Group Box (HMGB) proteins may sensitize tumor cells to cisplatin by specifically binding to platinated DNA (PtDNA) lesions. In vivo, the HMGB/PtDNA binding is regulated by multisite post-translational modifications (PTMs). The impact of PTMs on the HMGB/PtDNA complex at atomistic level is here investigated by enhanced sampling molecular simulations. The PTMs turn out to affect the structure of the complex, the mobility of several regions (including the platinated site), and the nature of the protein/PtDNA non-covalent interactions. Overall, the multisite PTMs increase significantly the apparent synchrony of all the contacts between the protein and PtDNA. Consequently, the hydrophobic anchoring of the side chain of F37 between the two cross-linked guanines at the platinated site-a key element of the complexes formation - is more stable than in the complex without PTM. These differences can account for the experimentally measured greater affinity for PtDNA of the protein isoforms with PTMs. The collective behavior of multisite PTMs, as revealed here by the synchrony of contacts, may have a general significance for the modulation of intermolecular recognitions occurring in vivo.
Collapse
Affiliation(s)
- Wenping Lyu Lv
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University, 52056 Aachen, Germany.,Computation-Based Science and Technology Research Center, Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giovanni Natile
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52062 Aachen, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
8
|
|
9
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Arnesano F, Nardella MI, Natile G. Platinum drugs, copper transporters and copper chelators. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
12
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc Natl Acad Sci U S A 2017; 114:950-955. [PMID: 28096358 DOI: 10.1073/pnas.1615327114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cisplatin is the most commonly used anticancer drug for the treatment of testicular germ cell tumors (TGCTs). The hypersensitivity of TGCTs to cisplatin is a subject of widespread interest. Here, we show that high-mobility group box protein 4 (HMGB4), a protein preferentially expressed in testes, uniquely blocks excision repair of cisplatin-DNA adducts, 1,2-intrastrand cross-links, to potentiate the sensitivity of TGCTs to cisplatin therapy. We used CRISPR/Cas9-mediated gene editing to knockout the HMGB4 gene in a testicular human embryonic carcinoma and examined cellular responses. We find that loss of HMGB4 elicits resistance to cisplatin as evidenced by cell proliferation and apoptosis assays. We demonstrate that HMGB4 specifically inhibits repair of the major cisplatin-DNA adducts in TGCT cells by using the human TGCT excision repair system. Our findings also reveal characteristic HMGB4-dependent differences in cell cycle progression following cisplatin treatment. Collectively, these data provide convincing evidence that HMGB4 plays a major role in sensitizing TGCTs to cisplatin, consistent with shielding of platinum-DNA adducts from excision repair.
Collapse
|
14
|
Vizoso-Vázquez A, Lamas-Maceiras M, Fernández-Leiro R, Rico-Díaz A, Becerra M, Cerdán ME. Dual function of Ixr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:256-269. [PMID: 27871851 DOI: 10.1016/j.bbagrm.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/30/2022]
Abstract
Ixr1 is a transcriptional factor involved in the response to hypoxia, which is also related to DNA repair. It binds to DNA through its two in-tandem high mobility group box (HMG-box) domains. Each function depends on recognition of different DNA structures, B-form DNA at specific consensus sequences for transcriptional regulation, or distorted DNA, like cisplatin-DNA adducts, for DNA repair. However, the contribution of the HMG-box domains in the Ixr1 protein to the formation of different protein-DNA complexes is poorly understood. We have biophysically and biochemically characterized these interactions with specific DNA sequences from the promoters regulated by Ixr1, or with cisplatin-DNA adducts. Both HMG-boxes are necessary for transcriptional regulation, and they are not functionally interchangeable. The in-tandem arrangement of their HMG-boxes is necessary for functional folding and causes sequential cooperative binding to specific DNA sequences, with HMG-box A showing a higher contribution to DNA binding and bending than the HMG-box B. Binding of Ixr1 HMG boxes to specific DNA sequences is entropy driven, whereas binding to platinated DNA is enthalpy driven for HMG-box A and entropy driven for HMG-box B. This is the first proof that HMG-box binding to different DNA structures is associated with predictable thermodynamic differences. Based on our study, we present a model to explain the dual function of Ixr1 in the regulation of gene expression and recognition of distorted DNA structures caused by cisplatin treatment.
