1
|
Figueroa Blanco DR, Vidossich P, De Vivo M. Correct Nucleotide Selection Is Confined at the Binding Site of Polymerase Enzymes. J Chem Inf Model 2024; 64:5285-5294. [PMID: 38901009 DOI: 10.1021/acs.jcim.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
DNA polymerases (Pols) add incoming nucleotides (deoxyribonucleoside triphosphate (dNTPs)) to growing DNA strands, a crucial step for DNA synthesis. The insertion of correct (vs incorrect) nucleotides relates to Pols' fidelity, which defines Pols' ability to faithfully replicate DNA strands in a template-dependent manner. We and others have demonstrated that reactant alignment and correct base pairing at the Pols catalytic site are crucial structural features to fidelity. Here, we first used equilibrium molecular simulations to demonstrate that the local dynamics at the protein-DNA interface in the proximity of the catalytic site is different when correct vs incorrect dNTPs are bound to polymerase β (Pol β). Formation and dynamic stability of specific interatomic interactions around the incoming nucleotide influence the overall binding site architecture. This explains why certain Pols' mutants can affect the local catalytic environment and influence the selection of correct vs incorrect nucleotides. In particular, this is here demonstrated by analyzing the interaction network formed by the residue R283, whose mutant R283A has an experimentally measured lower capacity of differentiating correct (G:dCTP) vs incorrect (G:dATP) base pairing in Pol β. We also used alchemical free-energy calculations to quantify the G:dCTP →G:dATP transformation in Pol β wild-type and mutant R283A. These results correlate well with the experimental trend, thus corroborating our mechanistic insights. Sequence and structural comparisons with other Pols from the same family suggest that these findings may also be valid in similar enzymes.
Collapse
Affiliation(s)
- David Ricardo Figueroa Blanco
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
2
|
Geronimo I, Vidossich P, Donati E, Vivo M. Computational investigations of polymerase enzymes: Structure, function, inhibition, and biotechnology. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Elisa Donati
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Marco Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
3
|
Wang H, Huang N, Dangerfield T, Johnson KA, Gao J, Elber R. Exploring the Reaction Mechanism of HIV Reverse Transcriptase with a Nucleotide Substrate. J Phys Chem B 2020; 124:4270-4283. [PMID: 32364738 PMCID: PMC7260111 DOI: 10.1021/acs.jpcb.0c02632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic reactions consist of several steps: (i) a weak binding event of the substrate to the enzyme, (ii) an induced fit or a protein conformational transition upon ligand binding, (iii) the chemical reaction, and (iv) the release of the product. Here we focus on step iii of the reaction of a DNA polymerase, HIV RT, with a nucleotide. We determine the rate and the free energy profile for the addition of a nucleotide to a DNA strand using a combination of a QM/MM model, the string method, and exact Milestoning. The barrier height and the time scale of the reaction are consistent with experiment. We show that the observables (free energies and mean first passage time) converge rapidly, as a function of the Milestoning iteration number. We also consider the substitution of an oxygen of the incoming nucleotide by a nonbridging sulfur atom and its impact on the enzymatic reaction. This substitution has been suggested in the past as a tool to examine the influence of the chemical step on the overall rate. Our joint computational and experimental study suggests that the impact of the substitution is small. Computationally, the differences between the two are within the estimated error bars. Experiments suggest a small difference. Finally, we examine step i, the weak binding of the nucleotide to the protein surface. We suggest that this step has only a small contribution to the selectivity of the enzyme. Comments are made on the impact of these steps on the overall mechanism.
