1
|
Stellwagen E, Stellwagen NC. Flanking AT base pairs affect the localization of monovalent cations in DNA A-tracts. Electrophoresis 2024; 45:528-536. [PMID: 38087830 DOI: 10.1002/elps.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/20/2024]
Abstract
Capillary electrophoresis has been used to measure the free solution mobilities of a series of 26-base pair (bp) DNA oligomers containing two phased A4T1in-tracts embedded in flanking sequences containing 0 to 11 additional AT bps. A random-sequence 26-bp oligomer with 12 isolated AT bps was used as the reference. Mobility ratios (A-tract/reference) were measured in background electrolytes (BGEs) containing mixtures of small monovalent cations and tetrabutylammonium (TBA+ ) or tetrapropylammonium (TPA+ ) ions. The mobility ratios observed in 0.3 M TBA+ were >1.00, suggesting that the TBA+ ions had formed electrostatic contact pairs with the AT bp in the reference and in the A-tract flanking sequences, decreasing the mobilities of both oligomers. The TBA-AT pairing interactions could be eliminated by increasing the concentration of small monovalent cations in the BGE. In 0.3 M TPA+ , electrostatic contact pairs were formed with the AT bps in the flanking sequences and in the A-tracts. Interestingly, the shapes of the mobility ratio profiles observed for the A4T1in-tract oligomers depended on the total number of A + T residues in the oligomer.
Collapse
Affiliation(s)
- Earle Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
2
|
Li J, Chiu TP, Rohs R. Predicting DNA structure using a deep learning method. Nat Commun 2024; 15:1243. [PMID: 38336958 PMCID: PMC10858265 DOI: 10.1038/s41467-024-45191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA structure, also described as DNA shape, plays a key role in these mechanisms. In this study, we present a deep learning-based method, Deep DNAshape, that fundamentally changes the current k-mer based high-throughput prediction of DNA shape features by accurately accounting for the influence of extended flanking regions, without the need for extensive molecular simulations or structural biology experiments. By using the Deep DNAshape method, DNA structural features can be predicted for any length and number of DNA sequences in a high-throughput manner, providing an understanding of the effects of flanking regions on DNA structure in a target region of a sequence. The Deep DNAshape method provides access to the influence of distant flanking regions on a region of interest. Our findings reveal that DNA shape readout mechanisms of a core target are quantitatively affected by flanking regions, including extended flanking regions, providing valuable insights into the detailed structural readout mechanisms of protein-DNA binding. Furthermore, when incorporated in machine learning models, the features generated by Deep DNAshape improve the model prediction accuracy. Collectively, Deep DNAshape can serve as versatile and powerful tool for diverse DNA structure-related studies.
Collapse
Affiliation(s)
- Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA.
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
3
|
Li J, Chiu TP, Rohs R. Deep DNAshape: Predicting DNA shape considering extended flanking regions using a deep learning method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563383. [PMID: 37961633 PMCID: PMC10634709 DOI: 10.1101/2023.10.22.563383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA shape plays a key role in these mechanisms. In this study, we present a deep learning-based method, Deep DNAshape, that fundamentally changes the current k -mer based high-throughput prediction of DNA shape features by accurately accounting for the influence of extended flanking regions, without the need for extensive molecular simulations or structural biology experiments. By using the Deep DNAshape method, refined DNA shape features can be predicted for any length and number of DNA sequences in a high-throughput manner, providing a deeper understanding of the effects of flanking regions on DNA shape in a target region of a sequence. Deep DNAshape method provides access to the influence of distant flanking regions on a region of interest. Our findings reveal that DNA shape readout mechanisms of a core target are quantitatively affected by flanking regions, including extended flanking regions, providing valuable insights into the detailed structural readout mechanisms of protein-DNA binding. Furthermore, when incorporated in machine learning models, the features generated by Deep DNAshape improve the model prediction accuracy. Collectively, Deep DNAshape can serve as a versatile and powerful tool for diverse DNA structure-related studies.
Collapse
|
4
|
Chen YT, Yang H, Chu JW. Mechanical codes of chemical-scale specificity in DNA motifs. Chem Sci 2023; 14:10155-10166. [PMID: 37772098 PMCID: PMC10529945 DOI: 10.1039/d3sc01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
In gene transcription, certain sequences of double-stranded (ds)DNA play a vital role in nucleosome positioning and expression initiation. That dsDNA is deformed to various extents in these processes leads us to ask: Could the genomic DNA also have sequence specificity in its chemical-scale mechanical properties? We approach this question using statistical machine learning to determine the rigidity between DNA chemical moieties. What emerges for the polyA, polyG, TpA, and CpG sequences studied here is a unique trigram that contains the quantitative mechanical strengths between bases and along the backbone. In a way, such a sequence-dependent trigram could be viewed as a DNA mechanical code. Interestingly, we discover a compensatory competition between the axial base-stacking interaction and the transverse base-pairing interaction, and such a reciprocal relationship constitutes the most discriminating feature of the mechanical code. Our results also provide chemical-scale understanding for experimental observables. For example, the long polyA persistence length is shown to have strong base stacking while its complement (polyAc) exhibits high backbone rigidity. The mechanical code concept enables a direct reading of the physical interactions encoded in the sequence which, with further development, is expected to shed new light on DNA allostery and DNA-binding drugs.
