1
|
Pinkston J, Shen R, Simons CR, Hengge AC. Competitive measurement of β/α naphthyl phosphate catalytic efficiency by phosphatases utilizing quantitative NMR. Anal Biochem 2022; 651:114727. [DOI: 10.1016/j.ab.2022.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
|
2
|
Pinkston J, Jo J, Olsen KJ, Comer D, Glaittli CA, Loria JP, Johnson SJ, Hengge AC. Significant Loop Motions in the SsoPTP Protein Tyrosine Phosphatase Allow for Dual General Acid Functionality. Biochemistry 2021; 60:2888-2901. [PMID: 34496202 DOI: 10.1021/acs.biochem.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conformational dynamics are important factors in the function of enzymes, including protein tyrosine phosphatases (PTPs). Crystal structures of PTPs first revealed the motion of a protein loop bearing a conserved catalytic aspartic acid, and subsequent nuclear magnetic resonance and computational analyses have shown the presence of motions, involved in catalysis and allostery, within and beyond the active site. The tyrosine phosphatase from the thermophilic and acidophilic Sulfolobus solfataricus (SsoPTP) displays motions of its acid loop together with dynamics of its phosphoryl-binding P-loop and the Q-loop, the first instance of such motions in a PTP. All three loops share the same exchange rate, implying their motions are coupled. Further evidence of conformational flexibility comes from mutagenesis, kinetics, and isotope effect data showing that E40 can function as an alternate general acid to protonate the leaving group when the conserved acid, D69, is mutated to asparagine. SsoPTP is not the first PTP to exhibit an alternate general acid (after VHZ and TkPTP), but E40 does not correspond to the sequence or structural location of the alternate general acids in those precedents. A high-resolution X-ray structure with the transition state analogue vanadate clarifies the role of the active site arginine R102, which varied in structures of substrates bound to a catalytically inactive mutant. The coordinated motions of all three functional loops in SsoPTP, together with the function of an alternate general acid, suggest that catalytically competent conformations are present in solution that have not yet been observed in crystal structures.
Collapse
Affiliation(s)
- Justin Pinkston
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Jihye Jo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Drake Comer
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Charsti A Glaittli
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
3
|
Structural Insights into the Active Site Formation of DUSP22 in N-loop-containing Protein Tyrosine Phosphatases. Int J Mol Sci 2020; 21:ijms21207515. [PMID: 33053837 PMCID: PMC7589817 DOI: 10.3390/ijms21207515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cysteine-based protein tyrosine phosphatases (Cys-based PTPs) perform dephosphorylation to regulate signaling pathways in cellular responses. The hydrogen bonding network in their active site plays an important conformational role and supports the phosphatase activity. Nearly half of dual-specificity phosphatases (DUSPs) use three conserved residues, including aspartate in the D-loop, serine in the P-loop, and asparagine in the N-loop, to form the hydrogen bonding network, the D-, P-, N-triloop interaction (DPN-triloop interaction). In this study, DUSP22 is used to investigate the importance of the DPN-triloop interaction in active site formation. Alanine mutations and somatic mutations of the conserved residues, D57, S93, and N128 substantially decrease catalytic efficiency (kcat/KM) by more than 102-fold. Structural studies by NMR and crystallography reveal that each residue can perturb the three loops and induce conformational changes, indicating that the hydrogen bonding network aligns the residues in the correct positions for substrate interaction and catalysis. Studying the DPN-triloop interaction reveals the mechanism maintaining phosphatase activity in N-loop-containing PTPs and provides a foundation for further investigation of active site formation in different members of this protein class.
Collapse
|
4
|
Beaumont VA, Reiss K, Qu Z, Allen B, Batista VS, Loria JP. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Biochemistry 2020; 59:1896-1908. [PMID: 32348128 PMCID: PMC7364816 DOI: 10.1021/acs.biochem.0c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamics and conformational motions are important to the activity of enzymes, including protein tyrosine phosphatases. These motions often extend to regions outside the active site, called allosteric regions. In the tyrosine phosphatase Vaccinia H1-related (VHR) enzyme, we demonstrate the importance of the allosteric interaction between the variable insert region and the active-site loops in VHR. These studies include solution nuclear magnetic resonance, computation, steady-state, and rapid kinetic measurements. Overall, the data indicate concerted millisecond motions exist between the variable insert and the catalytic acid loop in wild-type (WT) VHR. The 150 ns computation studies show a flexible acid loop in WT VHR that opens during the simulation from its initial closed structure. Mutation of the variable insert residue, asparagine 74, to alanine results in a rigidification of the acid loop as observed by molecular dynamics simulations and a disruption of crucial active-site hydrogen bonds. Moreover, enzyme kinetic analysis shows a weakening of substrate affinity in the N74A mutant and a >2-fold decrease in substrate cleavage and hydrolysis rates. These data show that despite being nearly 20 Å from the active site, the variable insert region is linked to the acid loop by coupled millisecond motions, and that disruption of the communication between the variable insert and active site alters the normal catalytic function of VHR and perturbs the active-site environment.