Collapse
Affiliation(s)
- Hao Wang
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin TX 78712
| | - Nathan Huang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Tyler Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Kenneth A. Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455-0431
| | - Ron Elber
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin TX 78712
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
4
|
Peng Y, Alexov E, Basu S. Structural Perspective on Revealing and Altering Molecular Functions of Genetic Variants Linked with Diseases. Int J Mol Sci 2019; 20:ijms20030548. [PMID: 30696058 PMCID: PMC6386852 DOI: 10.3390/ijms20030548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/25/2022] Open
Abstract
Structural information of biological macromolecules is crucial and necessary to deliver predictions about the effects of mutations-whether polymorphic or deleterious (i.e., disease causing), wherein, thermodynamic parameters, namely, folding and binding free energies potentially serve as effective biomarkers. It may be emphasized that the effect of a mutation depends on various factors, including the type of protein (globular, membrane or intrinsically disordered protein) and the structural context in which it occurs. Such information may positively aid drug-design. Furthermore, due to the intrinsic plasticity of proteins, even mutations involving radical change of the structural and physico⁻chemical properties of the amino acids (native vs. mutant) can still have minimal effects on protein thermodynamics. However, if a mutation causes significant perturbation by either folding or binding free energies, it is quite likely to be deleterious. Mitigating such effects is a promising alternative to the traditional approaches of designing inhibitors. This can be done by structure-based in silico screening of small molecules for which binding to the dysfunctional protein restores its wild type thermodynamics. In this review we emphasize the effects of mutations on two important biophysical properties, stability and binding affinity, and how structures can be used for structure-based drug design to mitigate the effects of disease-causing variants on the above biophysical properties.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Sankar Basu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
5
|
Gladovic M, Bren U, Urbic T. Thermodynamic properties of water in confined environments: a Monte Carlo study. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1409911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Martin Gladovic
- Laboratory for Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia
- Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Bren
- Laboratory for Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia
- Laboratory of Molecular Modelling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tomaž Urbic
- Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Alnajjar KS, Garcia-Barboza B, Negahbani A, Nakhjiri M, Kashemirov B, McKenna C, Goodman MF, Sweasy JB. A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Biochemistry 2017; 56:2096-2105. [PMID: 28326765 DOI: 10.1021/acs.biochem.6b01230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
K289M is a variant of DNA polymerase β (pol β) that has previously been identified in colorectal cancer. The expression of this variant leads to a 16-fold increase in mutation frequency at a specific site in vivo and a reduction in fidelity in vitro in a sequence context-specific manner. Previous work shows that this reduction in fidelity results from a decreased level of discrimination against incorrect nucleotide incorporation at the level of polymerization. To probe the transition state of the K289M mutator variant of pol β, single-turnover kinetic experiments were performed using β,γ-CXY dGTP analogues with a wide range of leaving group monoacid dissociation constants (pKa4), including a corresponding set of novel β,γ-CXY dCTP analogues. Surprisingly, we found that the values of the log of the catalytic rate constant (kpol) for correct insertion by K289M, in contrast to those of wild-type pol β, do not decrease with increased leaving group pKa4 for analogues with pKa4 values of <11. This suggests that one of the relative rate constants differs for the K289M reaction in comparison to that of the wild type (WT). However, a plot of log(kpol) values for incorrect insertion by K289M versus pKa4 reveals a linear correlation with a negative slope, in this respect resembling kpol values for misincorporation by the WT enzyme. We also show that some of these analogues improve the fidelity of K289M. Taken together, our data show that Lys289 critically influences the catalytic pathway of pol β.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Beatriz Garcia-Barboza
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Klvaňa M, Bren U, Florián J. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ. J Phys Chem B 2016; 120:13017-13030. [PMID: 27992186 PMCID: PMC5217713 DOI: 10.1021/acs.jpcb.6b08581] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Human
X-family DNA polymerases β (Polβ) and λ
(Polλ) catalyze the nucleotidyl-transfer reaction in the base
excision repair pathway of the cellular DNA damage response. Using
empirical valence bond and free-energy perturbation simulations, we
explore the feasibility of various mechanisms for the deprotonation
of the 3′-OH group of the primer DNA strand, and the subsequent
formation and cleavage of P–O bonds in four Polβ, two
truncated Polλ (tPolλ), and two tPolλ Loop1 mutant
(tPolλΔL1) systems differing in the initial X-ray crystal
structure and nascent base pair. The average calculated activation
free energies of 14, 18, and 22 kcal mol–1 for Polβ,
tPolλ, and tPolλΔL1, respectively, reproduce the
trend in the observed catalytic rate constants. The most feasible
reaction pathway consists of two successive steps: specific base (SB)
proton transfer followed by rate-limiting concerted formation and
cleavage of the P–O bonds. We identify linear free-energy relationships
(LFERs) which show that the differences in the overall activation
and reaction free energies among the eight studied systems are determined
by the reaction free energy of the SB proton transfer. We discuss
the implications of the LFERs and suggest pKa of the 3′-OH group as a predictor of the catalytic
rate of X-family DNA polymerases.