Collapse
Affiliation(s)
- Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| |
Collapse
|
5
|
Sharma R, Patelli AS, Bruin LD, Maddocks JH. cgNA+web : A visual interface to the cgNA+ sequence-dependent statistical mechanics model of double-stranded nucleic acids. J Mol Biol 2023. [DOI: 10.1016/j.jmb.2023.167978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Ghoshdastidar D, Bansal M. Flexibility of flanking DNA is a key determinant of transcription factor affinity for the core motif. Biophys J 2022; 121:3987-4000. [PMID: 35978548 PMCID: PMC9674967 DOI: 10.1016/j.bpj.2022.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022] Open
Abstract
Selective gene regulation is mediated by recognition of specific DNA sequences by transcription factors (TFs). The extremely challenging task of searching out specific cognate DNA binding sites among several million putative sites within the eukaryotic genome is achieved by complex molecular recognition mechanisms. Elements of this recognition code include the core binding sequence, the flanking sequence context, and the shape and conformational flexibility of the composite binding site. To unravel the extent to which DNA flexibility modulates TF binding, in this study, we employed experimentally guided molecular dynamics simulations of ternary complex of closely related Hox heterodimers Exd-Ubx and Exd-Scr with DNA. Results demonstrate that flexibility signatures embedded in the flanking sequences impact TF binding at the cognate binding site. A DNA sequence has intrinsic shape and flexibility features. While shape features are localized, our analyses reveal that flexibility features of the flanking sequences percolate several basepairs and allosterically modulate TF binding at the core. We also show that lack of flexibility in the motif context can render the cognate site resistant to protein-induced shape changes and subsequently lower TF binding affinity. Overall, this study suggests that flexibility-guided DNA shape, and not merely the static shape, is a key unexplored component of the complex DNA-TF recognition code.
Collapse
Affiliation(s)
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
7
|
Jones M, Ashwood B, Tokmakoff A, Ferguson AL. Determining Sequence-Dependent DNA Oligonucleotide Hybridization and Dehybridization Mechanisms Using Coarse-Grained Molecular Simulation, Markov State Models, and Infrared Spectroscopy. J Am Chem Soc 2021; 143:17395-17411. [PMID: 34644072 PMCID: PMC8554761 DOI: 10.1021/jacs.1c05219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/29/2022]
Abstract
A robust understanding of the sequence-dependent thermodynamics of DNA hybridization has enabled rapid advances in DNA nanotechnology. A fundamental understanding of the sequence-dependent kinetics and mechanisms of hybridization and dehybridization remains comparatively underdeveloped. In this work, we establish new understanding of the sequence-dependent hybridization/dehybridization kinetics and mechanism within a family of self-complementary pairs of 10-mer DNA oligomers by integrating coarse-grained molecular simulation, machine learning of the slow dynamical modes, data-driven inference of long-time kinetic models, and experimental temperature-jump infrared spectroscopy. For a repetitive ATATATATAT sequence, we resolve a rugged dynamical landscape comprising multiple metastable states, numerous competing hybridization/dehybridization pathways, and a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical "all-or-nothing" two-state model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.
Collapse
Affiliation(s)
- Michael
S. Jones
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| | - Brennan Ashwood
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| |
Collapse
|
8
|
Liu B, Rangadurai A, Shi H, Al-Hashimi H. Rapid assessment of Watson-Crick to Hoogsteen exchange in unlabeled DNA duplexes using high-power SELOPE imino 1H CEST. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:715-731. [PMID: 37905209 PMCID: PMC10539785 DOI: 10.5194/mr-2-715-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/05/2021] [Indexed: 11/01/2023]
Abstract
In duplex DNA, Watson-Crick A-T and G-C base pairs (bp's) exist in dynamic equilibrium with an alternative Hoogsteen conformation, which is low in abundance and short-lived. Measuring how the Hoogsteen dynamics varies across different DNA sequences, structural contexts and physiological conditions is key for identifying potential Hoogsteen hot spots and for understanding the potential roles of Hoogsteen base pairs in DNA recognition and repair. However, such studies are hampered by the need to prepare 13 C or 15 N isotopically enriched DNA samples for NMR relaxation dispersion (RD) experiments. Here, using SELective Optimized Proton Experiments (SELOPE) 1 H CEST experiments employing high-power radiofrequency fields (B 1 > 250 Hz) targeting imino protons, we demonstrate accurate and robust characterization of Watson-Crick to Hoogsteen exchange, without the need for isotopic enrichment of the DNA. For 13 residues in three DNA duplexes under different temperature and pH conditions, the exchange parameters deduced from high-power imino 1 H CEST were in very good agreement with counterparts measured using off-resonance 13 C / 15 N spin relaxation in the rotating frame (R 1 ρ ). It is shown that 1 H-1 H NOE effects which typically introduce artifacts in 1 H-based measurements of chemical exchange can be effectively suppressed by selective excitation, provided that the relaxation delay is short (≤ 100 ms). The 1 H CEST experiment can be performed with ∼ 10× higher throughput and ∼ 100× lower cost relative to 13 C / 15 N R 1 ρ and enabled Hoogsteen chemical exchange measurements undetectable by R 1 ρ . The results reveal an increased propensity to form Hoogsteen bp's near terminal ends and a diminished propensity within A-tract motifs. The 1 H CEST experiment provides a basis for rapidly screening Hoogsteen breathing in duplex DNA, enabling identification of unusual motifs for more in-depth characterization.