Collapse
Affiliation(s)
- Victor A Beaumont
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Zexing Qu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Institute for Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Brandon Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP. Synthesis and evaluation of novel purple acid phosphatase inhibitors. MEDCHEMCOMM 2018; 10:61-71. [PMID: 30774855 DOI: 10.1039/c8md00491a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022]
Abstract
Transgenic studies in animals have demonstrated a direct association between the level of expression of purple acid phosphatase (PAP; also known as tartrate-resistant acid phosphatase) and the progression of osteoporosis. Consequently, PAP has emerged as a promising target for the development of novel therapeutic agents to treat this debilitating disorder. PAPs are binuclear hydrolases that catalyse the hydrolysis of phosphorylated substrates under acidic to neutral conditions. A series of phenyltriazole carboxylic acids, prepared by the reactions of azide derivatives with propiolic acid through copper(i)-catalysed azide-alkyne cycloaddition click reactions, has been assessed for their inhibitory effect on the catalytic activity of pig and red kidney bean PAPs. The binding mode of most of these compounds is purely uncompetitive with K iuc values as low as ∼23 μM for the mammalian enzyme. Molecular modelling has been used to examine the binding modes of these triazole compounds in the presence of a substrate in the active site of the enzyme in order to rationalise their activities and to design more potent and specific derivatives.
Collapse
Affiliation(s)
- Waleed M Hussein
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,Helwan University , Pharmaceutical Organic Chemistry Department , Faculty of Pharmacy , Ein Helwan , Helwan , Egypt
| | - Daniel Feder
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Gerhard Schenk
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,The University of Queensland , Australian Centre for Ecogenomics , Brisbane , QLD 4072 , Australia
| | - Luke W Guddat
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Ross P McGeary
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| |
Collapse
|
6
|
McLauchlan CC, Murakami HA, Wallace CA, Crans DC. Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes. J Inorg Biochem 2018; 186:267-279. [PMID: 29990751 DOI: 10.1016/j.jinorgbio.2018.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022]
Abstract
Vanadium-dependent haloperoxidases are a class of enzymes that catalyze oxidation reactions with halides to form halogenated organic products and water. These enzymes include chloroperoxidase and bromoperoxidase, which have very different protein sequences and sizes, but regardless the coordination environment of the active sites is surprisingly constant. In this manuscript, the comparison of the coordination chemistry of V-containing-haloperoxidases of the trigonal bipyramidal geometry was done by data mining. The catalytic cycle imposes changes in the coordination geometry of the vanadium to accommodate the peroxidovanadium(V) intermediate in an environment we describe as a distorted square pyramidal geometry. During the catalytic cycle, this intermediate converts to a trigonal bipyramidal intermediate before losing the halogen and forming a tetrahedral vanadium-protein intermediate. Importantly, the catalysis is facilitated by a proton-relay system supplied by the second sphere coordination environment and the changes in the coordination environment of the vanadium(V) making this process unique among protein catalyzed processes. The analysis of the coordination chemistry shows that the active site is very tightly regulated with only minor changes in the coordination geometry. The coordination geometry in the protein structures deviates from that found for both small molecules crystalized in the absence of protein and the reported functional small molecule model compounds. At this time there are no examples reported of a structurally similar small molecule with the geometry observed for the peroxidovanadium(V) in the active site of the vanadium-containing haloperoxidases.
Collapse
Affiliation(s)
- Craig C McLauchlan
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA.