Collapse
Affiliation(s)
- A Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - R Fernández-Leiro
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - A Rico-Díaz
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M Becerra
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M E Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain.
| |
Collapse
|
15
|
Rouhiainen A, Zhao X, Vanttola P, Qian K, Kulesskiy E, Kuja-Panula J, Gransalke K, Grönholm M, Unni E, Meistrich M, Tian L, Auvinen P, Rauvala H. HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Sci Rep 2016; 6:32960. [PMID: 27608812 PMCID: PMC5036535 DOI: 10.1038/srep32960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
HMGB4 is a new member in the family of HMGB proteins that has been characterized in sperm cells, but little is known about its functions in somatic cells. Here we show that HMGB4 and the highly similar rat Transition Protein 4 (HMGB4L1) are expressed in neuronal cells. Both proteins had slow mobility in nucleus of living NIH-3T3 cells. They interacted with histones and their differential expression in transformed cells of the nervous system altered the post-translational modification statuses of histones in vitro. Overexpression of HMGB4 in HEK 293T cells made cells more susceptible to cell death induced by topoisomerase inhibitors in an oncology drug screening array and altered variant composition of histone H3. HMGB4 regulated over 800 genes in HEK 293T cells with a p-value ≤0.013 (n = 3) in a microarray analysis and displayed strongest association with adhesion and histone H2A –processes. In neuronal and transformed cells HMGB4 regulated the expression of an oligodendrocyte marker gene PPP1R14a and other neuronal differentiation marker genes. In conclusion, our data suggests that HMGB4 is a factor that regulates chromatin and expression of neuronal differentiation markers.
Collapse
Affiliation(s)
- Ari Rouhiainen
- Neuroscience center, University of Helsinki, Finland.,Department of Biosciences, University of Helsinki, Finland
| | - Xiang Zhao
- Neuroscience center, University of Helsinki, Finland.,Schools of Pharmacy and Medicine, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Kui Qian
- Institute of Biotechnology, University of Helsinki, Finland
| | - Evgeny Kulesskiy
- Neuroscience center, University of Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland
| | | | | | | | - Emmanual Unni
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Meistrich
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Tian
- Neuroscience center, University of Helsinki, Finland.,Psychiatry Research Center, Beijing Hui Long Guan Hospital, Peking University, Beijing, China
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
16
|
Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev 2016; 116:3436-86. [PMID: 26865551 PMCID: PMC4792284 DOI: 10.1021/acs.chemrev.5b00597] [Citation(s) in RCA: 1714] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
de Abreu da Silva IC, Carneiro VC, Vicentino ARR, Aguilera EA, Mohana-Borges R, Thiengo S, Fernandez MA, Fantappié MR. The distinct C-terminal acidic domains of HMGB proteins are functionally relevant in Schistosoma mansoni. Int J Parasitol 2016; 46:253-62. [PMID: 26820302 DOI: 10.1016/j.ijpara.2015.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 11/17/2022]
Abstract
The Schistosoma mansoni High Mobility Group Box (HMGB) proteins SmHMGB1, SmHMGB2 and SmHMGB3 share highly conserved HMG box DNA binding domains but have significantly different C-terminal acidic tails. Here, we used three full-length and tailless forms of the S. mansoni HMGB proteins to examine the functional roles of their acidic tails. DNA binding assays revealed that the different lengths of the acidic tails among the three SmHMGB proteins significantly and distinctively influenced their DNA transactions. Spectroscopic analyses indicated that the longest acidic tail of SmHMGB3 contributes to the structural stabilisation of this protein. Using immunohistochemical analysis, we showed distinct patterns of SmHMGB1, SmHMGB2 and SmHMGB3 expression in different tissues of adult worms. RNA interference approaches indicated a role for SmHMGB2 and SmHMGB3 in the reproductive system of female worms, whereas for SmHMGB1 no clear phenotype was observed. Schistosome HMGB proteins can be phosphorylated, acetylated and methylated. Importantly, the acetylation and methylation of schistosome HMGBs were greatly enhanced upon removal of the acidic tail. These data support the notion that the C-terminal acidic tails dictate the differences in the structure, expression and function of schistosome HMGB proteins.
Collapse
Affiliation(s)
- Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Silvana Thiengo
- Laboratório de Malacologia, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Brazil
| | | | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5845061. [PMID: 26682011 PMCID: PMC4670870 DOI: 10.1155/2016/5845061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.