Collapse
Affiliation(s)
- Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Geronimo I, Vidossich P, Donati E, Vivo M. Computational investigations of polymerase enzymes: Structure, function, inhibition, and biotechnology. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Elisa Donati
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Marco Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
10
|
Menssen RJ, Kimmel GJ, Tokmakoff A. Investigation into the mechanism and dynamics of DNA association and dissociation utilizing kinetic Monte Carlo simulations. J Chem Phys 2021; 154:045101. [PMID: 33514113 DOI: 10.1063/5.0035187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this work, we present a kinetic Markov state Monte Carlo model designed to complement temperature-jump (T-jump) infrared spectroscopy experiments probing the kinetics and dynamics of short DNA oligonucleotides. The model is designed to be accessible to experimental researchers in terms of both computational simplicity and expense while providing detailed insights beyond those provided by experimental methods. The model is an extension of a thermodynamic lattice model for DNA hybridization utilizing the formalism of the nucleation-zipper mechanism. Association and dissociation trajectories were generated utilizing the Gillespie algorithm and parameters determined via fitting the association and dissociation timescales to previously published experimental data. Terminal end fraying, experimentally observed following a rapid T-jump, in the sequence 5'-ATATGCATAT-3' was replicated by the model that also demonstrated that experimentally observed fast dynamics in the sequences 5'-C(AT)nG-3', where n = 2-6, were also due to terminal end fraying. The dominant association pathways, isolated by transition pathway theory, showed two primary motifs: initiating at or next to a G:C base pair, which is enthalpically favorable and related to the increased strength of G:C base pairs, and initiating in the center of the sequence, which is entropically favorable and related to minimizing the penalty associated with the decrease in configurational entropy due to hybridization.
Collapse
Affiliation(s)
- Ryan J Menssen
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Gregory J Kimmel
- Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, Florida 33612, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Xu Y, Manghrani A, Liu B, Shi H, Pham U, Liu A, Al-Hashimi HM. Hoogsteen base pairs increase the susceptibility of double-stranded DNA to cytotoxic damage. J Biol Chem 2020; 295:15933-15947. [PMID: 32913127 DOI: 10.1074/jbc.ra120.014530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/24/2020] [Indexed: 11/06/2022] Open
Abstract
As the Watson-Crick faces of nucleobases are protected in dsDNA, it is commonly assumed that deleterious alkylation damage to the Watson-Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson-Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to ssDNA has not been quantified. Watson-Crick base pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base pairs that expose the Watson-Crick faces of purine nucleobases to solvent. Whether this can influence the damage susceptibility of dsDNA remains unknown. Using dot-blot and primer extension assays, we measured the susceptibility of adenine-N1 to methylation by dimethyl sulfate (DMS) when in an A-T Watson-Crick versus Hoogsteen conformation. Relative to unpaired adenines in a bulge, Watson-Crick A-T base pairs in dsDNA only conferred ∼130-fold protection against adenine-N1 methylation, and this protection was reduced to ∼40-fold for A(syn)-T Hoogsteen base pairs embedded in a DNA-drug complex. Our results indicate that Watson-Crick faces of nucleobases are accessible to alkylating agents in canonical dsDNA and that Hoogsteen base pairs increase this accessibility. Given the higher abundance of dsDNA relative to ssDNA, these results suggest that dsDNA could be a substantial source of cytotoxic damage. The work establishes DMS probing as a method for characterizing A(syn)-T Hoogsteen base pairs in vitro and also lays the foundation for a sequencing approach to map A(syn)-T Hoogsteen and unpaired adenines genome-wide in vivo.
Collapse
Affiliation(s)
- Yu Xu
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy Liu
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
12
|
Nikolova EN, Stanfield RL, Dyson HJ, Wright PE. A Conformational Switch in the Zinc Finger Protein Kaiso Mediates Differential Readout of Specific and Methylated DNA Sequences. Biochemistry 2020; 59:1909-1926. [PMID: 32352758 PMCID: PMC7253346 DOI: 10.1021/acs.biochem.0c00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recognition of the epigenetic mark 5-methylcytosine (mC) at CpG sites in DNA has emerged as a novel function of many eukaryotic transcription factors (TFs). It remains unclear why the sequence specificity of these TFs differs for CpG-methylated motifs and consensus motifs. Here, we dissect the structural and dynamic basis for this differential DNA binding specificity in the human zinc finger TF Kaiso, which exhibits high affinity for two consecutive mCpG sites in variable contexts and also for a longer, sequence-specific Kaiso binding site (KBS). By integrating structural analysis and DNA binding studies with targeted protein mutagenesis and nucleotide substitutions, we identify distinct mechanisms for readout of methylated and KBS motifs by Kaiso. We show that a key glutamate residue (E535), critical for mCpG site recognition, adopts different conformations in complexes with specific and methylated DNA. These conformational differences, together with intrinsic variations in DNA flexibility and/or solvation at TpG versus mCpG sites, contribute to the different DNA affinity and sequence specificity. With methylated DNA, multiple direct contacts between E535 and the 5' mCpG site dominate the binding affinity, allowing for tolerance of different flanking DNA sequences. With KBS, Kaiso employs E535 as part of an indirect screen of the 5' flanking sequence, relying on key tyrosine-DNA interactions to stabilize an optimal DNA conformation and select against noncognate sites. These findings demonstrate how TFs use conformational adaptation and exploit variations in DNA flexibility to achieve distinct DNA readout outcomes and target a greater variety of regulatory and epigenetic sites than previously appreciated.