| | - Heide A Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig A Wallace
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
7
|
Crans DC. Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. J Org Chem 2015; 80:11899-915. [PMID: 26544762 DOI: 10.1021/acs.joc.5b02229] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies of antidiabetic vanadium compounds, specifically the organic vanadate esters, are reviewed with regard to their chemistry and biological properties. The compounds are described from the perspective of how the fundamental chemistry and properties of organic vanadate esters impact their effects as inhibitors for phosphatases based on the structural information obtained from vanadium-phosphatase complexes. Vanadium compounds have been reported to have antidiabetic properties for more than a century. The structures and properties of organic vanadate complexes are reviewed, and the potency of such vanadium coordination complexes as antidiabetic agents is described. Because such compounds form spontaneously in aqueous environments, the reactions with most components in any assay or cellular environment has potential to be important and should be considered. Generally, the active form of vanadium remains elusive, although studies have been reported of a number of promising vanadium compounds. The description of the antidiabetic properties of vanadium compounds is described here in the context of recent characterization of vanadate-phosphatase protein structures by data mining. Organic vanadate ester compounds are generally four coordinate or five coordinate with the former being substrate analogues and the latter being transition-state analogue inhibitors. These studies demonstrated a framework for characterization of five-coordinate trigonal bipyramidal vanadium inhibitors by comparison with the reported vanadium-protein phosphatase complexes. The binding of the vanadium to the phosphatases is either as a five-coordinate exploded transition-state analogue or as a high energy intermediate, respectively. Even if potency as an inhibitor requires trigonal bipyramidal geometry of the vanadium when bound to the protein, such geometry can be achieved upon binding from compounds with other geometries. Desirable properties of ligands are identified and analyzed. Ligand interactions, as reported in one peptidic substrate, are favorable so that complementarity between phosphatase and coordinating ligand to the vanadium can be established resulting in a dramatic enhancement of the inhibitory potency. These considerations point to a frameshift in ligand design for vanadium complexes as phosphatase inhibitors and are consistent with other small molecule having much lower affinities. Combined, these studies do suggest that if effective delivery of potentially active antidiabetic compound such a the organic vanadate peptidic substrate was possible the toxicity problems currently reported for the salts and some of the complexes may be alleviated and dramatic enhancement of antidiabetic vanadium compounds may result.
Collapse
Affiliation(s)
- Debbie C Crans
- Department of Chemistry and Cell and Molecular Biology Program, Colorado State University , 1301 Center Avenue, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
McLauchlan CC, Peters BJ, Willsky GR, Crans DC. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1. PLoS One 2015; 10:e0124330. [PMID: 25909591 PMCID: PMC4409338 DOI: 10.1371/journal.pone.0124330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
Biofilms are important for cell communication and growth in most bacteria, and are responsible for a number of human clinical infections and diseases. TpbA (PA3885) is a dual specific tyrosine phosphatase (DUSP) that negatively regulates biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa PAO1 by converting extracellular quorum sensing signals into internal gene cascade reactions that result in reduced biofilm formation. We have determined the three-dimensional crystal structure of wild-type TpbA from P. aeruginosa PAO1 in the phosphate-bound state and a TpbA (C132S) mutant with phosphotyrosine. Comparison between the phosphate-bound structure and the previously reported ligand-free TpbA structure reveals the extent of conformational changes that occur upon substrate binding. The largest changes occur in the functional loops that define the substrate binding site, including the PTP, general acid and α4-α5 loops. We further show that TpbA efficiently catalyzes the hydrolysis of two phosphotyrosine peptides derived from the periplasmic domain of TpbB (YfiN, PA1120), with a strong preference for dephosphorylating Tyr48 over Tyr62. This work adds to the small repertoire of DUSP structures in both the ligand-free and ligand-bound states, and provides a starting point for further study of the role of TpbA in biofilm formation.
Collapse
|
10
|
Sánchez-Lombardo I, Alvarez S, McLauchlan CC, Crans DC. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis. J Inorg Biochem 2015; 147:153-64. [PMID: 25953100 DOI: 10.1016/j.jinorgbio.2015.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Shape analysis of coordination complexes is well-suited to evaluate the subtle distortions in the trigonal bipyramidal (TBPY-5) geometry of vanadium coordinated in the active site of phosphatases and characterized by X-ray crystallography. Recent studies using the tau (τ) analysis support the assertion that vanadium is best described as a trigonal bipyramid, because this geometry is the ideal transition state geometry of the phosphate ester substrate hydrolysis (C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans, Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2014.12.012 ; D.C. Crans, M.L. Tarlton, C.C. McLauchlan, Eur. J. Inorg. Chem. 2014, 4450-4468). Here we use continuous shape measures (CShM) analysis to investigate the structural space of the five-coordinate vanadium-phosphatase complexes associated with mechanistic transformations between the tetrahedral geometry and the five-coordinate high energy TBPY-5 geometry was discussed focusing on the protein tyrosine phosphatase 1B (PTP1B) enzyme. No evidence for square pyramidal geometries was observed in any vanadium-protein complexes. The shape analysis positioned the metal ion and the ligands in the active site reflecting the mechanism of the cleavage of the organic phosphate in a phosphatase. We identified the umbrella distortions to be directly on the reaction path between tetrahedral phosphate and the TBPY-5-types of high-energy species. The umbrella distortions of the trigonal bipyramid are therefore identified as being the most relevant types of transition state structures for the phosphoryl group transfer reactions for phosphatases and this may be related to the possibility that vanadium is an inhibitor for enzymes that support both exploded and five-coordinate transition states.