Collapse
|
19
|
Chiorazzi A, Semperboni S, Marmiroli P. Current View in Platinum Drug Mechanisms of Peripheral Neurotoxicity. TOXICS 2015; 3:304-321. [PMID: 29051466 PMCID: PMC5606682 DOI: 10.3390/toxics3030304] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/22/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023]
Abstract
Peripheral neurotoxicity is the dose-limiting factor for clinical use of platinum derivatives, a class of anticancer drugs which includes cisplatin, carboplatin, and oxaliplatin. In particular cisplatin and oxaliplatin induce a severe peripheral neurotoxicity while carboplatin is less neurotoxic. The mechanisms proposed to explain these drugs' neurotoxicity are dorsal root ganglia alteration, oxidative stress involvement, and mitochondrial dysfunction. Oxaliplatin also causes an acute and reversible neuropathy, supposed to be due by transient dysfunction of the voltage-gated sodium channels of sensory neurons. Recent studies suggest that individual genetic variation may play a role in the pathogenesis of platinum drug neurotoxicity. Even though all these mechanisms have been investigated, the pathogenesis is far from clearly defined. In this review we will summarize the current knowledge and the most up-to-date hypotheses on the mechanisms of platinum drug-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Alessia Chiorazzi
- Experimental Neurology Unit and Milan Center for Neuroscience, Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza (MB) 20900, Italy.
| | - Sara Semperboni
- Experimental Neurology Unit and Milan Center for Neuroscience, Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza (MB) 20900, Italy.
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza (MB) 20900, Italy.
| | - Paola Marmiroli
- Experimental Neurology Unit and Milan Center for Neuroscience, Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza (MB) 20900, Italy.
| |
Collapse
|
20
|
Fujita M, Watanabe S, Yoshizawa M, Yamamoto J, Iwai S. Analysis of structural flexibility of damaged DNA using thiol-tethered oligonucleotide duplexes. PLoS One 2015; 10:e0117798. [PMID: 25679955 PMCID: PMC4332495 DOI: 10.1371/journal.pone.0117798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6-4) photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6-4) photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA.
Collapse
Affiliation(s)
- Masashi Fujita
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shun Watanabe
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Mariko Yoshizawa
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
- * E-mail:
| |
Collapse
|
21
|
Petit FG, Kervarrec C, Jamin SP, Smagulova F, Hao C, Becker E, Jégou B, Chalmel F, Primig M. Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biol Reprod 2015; 92:71. [PMID: 25609838 DOI: 10.1095/biolreprod.114.126250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genome-wide RNA profiling studies have identified hundreds of transcripts that are highly expressed in mammalian male germ cells, including many that are undetectable in somatic control tissues. Among them, genes important for spermatogenesis are significantly enriched. Information about mRNAs and their cognate proteins facilitates the identification of novel conserved target genes for functional studies in the mouse. By inspecting genome-wide RNA profiling data, we manually selected 81 genes for which RNA is detected almost exclusively in the human male germline and, in most cases, in rodent testicular germ cells. We observed corresponding mRNA/protein patterns in 43 cases using immunohistochemical data from the Human Protein Atlas and large-scale human protein profiling data obtained via mass spectroscopy. Protein network information enabled us to establish an interaction map of 38 proteins that points to potentially important testicular roles for some of them. We further characterized six candidate genes at the protein level in the mouse. We conclude that conserved genes induced in testis tend to show similar mRNA/protein expression patterns across species. Specifically, our results suggest roles during embryogenesis and adult spermatogenesis for Foxr1 and Sox30 and during spermiogenesis and fertility for Fam71b, 1700019N19Rik, Hmgb4, and Zfp597.