Collapse
|
13
|
Cai X, Arias DS, Velazquez LR, Vexler S, Bevier AL, Fygenson DK. DNA Nunchucks: Nanoinstrumentation for Single-Molecule Measurement of Stiffness and Bending. NANO LETTERS 2020; 20:1388-1395. [PMID: 31872766 DOI: 10.1021/acs.nanolett.9b04980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bending of double-stranded DNA (dsDNA) has important applications in biology and engineering, but measurement of DNA bend angles is notoriously difficult and rarely dynamic. Here we introduce a nanoscale instrument that makes dynamic measurement of the bend in short dsDNAs easy enough to be routine. The instrument works by embedding the ends of a dsDNA in stiff, fluorescently labeled DNA nanotubes, thereby mechanically magnifying their orientations. The DNA nanotubes are readily confined to a plane and imaged while freely diffusing. Single-molecule bend angles are rapidly and reliably extracted from the images by a neural network. We find that angular variance across a population increases with dsDNA length, as predicted by the worm-like chain model, although individual distributions can differ significantly from one another. For dsDNAs with phased A6-tracts, we measure an intrinsic bend of 17 ± 1° per A6-tract, consistent with other methods, and a length-dependent angular variance that indicates A6-tracts are (80 ± 30)% stiffer than generic dsDNA.
Collapse
Affiliation(s)
- Xinyue Cai
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Sebastian Arias
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Lourdes R Velazquez
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Shelby Vexler
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Alexander L Bevier
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Kuchnir Fygenson
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| |
Collapse
|
14
|
Galindo-Murillo R, Cheatham TE. Lessons learned in atomistic simulation of double-stranded DNA: Solvation and salt concerns [Article v1.0]. ACTA ACUST UNITED AC 2019; 1. [PMID: 33073182 DOI: 10.33011/livecoms.1.2.9974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids are highly charged macromolecules sensitive to their surroundings of water, salt, and other biomolecules. Molecular dynamics simulations with accurate biomolecular force fields provide a detailed atomistic view into DNA and RNA that has been useful to study the structure and dynamics of these molecules and their biological relevance. In this work we study the Drew-Dickerson dodecamer duplex with the sequence d(GCGCAATTGCGC)2 in three different salt concentrations and using different monvalent salt types to detect possible structural influence. Overall, the DNA shows no major structural changes regardless of amount or type of monovalent ions used. Our results show that only at very high salt conditions (5M) is a small structural effect observed in the DNA duplex, which mainly consist of narrowing of the grooves due to increased residence of ions. We also present the importance of sampling time to achieve a converged ensemble, which is of major relevance in any simulation to avoid biased or non-meaningful results.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, L. S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT 84112
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, L. S. Skaggs Pharmacy Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
15
|
De Bruin L, Maddocks JH. cgDNAweb: a web interface to the cgDNA sequence-dependent coarse-grain model of double-stranded DNA. Nucleic Acids Res 2019; 46:W5-W10. [PMID: 29905876 PMCID: PMC6030996 DOI: 10.1093/nar/gky351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
The sequence-dependent statistical mechanical properties of fragments of double-stranded DNA is believed to be pertinent to its biological function at length scales from a few base pairs (or bp) to a few hundreds of bp, e.g. indirect read-out protein binding sites, nucleosome positioning sequences, phased A-tracts, etc. In turn, the equilibrium statistical mechanics behaviour of DNA depends upon its ground state configuration, or minimum free energy shape, as well as on its fluctuations as governed by its stiffness (in an appropriate sense). We here present cgDNAweb, which provides browser-based interactive visualization of the sequence-dependent ground states of double-stranded DNA molecules, as predicted by the underlying cgDNA coarse-grain rigid-base model of fragments with arbitrary sequence. The cgDNAweb interface is specifically designed to facilitate comparison between ground state shapes of different sequences. The server is freely available at cgDNAweb.epfl.ch with no login requirement.
Collapse
Affiliation(s)
- Lennart De Bruin
- Instituut-Lorentz for Theoretical Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - John H Maddocks
- Institut de Mathématiques, Station 8, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
16
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Stellwagen NC, Stellwagen E. DNA Thermal Stability Depends on Solvent Viscosity. J Phys Chem B 2019; 123:3649-3657. [DOI: 10.1021/acs.jpcb.9b01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nancy C. Stellwagen
- Department of Biochemistry, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Earle Stellwagen
- Department of Biochemistry, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
Shoute LCT, Loppnow GR. Characterization of the binding interactions between EvaGreen dye and dsDNA. Phys Chem Chem Phys 2018; 20:4772-4780. [PMID: 29380825 DOI: 10.1039/c7cp06058k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the dsDNA·EG binding interaction is important because the EvaGreen (EG) dye is increasingly used in real-time quantitative polymerase chain reaction, high resolution melting analysis, and routine quantification of DNA. In this work, a binding isotherm for the interactions of EG with duplex DNA (poly-dA17·poly-dT17) has been determined from the absorption and fluorescence spectra of the EG and dsDNA·EG complex. The isotherm has a sigmoidal shape and can be modeled with the Hill equation, indicating positive cooperativity for the binding interaction. A Scatchard plot of the binding data yields a concave-down curve in agreement with the Hill analysis of the binding isotherm for a positive cooperative binding interaction. Analysis of the Scatchard plot with the modified McGhee and von Hippel model for a finite one-dimensional homogeneous lattice and nonspecific binding of ligands to duplex DNA yields the intrinsic binding constant, the number of lattice sites occluded by a bound ligand, and the cooperativity parameter of 3.6 × 105 M-1, 4.0, and 8.1, respectively. The occluded site size of 4 indicates that moieties of the EG intercalate into the adjacent base pairs of the duplex DNA with a gap of 1 intercalation site between EG binding sites, as expected for a bifunctional molecule. Interestingly, at high [EG]/[base pair], the intercalation is disrupted. A model is proposed based on the fluorescence spectrum where the formation of anti-parallel stacked chains of EGs bound externally to the duplex DNA occur at these high ratios.