Collapse
Affiliation(s)
| | - Santiago Alvarez
- Departament de Química Inorganica, Institut de Química Teorica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franques, 1-11, 08028 Barcelona, Spain.
| | - Craig C McLauchlan
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Hengge AC. Kinetic isotope effects in the characterization of catalysis by protein tyrosine phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1768-75. [PMID: 25840000 DOI: 10.1016/j.bbapap.2015.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 11/30/2022]
Abstract
Although thermodynamically favorable, the uncatalyzed hydrolysis of phosphate monoesters is extraordinarily slow, making phosphatases among the most catalytically efficient enzymes known. Protein-tyrosine phosphatases (PTPs) are ubiquitous in biology, and kinetic isotope effects were one of the key mechanistic tools used to discern molecular details of their catalytic mechanism and the transition state for phosphoryl transfer. Later, the unique level of detail KIEs provided led to deeper questions about the potential role of protein motions in PTP catalysis. The recent discovery that such motions are responsible for different catalytic rates between PTPs arose from questions originating from KIE data showing that the transition states and chemical mechanisms are identical, combined with structural data demonstrating superimposable active sites. KIEs also reveal perturbations to the transition state as mutations are made to residues directly involved in chemistry, and to residues that affect protein motions essential for catalysis. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.
Collapse
Affiliation(s)
- Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
12
|
Crans DC, Tarlton ML, McLauchlan CC. Trigonal Bipyramidal or Square Pyramidal Coordination Geometry? Investigating the Most Potent Geometry for Vanadium Phosphatase Inhibitors. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402306] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Ríos P, Nunes-Xavier CE, Tabernero L, Köhn M, Pulido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 2014; 20:2251-73. [PMID: 24206177 DOI: 10.1089/ars.2013.5709] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE The dual-specificity phosphatases (DUSPs) constitute a heterogeneous group of cysteine-based protein tyrosine phosphatases, whose members exert a pivotal role in cell physiology by dephosphorylation of phosphoserine, phosphothreonine, and phosphotyrosine residues from proteins, as well as other non-proteinaceous substrates. RECENT ADVANCES A picture is emerging in which a selected group of DUSP enzymes display overexpression or hyperactivity that is associated with human disease, especially human cancer, making feasible targeted therapy approaches based on their inhibition. A panoply of molecular and functional studies on DUSPs have been performed in the previous years, and drug-discovery efforts are ongoing to develop specific and efficient DUSP enzyme inhibitors. This review summarizes the current status on inhibitory compounds targeting DUSPs that belong to the MAP kinase phosphatases-, small-sized atypical-, and phosphatases of regenerating liver subfamilies, whose inhibition could be beneficial for the prevention or mitigation of human disease. CRITICAL ISSUES Achieving specificity, potency, and bioavailability are the major challenges in the discovery of DUSP inhibitors for the clinics. Clinical validation of compounds or alternative inhibitory strategies of DUSP inhibition has yet to come. FUTURE DIRECTIONS Further work is required to understand the dual role of many DUSPs in human cancer, their function-structure properties, and to identify their physiologic substrates. This will help in the implementation of therapies based on DUSPs inhibition.
Collapse
Affiliation(s)
- Pablo Ríos
- 1 Genome Biology Unit, European Molecular Biology Laboratory , Heidelberg, Germany
| | | | | | | | | |
Collapse
|
14
|
Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H, Kim DS, Kim SJ, Ryu SE. The family-wide structure and function of human dual-specificity protein phosphatases. ACTA ACUST UNITED AC 2014; 70:421-35. [PMID: 24531476 DOI: 10.1107/s1399004713029866] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022]
Abstract
Dual-specificity protein phosphatases (DUSPs), which dephosphorylate both phosphoserine/threonine and phosphotyrosine, play vital roles in immune activation, brain function and cell-growth signalling. A family-wide structural library of human DUSPs was constructed based on experimental structure determination supplemented with homology modelling. The catalytic domain of each individual DUSP has characteristic features in the active site and in surface-charge distribution, indicating substrate-interaction specificity. The active-site loop-to-strand switch occurs in a subtype-specific manner, indicating that the switch process is necessary for characteristic substrate interactions in the corresponding DUSPs. A comprehensive analysis of the activity-inhibition profile and active-site geometry of DUSPs revealed a novel role of the active-pocket structure in the substrate specificity of DUSPs. A structure-based analysis of redox responses indicated that the additional cysteine residues are important for the protection of enzyme activity. The family-wide structures of DUSPs form a basis for the understanding of phosphorylation-mediated signal transduction and the development of therapeutics.