Collapse
Affiliation(s)
- Martin Klvaňa
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor , Smetanova ulica 17, 2000 Maribor, Slovenia.,Department of Chemistry and Biochemistry, Loyola University Chicago , 1032 W. Sheridan Road, Chicago, Illinois 60660, United States
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor , Smetanova ulica 17, 2000 Maribor, Slovenia.,Laboratory for Molecular Modeling, National Institute of Chemistry , Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Jan Florián
- Department of Chemistry and Biochemistry, Loyola University Chicago , 1032 W. Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|
8
|
Matute RA, Yoon H, Warshel A. Exploring the mechanism of DNA polymerases by analyzing the effect of mutations of active site acidic groups in Polymerase β. Proteins 2016; 84:1644-1657. [PMID: 27488241 DOI: 10.1002/prot.25106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
Elucidating the catalytic mechanism of DNA polymerase is crucial for a progress in the understanding of the control of replication fidelity. This work tries to advance the mechanistic understanding by analyzing the observed effect of mutations of the acidic groups in the active site of Polymerase β as well as the pH effect on the rate constant. The analysis involves both empirical valence bond (EVB) free energy calculations and considerations of the observed pH dependence of the reaction. The combined analysis indicates that the proton transfer (PT) from the nucleophilic O3' has two possible pathways, one to D256 and the second to the bulk. We concluded based on calculations and the experimental pH profile that the most likely path for the wild-type (WT) and the D256E and D256A mutants is a PT to the bulk, although the WT may also use a PT to Asp 256. Our analysis highlights the need for very extensive sampling in the calculations of the activation barrier and also clearly shows that ab initio QM/MM calculations that do not involve extensive sampling are unlikely to give a clear quantitative picture of the reaction mechanism. Proteins 2016; 84:1644-1657. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ricardo A Matute
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California, 90089-1062
| | - Hanwool Yoon
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California, 90089-1062.
| |
Collapse
|
9
|
Yoon H, Warshel A. The control of the discrimination between dNTP and rNTP in DNA and RNA polymerase. Proteins 2016; 84:1616-1624. [PMID: 27480935 DOI: 10.1002/prot.25104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
Understanding the origin of discrimination between rNTP and dNTP by DNA/RNA polymerases is important both for gaining fundamental knowledge on the corresponding systems and for advancing the design of specific drugs. This work explores the nature of this discrimination by systematic calculations of the transition state (TS) binding energy in RB69 DNA polymerase (gp43) and T7 RNA polymerase. The calculations reproduce the observed trend, in particular when they included the water contribution obtained by the water flooding approach. Our detailed study confirms the idea that the discrimination is due to the steric interaction between the 2'OH and Tyr416 in DNA polymerase, while the electrostatic interaction is the source of the discrimination in RNA polymerase. Proteins 2016; 84:1616-1624. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanwool Yoon
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062.
| |
Collapse
|
10
|
Moscato B, Swain M, Loria JP. Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Biochemistry 2016; 55:382-95. [PMID: 26678253 PMCID: PMC8259413 DOI: 10.1021/acs.biochem.5b01213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA polymerase β (Pol β) repairs single-nucleotide gapped DNA (sngDNA) by enzymatic incorporation of the Watson-Crick partner nucleotide at the gapped position opposite the templating nucleotide. The process by which the matching nucleotide is incorporated into a sngDNA sequence has been relatively well-characterized, but the process of discrimination from nucleotide misincorporation remains unclear. We report here NMR spectroscopic characterization of full-length, uniformly labeled Pol β in apo, sngDNA-bound binary, and ternary complexes containing matching and mismatching nucleotide. Our data indicate that, while binding of the correct nucleotide to the binary complex induces chemical shift changes consistent with the process of enzyme closure, the ternary Pol β complex containing a mismatching nucleotide exhibits no such changes and appears to remain in an open, unstable, binary-like conformation. Our findings support an induced-fit mechanism for polymerases in which a closed ternary complex can only be achieved in the presence of matching nucleotide.
Collapse
Affiliation(s)
- Beth Moscato
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Monalisa Swain
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Carvalho ATP, Barrozo A, Doron D, Kilshtain AV, Major DT, Kamerlin SCL. Challenges in computational studies of enzyme structure, function and dynamics. J Mol Graph Model 2014; 54:62-79. [PMID: 25306098 DOI: 10.1016/j.jmgm.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 01/23/2023]
Abstract
In this review we give an overview of the field of Computational enzymology. We start by describing the birth of the field, with emphasis on the work of the 2013 chemistry Nobel Laureates. We then present key features of the state-of-the-art in the field, showing what theory, accompanied by experiments, has taught us so far about enzymes. We also briefly describe computational methods, such as quantum mechanics-molecular mechanics approaches, reaction coordinate treatment, and free energy simulation approaches. We finalize by discussing open questions and challenges.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Alexandre Barrozo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Dvir Doron
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alexandra Vardi Kilshtain
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry Bar-Ilan University, Ramat-Gan 52900, Israel.
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
12
|
Dudek MJ. A detailed representation of electrostatic energy in prediction of sequence and pH dependence of protein stability. Proteins 2014; 82:2497-511. [DOI: 10.1002/prot.24613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/11/2014] [Accepted: 05/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Michael J. Dudek
- Protabit LLC; 250 S Oak Knoll Ave. #211 Pasadena California 91101
| |
Collapse
|
13
|
Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. J Biol Chem 2014; 289:16541-50. [PMID: 24764311 DOI: 10.1074/jbc.m114.561878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Christal D Sohl
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Sylvie Doublié
- the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Karen S Anderson
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | | |
Collapse
|