Collapse
Affiliation(s)
- L C T Shoute
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | | |
Collapse
|
19
|
Local DNA Sequence Controls Asymmetry of DNA Unwrapping from Nucleosome Core Particles. Biophys J 2018; 115:773-781. [PMID: 30072033 DOI: 10.1016/j.bpj.2018.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
DNA is tightly wrapped around histone proteins in nucleosome core particles (NCPs) yet must become accessible for processing in the cell. This accessibility, a key component of transcription regulation, is influenced by the properties of both the histone proteins and the DNA itself. Small angle x-ray scattering with contrast variation is used to examine how sequence variations affect DNA unwrapping from NCPs at different salt concentrations. Salt destabilizes NCPs, populating multiple unwrapped states as many possible unwrapping pathways are explored by the complexes. We apply coarse-grained Monte Carlo methods to generate realistic sequence-dependent unwrapped structures for the nucleosomal DNA with thermal variations. An ensemble optimization method is employed to determine the composition of the overall ensemble as electrostatic interactions are weakened. Interesting DNA-sequence-dependent differences are revealed in the unwrapping paths and equilibrium constants. These differences are correlated with specific features within the nucleic acid sequences.
Collapse
|
20
|
Danchin A, Sekowska A, Noria S. Functional Requirements in the Program and the Cell Chassis for Next-Generation Synthetic Biology. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Agnieszka Sekowska
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Stanislas Noria
- Fondation Fourmentin-Guilbert; 2 avenue du Pavé Neuf Noisy le Grand 93160 France
| |
Collapse
|
21
|
Evich M, Spring-Connell AM, Germann MW. Impact of modified ribose sugars on nucleic acid conformation and function. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractThe modification of the ribofuranose in nucleic acids is a widespread method of manipulating the activity of nucleic acids. These alterations, however, impact the local conformation and chemical reactivity of the sugar. Changes in the conformation and dynamics of the sugar moiety alter the local and potentially global structure and plasticity of nucleic acids, which in turn contributes to recognition, binding of ligands and enzymatic activity of proteins. This review article introduces the conformational properties of the (deoxy)ribofuranose ring and then explores sugar modifications and how they impact local and global structure and dynamics in nucleic acids.
Collapse
Affiliation(s)
- Marina Evich
- Georgia State University, Department of Chemistry, 50 Decatur St. SE, Atlanta, GA 30303, USA
| | | | - Markus W. Germann
- Georgia State University, Department of Chemistry, 50 Decatur St. SE, Atlanta, GA 30303, USA
- Georgia State University, Department of Biology, P.O. 4010, Atlanta, GA 30303, USA
- Georgia State University, Neuroscience Institute, P.O. 5030, Atlanta, GA 30303, USA
| |
Collapse
|
22
|
Mitchell JS, Glowacki J, Grandchamp AE, Manning RS, Maddocks JH. Sequence-Dependent Persistence Lengths of DNA. J Chem Theory Comput 2017; 13:1539-1555. [DOI: 10.1021/acs.jctc.6b00904] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jaroslaw Glowacki
- Ecole Polytechnique Fédérale de Lausanne, Lausanne CH 1273, Switzerland
| | | | | | - John H. Maddocks
- Ecole Polytechnique Fédérale de Lausanne, Lausanne CH 1273, Switzerland
| |
Collapse
|
23
|
Nelissen FHT, Tessari M, Wijmenga SS, Heus HA. Stable isotope labeling methods for DNA. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:89-108. [PMID: 27573183 DOI: 10.1016/j.pnmrs.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Sybren S Wijmenga
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Abstract
DNA bending is critical for DNA packaging, recognition, and repair, and occurs toward either the major or the minor groove. The anisotropy of B-DNA groove bending was quantified for eight DNA sequences by free energy simulations employing a novel reaction coordinate. The simulations show that bending toward the major groove is preferred for non-A-tracts while the A-tract has a high tendency of bending toward the minor groove. Persistence lengths were generally larger for bending toward the minor groove, which is thought to originate from differences in groove hydration. While this difference in stiffness is one of the factors determining the overall preference of bending direction, the dominant contribution is shown to be a free energy offset between major and minor groove bending. The data suggests that, for the A-tract, this offset is largely determined by inherent structural properties, while differences in groove hydration play a large role for non-A-tracts. By quantifying the energetics of DNA groove bending and rationalizing the origins of the anisotropy, the calculations provide important new insights into a key biological process.
Collapse
Affiliation(s)
- Ning Ma
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
25
|
Imeddourene AB, Xu X, Zargarian L, Oguey C, Foloppe N, Mauffret O, Hartmann B. The intrinsic mechanics of B-DNA in solution characterized by NMR. Nucleic Acids Res 2016; 44:3432-47. [PMID: 26883628 PMCID: PMC4838374 DOI: 10.1093/nar/gkw084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Xiaoqian Xu
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Department of Life Sciences, East China Normal University, 200062 Shanghai, People's Republic of China
| | - Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Christophe Oguey
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte Hartmann
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| |
Collapse
|
26
|
Mentes A, Florescu AM, Brunk E, Wereszczynski J, Joyeux M, Andricioaei I. Free-energy landscape and characteristic forces for the initiation of DNA unzipping. Biophys J 2016; 108:1727-1738. [PMID: 25863064 DOI: 10.1016/j.bpj.2015.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 01/07/2023] Open
Abstract
DNA unzipping, the separation of its double helix into single strands, is crucial in modulating a host of genetic processes. Although the large-scale separation of double-stranded DNA has been studied with a variety of theoretical and experimental techniques, the minute details of the very first steps of unzipping are still unclear. Here, we use atomistic molecular-dynamics simulations, coarse-grained simulations, and a statistical-mechanical model to study the initiation of DNA unzipping by an external force. Calculation of the potential of mean force profiles for the initial separation of the first few terminal basepairs in a DNA oligomer revealed that forces ranging between 130 and 230 pN are needed to disrupt the first basepair, and these values are an order of magnitude larger than those needed to disrupt basepairs in partially unzipped DNA. The force peak has an echo of ∼50 pN at the distance that unzips the second basepair. We show that the high peak needed to initiate unzipping derives from a free-energy basin that is distinct from the basins of subsequent basepairs because of entropic contributions, and we highlight the microscopic origin of the peak. To our knowledge, our results suggest a new window of exploration for single-molecule experiments.