Collapse
Affiliation(s)
- Dae Gwin Jeong
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bonsu Ku
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Tae Jin Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Pham Ngoc Chien
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jae Kwan Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - So Ya Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Sook Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Young Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Deok-Soo Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung Jun Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Kuznetsov VI, Hengge AC. New functional aspects of the atypical protein tyrosine phosphatase VHZ. Biochemistry 2013; 52:8012-25. [PMID: 24073992 DOI: 10.1021/bi400776z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LDP3 (VHZ) is the smallest classical protein tyrosine phosphatase (PTP) known to date and was originally misclassified as an atypical dual-specificity phosphatase. Kinetic isotope effects with steady-state and pre-steady-state kinetics of VHZ and mutants with p-nitrophenol phosphate have revealed several unusual properties. VHZ is significantly more active than previously reported but remains one of the least active PTPs. Highly unusual for a PTP, VHZ possesses two acidic residues (E134 and D65) in the active site. D65 occupies the position corresponding to the typical general acid in the PTP family. However, VHZ primarily utilizes E134 as the general acid, with D65 taking over this role when E134 is mutated. This unusual behavior is facilitated by two coexisting, but unequally populated, substrate binding modes. Unlike most classical PTPs, VHZ exhibits phosphotransferase activity. Despite the presence of the Q-loop that normally prevents alcoholysis of the phosphoenzyme intermediate in other classical PTPs, VHZ readily phosphorylates ethylene glycol. Although mutations of Q-loop residues affect this phosphotransferase activity, mutations on the IPD loop that contains the general acid exert more control over this process. A single P68V substitution on this loop completely abolishes phosphotransferase activity. The ability of native VHZ to catalyze transphosphorylation may lead to an imbalance of intracellular phosphorylation, which could explain the correlation of its overexpression with several types of cancer.
Collapse
Affiliation(s)
- Vyacheslav I Kuznetsov
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322-0300, United States
| | | |
Collapse
|
16
|
Xiao Q, Luechapanichkul R, Zhai Y, Pei D. Specificity profiling of protein phosphatases toward phosphoseryl and phosphothreonyl peptides. J Am Chem Soc 2013; 135:9760-7. [PMID: 23758517 DOI: 10.1021/ja401692t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A combinatorial library method was developed to systematically profile the substrate specificity of protein phosphatases toward phosphoseryl (pS) and phosphothreonyl (pT) peptides. Application of this method and a previously reported phosphotyrosyl (pY) library screening technique to dual-specificity phosphatase (DUSP) VH1 of vaccinia virus revealed that VH1 is highly active toward both pS/pT and pY peptides. VH1 exhibits different and more stringent sequence specificity toward pS/pT than pY substrates. Unlike previously characterized protein tyrosine phosphatases (PTPs), the activity and specificity of VH1 are primarily determined by the amino acid residues C-terminal to the pS, pT, or pY residue. In contrast, the mammalian VH1-related (VHR) DUSP has intrinsically low catalytic activity toward pS and pT substrates, suggesting that its primary physiological function is to dephosphorylate pY residues in substrate proteins. This method is applicable to other DUSPs and protein-serine/threonine phosphatases, and the substrate specificity data will be useful for identifying the physiological substrates of these enzymes.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Ave., Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
17
|
Koveal D, Clarkson MW, Wood TK, Page R, Peti W. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa. J Mol Biol 2013; 425:2219-31. [PMID: 23524133 DOI: 10.1016/j.jmb.2013.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
Tyrosine phosphatase related to biofilm formation A (TpbA) is a periplasmic dual-specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA adopts a typical DUSP fold, it also possesses distinct structural features that distinguish it from eukaryotic DUSPs. These include additional secondary structural elements, β0 and α6, and unique conformations of the variable insert, the α4-α5 loop and helix α5 that impart TpbA with a flat active-site surface. In the absence of ligand, the protein tyrosine phosphatase loop is disordered and the general acid loop adopts an open conformation, placing the catalytic aspartate, Asp105, more than 11Å away from the active site. Furthermore, the loops surrounding the active site experience motions on multiple timescales, consistent with a combination of conformational heterogeneity and fast (picosecond to nanosecond) timescale dynamics, which are significantly reduced upon ligand binding. Taken together, these data structurally distinguish TpbA and possibly other bacterial DUSPs from eukaryotic DUSPs and provide a rich picture of active-site dynamics in the ligand-free state that are lost upon ligand binding.
Collapse
Affiliation(s)
- Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|