Collapse
Affiliation(s)
| | | | - Soazik P Jamin
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Chunxiang Hao
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Bernard Jégou
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| | | | - Michael Primig
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| |
Collapse
|
22
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
23
|
The chemosensitivity of testicular germ cell tumors. Cell Oncol (Dordr) 2014; 37:79-94. [PMID: 24692098 DOI: 10.1007/s13402-014-0168-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Although rare cancers overall, testicular germ cell tumors (TGCTs) are the most common type of cancer in young males below 40 years of age. Both subtypes of TGCTs, i.e., seminomas and non-seminomas, are highly curable and the majority of even metastatic patients may expect to be cured. These high cure rates are not due to the indolent nature of these cancers, but rather to their sensitivity to chemotherapy (and for seminomas to radiotherapy). The delineation of the cause of chemosensitivity at the molecular level is of paramount importance, because it may provide insights into the minority of TGCTs that are chemo-resistant and, thereby, provide opportunities for specific therapeutic interventions aimed at reverting them to chemosensitivity. In addition, delineation of the molecular basis of TGCT chemo-sensitivity may be informative for the cause of chemo-resistance of other more common types of cancer and, thus, may create new therapeutic leads. p53, a frequently mutated tumor suppressor in cancers in general, is not mutated in TGCTs, a fact that has implications for their chemo-sensitivity. Oct4, an embryonic transcription factor, is uniformly expressed in the seminoma and embryonic carcinoma components of non-seminomas, and its interplay with p53 may be important in the chemotherapy response of these tumors. This interplay, together with other features of TGCTs such as the gain of genetic material from the short arm of chromosome 12 and the association with disorders of testicular development, will be discussed in this paper and integrated in a unifying hypothesis that may explain their chemo-sensitivity.
Collapse
|
24
|
Long H, Chen C, Zhang J, Sun L. Antibacterial and antiviral properties of tongue sole (Cynoglossus semilaevis) high mobility group B2 protein are largely independent on the acidic C-terminal domain. FISH & SHELLFISH IMMUNOLOGY 2014; 37:66-74. [PMID: 24468324 DOI: 10.1016/j.fsi.2014.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/06/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
High mobility group box (HMGB) proteins are known to be involved in diverse functions in mammalian cells. In teleost, very limited studies on HMGB proteins have been documented. In this study, we reported identification of a HMGB homologue (named CsHMGB2) from tongue sole (Cynoglossus semilaevis) and examined its biological property. CsHMGB2 is 245 residues in length and contains two basic HMG boxes and an acidic C-terminal tail composed of 23 Asp/Glu residues. Quantitative real time RT-PCR (qRT-PCR) analysis showed that CsHMGB2 expression occurred in multiple tissues and was upregulated by bacterial and viral infection in a time-dependent manner. In vitro studies showed that when tongue sole peripheral blood leukocytes were treated with recombinant CsHMGB2 (rCsHMGB2) and the mutant rCsHMGB2M, which bears a deletion of the C-terminal acidic region, significant and comparable increases in cellular resistance against bacterial infection were observed. qRT-PCR detected enhanced expression of proinflammatory cytokines and chemokines in rCsHMGB2-treated cells. In vivo studies showed that when tongues sole were administered with rCsHMGB2 or rCsHMGB2M before being subjected to bacterial and viral infection, the pathogen loads in the spleen and kidney of the fish were significantly reduced. Taken together, these results suggest that CsHMGB2 possesses immunoregulatory properties that promote resistance against bacterial and viral infection in a manner that is largely independent on the highly conserved C-terminal acidic domain.
Collapse
Affiliation(s)
- Hao Long
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
25
|
Johnstone TC, Wilson JJ, Lippard SJ. Monofunctional and higher-valent platinum anticancer agents. Inorg Chem 2013; 52:12234-49. [PMID: 23738524 PMCID: PMC3818431 DOI: 10.1021/ic400538c] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called "non-traditional" platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug-delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with a historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo.
Collapse
Affiliation(s)
- Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Justin J. Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
26
|
Ibrahim MA, Srivenugop KS, Rasul KI. Platinum Resistance: The Role of Molecular, Genetic and Epigenetic Factors. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.160.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Malarkey CS, Churchill MEA. The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci 2012; 37:553-62. [PMID: 23153957 DOI: 10.1016/j.tibs.2012.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/03/2012] [Accepted: 09/18/2012] [Indexed: 12/26/2022]
Abstract
High mobility group (HMG) box proteins are abundant and ubiquitous DNA binding proteins with a remarkable array of functions throughout the cell. The structure of the HMG box DNA binding domain and general mechanisms of DNA binding and bending have been known for more than a decade. However, new mechanisms that regulate HMG box protein intracellular translocation, and by which HMG box proteins recognize DNA with and without sequence specificity, have only recently been uncovered. This review focuses primarily on the Sry-like HMG box family, HMGB1, and mitochondrial transcription factor A. For these proteins, structural and biochemical studies have shown that HMG box protein modularity, interactions with other DNA binding proteins and cellular receptors, and post-translational modifications are key regulators of their diverse functions.
Collapse
Affiliation(s)
- Christopher S Malarkey
- Department of Pharmacology, University of Colorado Denver, School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045-0511, USA
| | | |
Collapse
|