Collapse
Affiliation(s)
- Ahmet Mentes
- Department of Chemistry, University of California, Irvine, Irvine, California
| | - Ana Maria Florescu
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Interdisciplinary Research Institute, Université des Sciences et des Technologies de Lille, CNRS USR 3078, Villeneuve d'Ascq, France
| | - Elizabeth Brunk
- Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, California; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California; Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - Marc Joyeux
- Laboratoire Interdisciplinaire de Physique (CNRS UMR5588), Université Joseph Fourier Grenoble 1, St. Martin d'Heres, France
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, Irvine, California.
| |
Collapse
|
27
|
Ben Imeddourene A, Elbahnsi A, Guéroult M, Oguey C, Foloppe N, Hartmann B. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics. PLoS Comput Biol 2015; 11:e1004631. [PMID: 26657165 PMCID: PMC4689557 DOI: 10.1371/journal.pcbi.1004631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/30/2023] Open
Abstract
The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- Université Pierre et Marie Curie, Paris, France
| | - Ahmad Elbahnsi
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | - Marc Guéroult
- UMR S665, INSERM, Université Paris Diderot, INTS, Paris, France
| | - Christophe Oguey
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Brigitte Hartmann
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- * E-mail: (NF); (BH)
| |
Collapse
|
28
|
Imashimizu M, Shimamoto N, Oshima T, Kashlev M. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications. Transcription 2015; 5:e28285. [PMID: 25764114 PMCID: PMC4214235 DOI: 10.4161/trns.28285] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.
Collapse
|
29
|
Abstract
We investigate the electrostatics, energetics, and dynamics of dendrimer-DNA interactions that mimic protein-DNA complexes as a means to design facilitated mechanisms by which dendrimers can slide and search DNA for targets. By using all-atom molecular dynamics simulations, we calculated the free energy profiles of dendrimer-binding around the DNA via umbrella sampling. We also calculated electrostatic interaction maps in comparison to proteins, as well as the dynamical changes induced by DNA-dendrimer interactions via NMR-measurable order parameters. Our results show that for dendrimers to go around DNA, there is a free-energy barrier of 8.5 kcal/mol from the DNA major groove to DNA minor groove, with a minimum in the major groove. This barrier height makes it unlikely for an all-amine dendrimer to slide along DNA longitudinally, but following a helical path may be possible along the major groove. Comparison of the nonbonded interaction energy and the interaction free-energy profiles reveal a considerable entropic cost as the dendrimer binds to DNA. This is also supported by the mobility patterns obtained from NMR-measurable order parameter values, which show a decreased mobility of the dendrimer N-H bond vectors in the DNA-binding mode.
Collapse
Affiliation(s)
- Emel Ficici
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
30
|
Imashimizu M, Takahashi H, Oshima T, McIntosh C, Bubunenko M, Court DL, Kashlev M. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biol 2015; 16:98. [PMID: 25976475 PMCID: PMC4457086 DOI: 10.1186/s13059-015-0666-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcription elongation is frequently interrupted by pausing signals in DNA, with downstream effects on gene expression. Transcription errors also induce prolonged pausing, which can lead to a destabilized genome by interfering with DNA replication. Mechanisms of pausing associated with translocation blocks and misincorporation have been characterized in vitro, but not in vivo. RESULTS We investigate the pausing pattern of RNA polymerase (RNAP) in Escherichia coli by a novel approach, combining native elongating transcript sequencing (NET-seq) with RNase footprinting of the transcripts (RNET-seq). We reveal that the G-dC base pair at the 5' end of the RNA-DNA hybrid interferes with RNAP translocation. The distance between the 5' G-dC base pair and the 3' end of RNA fluctuates over a three-nucleotide width. Thus, the G-dC base pair can induce pausing in post-translocated, pre-translocated, and backtracked states of RNAP. Additionally, a CpG sequence of the template DNA strand spanning the active site of RNAP inhibits elongation and induces G-to-A errors, which leads to backtracking of RNAP. Gre factors efficiently proofread the errors and rescue the backtracked complexes. We also find that pausing events are enriched in the 5' untranslated region and antisense transcription of mRNA genes and are reduced in rRNA genes. CONCLUSIONS In E. coli, robust transcriptional pausing involves RNAP interaction with G-dC at the upstream end of the RNA-DNA hybrid, which interferes with translocation. CpG DNA sequences induce transcriptional pausing and G-to-A errors.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Ikoma, Nara, 630-0192, Japan.
| | - Carl McIntosh
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Bubunenko
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Kashlev
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
31
|
Bacolla A, Zhu X, Chen H, Howells K, Cooper DN, Vasquez KM. Local DNA dynamics shape mutational patterns of mononucleotide repeats in human genomes. Nucleic Acids Res 2015; 43:5065-80. [PMID: 25897114 PMCID: PMC4446427 DOI: 10.1093/nar/gkv364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022] Open
Abstract
Single base substitutions (SBSs) and insertions/deletions are critical for generating population diversity and can lead both to inherited disease and cancer. Whereas on a genome-wide scale SBSs are influenced by cellular factors, on a fine scale SBSs are influenced by the local DNA sequence-context, although the role of flanking sequence is often unclear. Herein, we used bioinformatics, molecular dynamics and hybrid quantum mechanics/molecular mechanics to analyze sequence context-dependent mutagenesis at mononucleotide repeats (A-tracts and G-tracts) in human population variation and in cancer genomes. SBSs and insertions/deletions occur predominantly at the first and last base-pairs of A-tracts, whereas they are concentrated at the second and third base-pairs in G-tracts. These positions correspond to the most flexible sites along A-tracts, and to sites where a ‘hole’, generated by the loss of an electron through oxidation, is most likely to be localized in G-tracts. For A-tracts, most SBSs occur in the direction of the base-pair flanking the tracts. We conclude that intrinsic features of local DNA structure, i.e. base-pair flexibility and charge transfer, render specific nucleotides along mononucleotide runs susceptible to base modification, which then yields mutations. Thus, local DNA dynamics contributes to phenotypic variation and disease in the human population.
Collapse
Affiliation(s)
- Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Xiao Zhu
- Texas Advanced Computing Center, Austin, TX 78758-4497, USA
| | - Hanning Chen
- Department of Chemistry, George Washington University, 725 21st Street, NW, Washington, DC 20052, USA
| | - Katy Howells
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
32
|
Bascom G, Andricioaei I. Single-Walled Carbon Nanotubes Modulate the B- to A-DNA Transition. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2014; 118:29441-29447. [PMID: 25553205 PMCID: PMC4275165 DOI: 10.1021/jp5081274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Indexed: 06/04/2023]
Abstract
We study the conformational equilibrium between B-to-A forms of ds-DNA adsorbed onto a single-walled carbon nanotube (SWNT) using free energy profile calculations based on all-atom molecular dynamics simulations. The potential of mean force (PMF) of the B-to-A transition of ds-DNA in the presence of an uncharged (10,0) carbon nanotube for two dodecamers with poly-AT or poly-GC sequences is calculated as a function of a root-mean-square-distance (ΔRMSD) difference metric for the B-to-A transition. The calculations reveal that in the presence of a SWNT DNA favors B-form DNA significantly in both poly-GC and poly-AT sequences. Furthermore, the poly-AT DNA:SWNT complex shows a higher energy penalty for adopting an A-like conformation than poly-GC DNA:SWNT by several kcal/mol. The presence of a SWNT on either poly-AT or poly-GC DNA affects the PMF of the transition such that the B form is favored by as much as 10 kcal/mol. In agreement with published data, we find a potential energy minimum between A and B-form DNA at ΔRMSD ≈ -1.5 Å and that the presence of the SWNT moves this minimum by as much as ΔRMSD = 3 Å.
Collapse
|
33
|
Galindo-Murillo R, Roe DR, Cheatham TE. On the absence of intrahelical DNA dynamics on the μs to ms timescale. Nat Commun 2014; 5:5152. [PMID: 25351257 PMCID: PMC4215645 DOI: 10.1038/ncomms6152] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/05/2014] [Indexed: 01/08/2023] Open
Abstract
DNA helices display a rich tapestry of motion on both short (<100 ns) and long (>1 ms) timescales. However, with the exception of mismatched or damaged DNA, experimental measures indicate that motions in the 1 μs to 1 ms range are effectively absent, which is often attributed to difficulties in measuring motions in this time range. We hypothesized that these motions have not been measured because there is effectively no motion on this timescale, as this provides a means to distinguish faithful Watson-Crick base-paired DNA from damaged DNA. The absence of motion on this timescale would present a 'static' DNA sequence-specific structure that matches the encounter timescales of proteins, thereby facilitating recognition. Here we report long-timescale (~10-44 μs) molecular dynamics simulations of a B-DNA duplex structure that addresses this hypothesis using both an 'Anton' machine and large ensembles of AMBER GPU simulations.
Collapse
Affiliation(s)
- Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112, USA
| | - Daniel R Roe
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112, USA
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112, USA
| |
Collapse
|
34
|
Taranova M, Hirsh AD, Perkins NC, Andricioaei I. Role of microscopic flexibility in tightly curved DNA. J Phys Chem B 2014; 118:11028-36. [PMID: 25155114 PMCID: PMC4174995 DOI: 10.1021/jp502233u] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
genetic material in living cells is organized into complex
structures in which DNA is subjected to substantial contortions. Here
we investigate the difference in structure, dynamics, and flexibility
between two topological states of a short (107 base pair) DNA sequence
in a linear form and a covalently closed, tightly curved circular
DNA form. By employing a combination of all-atom molecular dynamics
(MD) simulations and elastic rod modeling of DNA, which allows capturing
microscopic details while monitoring the global dynamics, we demonstrate
that in the highly curved regime the microscopic flexibility of the
DNA drastically increases due to the local mobility of the duplex.
By analyzing vibrational entropy and Lipari–Szabo NMR order
parameters from the simulation data, we propose a novel model for
the thermodynamic stability of high-curvature DNA states based on
vibrational untightening of the duplex. This novel view of DNA bending
provides a fundamental explanation that bridges the gap between classical
models of DNA and experimental studies on DNA cyclization, which so
far have been in substantial disagreement.
Collapse
Affiliation(s)
- Maryna Taranova
- Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92697, United States
| | | | | | | |
Collapse
|
35
|
Zgarbová M, Otyepka M, Šponer J, Lankaš F, Jurečka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J Chem Theory Comput 2014; 10:3177-89. [DOI: 10.1021/ct500120v] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Filip Lankaš
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
36
|
Dršata T, Špačková N, Jurečka P, Zgarbová M, Šponer J, Lankaš F. Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res 2014; 42:7383-94. [PMID: 24829460 PMCID: PMC4066768 DOI: 10.1093/nar/gku338] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/13/2022] Open
Abstract
A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric AnTn and asymmetric A2n tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts.
Collapse
Affiliation(s)
- Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Nada Špačková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 62500 Brno, Czech Republic
| | - Filip Lankaš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague, Czech Republic
| |
Collapse
|
37
|
Imashimizu M, Kashlev M. Unveiling translocation intermediates of RNA polymerase. Proc Natl Acad Sci U S A 2014; 111:7507-8. [PMID: 24828529 PMCID: PMC4040548 DOI: 10.1073/pnas.1406413111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Masahiko Imashimizu
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
38
|
Xiao S, Zhu H, Wang L, Liang H. DNA conformational flexibility study using phosphate backbone neutralization model. SOFT MATTER 2014; 10:1045-1055. [PMID: 24983118 DOI: 10.1039/c3sm52345d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Due to the critical role of DNA in the processes of the cell cycle, the structural and physicochemical properties of DNA have long been of concern. In the present work, the effect of interplay between the DNA duplex and metal ions in solution on the DNA structure and conformational flexibility is studied by comparing the structure and dynamic conformational behavior of a duplex in a normal form and its “null isomer” using molecular dynamics methods. It was found that the phosphate neutralization changes the cation atmosphere around the DNA duplex greatly, increases the major groove width, decreases the minor groove width, and reduces the global bending direction preference. We also noted that the probability of BI phosphate linkages increases significantly because of the charge reduction in the backbone phosphate groups. More importantly, we found that the electrostatic effect on the DNA conformational flexibility is dependent on the sequence; that is, the phosphate backbone neutralization induces the global dynamic bending to be less flexible for GC-rich sequences but more flexible for AT-rich sequences.
Collapse
|
39
|
Čech P, Kukal J, Černý J, Schneider B, Svozil D. Automatic workflow for the classification of local DNA conformations. BMC Bioinformatics 2013; 14:205. [PMID: 23800225 PMCID: PMC3694522 DOI: 10.1186/1471-2105-14-205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/28/2013] [Indexed: 12/03/2022] Open
Abstract
Background A growing number of crystal and NMR structures reveals a considerable structural polymorphism of DNA architecture going well beyond the usual image of a double helical molecule. DNA is highly variable with dinucleotide steps exhibiting a substantial flexibility in a sequence-dependent manner. An analysis of the conformational space of the DNA backbone and the enhancement of our understanding of the conformational dependencies in DNA are therefore important for full comprehension of DNA structural polymorphism. Results A detailed classification of local DNA conformations based on the technique of Fourier averaging was published in our previous work. However, this procedure requires a considerable amount of manual work. To overcome this limitation we developed an automatic classification method consisting of the combination of supervised and unsupervised approaches. A proposed workflow is composed of k-NN method followed by a non-hierarchical single-pass clustering algorithm. We applied this workflow to analyze 816 X-ray and 664 NMR DNA structures released till February 2013. We identified and annotated six new conformers, and we assigned four of these conformers to two structurally important DNA families: guanine quadruplexes and Holliday (four-way) junctions. We also compared populations of the assigned conformers in the dataset of X-ray and NMR structures. Conclusions In the present work we developed a machine learning workflow for the automatic classification of dinucleotide conformations. Dinucleotides with unassigned conformations can be either classified into one of already known 24 classes or they can be flagged as unclassifiable. The proposed machine learning workflow permits identification of new classes among so far unclassifiable data, and we identified and annotated six new conformations in the X-ray structures released since our previous analysis. The results illustrate the utility of machine learning approaches in the classification of local DNA conformations.
Collapse
Affiliation(s)
- Petr Čech
- Laboratory of Informatics and Chemistry, ICT Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | | | | | | | | |
Collapse
|
40
|
Hospital A, Faustino I, Collepardo-Guevara R, González C, Gelpí JL, Orozco M. NAFlex: a web server for the study of nucleic acid flexibility. Nucleic Acids Res 2013; 41:W47-55. [PMID: 23685436 PMCID: PMC3692121 DOI: 10.1093/nar/gkt378] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We present NAFlex, a new web tool to study the flexibility of nucleic acids, either isolated or bound to other molecules. The server allows the user to incorporate structures from protein data banks, completing gaps and removing structural inconsistencies. It is also possible to define canonical (average or sequence-adapted) nucleic acid structures using a variety of predefined internal libraries, as well to create specific nucleic acid conformations from the sequence. The server offers a variety of methods to explore nucleic acid flexibility, such as a colorless wormlike-chain model, a base-pair resolution mesoscopic model and atomistic molecular dynamics simulations with a wide variety of protocols and force fields. The trajectories obtained by simulations, or imported externally, can be visualized and analyzed using a large number of tools, including standard Cartesian analysis, essential dynamics, helical analysis, local and global stiffness, energy decomposition, principal components and in silico NMR spectra. The server is accessible free of charge from the mmb.irbbarcelona.org/NAFlex webpage.
Collapse
Affiliation(s)
- Adam Hospital
- Institute for Research in Biomedicine, Molecular Modelling and Bioinformatics Department, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|