1
|
Maleš P, Brkljača Z, Crnolatac I, Petrov D, Bakarić D. Phase-Dependent Adsorption of Myelin Basic Protein to Phosphatidylcholine Lipid Bilayers. MEMBRANES 2024; 14:15. [PMID: 38248705 PMCID: PMC10819005 DOI: 10.3390/membranes14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The dense packing of opposite cytoplasmic surfaces of the lipid-enriched myelin membrane, responsible for the proper saltatory conduction of nerve impulses through axons, is ensured by the adhesive properties of myelin basic protein (MBP). Although preferentially interacting with negatively charged phosphatidylserine (PS) lipids, as an intrinsically disordered protein, it can easily adapt its shape to its immediate environment and thus adsorb to domains made of zwitterionic phosphatidylcholine (PC) lipids. As the molecular-level interaction pattern between MBP and PC lipid membranes suffers from scarce characterization, an experimental and computational study of multilamellar liposomes (MLVs) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the presence of bovine MBP is presented here. Calorimetric and temperature-dependent UV-Vis measurements identified DPPC pretransition temperature (Tp) and calorimetric enthalpy (ΔHcal) as the physicochemical parameters most responsive to the presence of MBP. Besides suggesting an increase in β-sheet fractions of structured MBP segments as DPPC lipids undergo from the gel (20 °C) to the fluid (50 °C) phase, FTIR spectra unraveled the significant contribution of lysine (Lys) residues in the adsorption pattern, especially when DPPC is in the fluid (50 °C) phase. In addition to highlighting the importance of Lys residues in the MBP adsorption on DPPC lipid bilayer, employing salt bridges (SBs) and hydrogen bonds (HBs), MD data suggest the crucial importance of the orientation of MBP with respect to the surface of the DPPC lipid bilayer.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Dražen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| |
Collapse
|
2
|
Träger J, Meister A, Hause G, Harauz G, Hinderberger D. Shaping membrane interfaces in lipid vesicles mimicking the cytoplasmic leaflet of myelin through variation of cholesterol and myelin basic protein contents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184179. [PMID: 37244538 DOI: 10.1016/j.bbamem.2023.184179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Myelin basic protein (MBP) is an intrinsically disordered protein and in the central nervous system (CNS) mainly responsible for connecting the cytoplasmic surfaces of the multilamellar, compact myelin. Increased posttranslational modification of MBP is linked to both, the natural development (from adolescent to adult brains) of myelin, and features of multiple sclerosis. Here, we study how a combination of this intrinsically disordered myelin protein with varying the natural cholesterol content may alter the characteristics of myelin-like membranes and interactions between these membranes. Large unilamellar vesicles (LUVs) with a composition mimicking the cytoplasmic leaflet of myelin were chosen as the model system, in which different parameters contributing to the interactions between the lipid membrane and MBP were investigated. While we use cryo-transmission electron microscopy (TEM) for imaging, dynamic light scattering (DLS) and electrophoretic measurements through continuously-monitored phase-analysis light scattering (cmPALS) were used for a more global overview of particle size and charge, and electron paramagnetic resonance (EPR) spectroscopy was utilized for local behavior of lipids in the vesicles' membranes in aqueous solution. The cholesterol content was varied from 060 % in these LUVs and measurements were performed in the presence and absence of MBP. We find that the composition of the lipid layers is relevant to the interaction with MBP. Not only the size, the shape and the aggregation behavior of the vesicles depend on the cholesterol content, but also within each membrane, cholesterol's freedom of movement, its environmental polarity and its distribution were found to depend on the content using the EPR-active spin-labeled cholesterol (CSOSL). In addition, DLS and EPR measurements probing the transition temperatures of the lipid phases allow a correlation of specific behavior with the human body temperature of 37 °C. Overall, our results aid in understanding the importance of the native cholesterol content in the healthy myelin membrane, which serves as the basis for stable and optimum protein-bilayer interactions. Although studied in this specific myelin-like system, from a more general and materials science-oriented point of view, we could establish how membrane and vesicle properties depend on cholesterol and/or MBP content, which might be useful generally when specific membrane and vesicle characteristics are sought for.
Collapse
Affiliation(s)
- Jennica Träger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany; Institute of Biochemistry, Physical Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Dariush Hinderberger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany.
| |
Collapse
|
3
|
Krokengen OC, Raasakka A, Kursula P. The intrinsically disordered protein glue of the myelin major dense line: Linking AlphaFold2 predictions to experimental data. Biochem Biophys Rep 2023; 34:101474. [PMID: 37153862 PMCID: PMC10160357 DOI: 10.1016/j.bbrep.2023.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Numerous human proteins are classified as intrinsically disordered proteins (IDPs). Due to their physicochemical properties, high-resolution structural information about IDPs is generally lacking. On the other hand, IDPs are known to adopt local ordered structures upon interactions with e.g. other proteins or lipid membrane surfaces. While recent developments in protein structure prediction have been revolutionary, their impact on IDP research at high resolution remains limited. We took a specific example of two myelin-specific IDPs, the myelin basic protein (MBP) and the cytoplasmic domain of myelin protein zero (P0ct). Both of these IDPs are crucial for normal nervous system development and function, and while they are disordered in solution, upon membrane binding, they partially fold into helices, being embedded into the lipid membrane. We carried out AlphaFold2 predictions of both proteins and analysed the models in light of experimental data related to protein structure and molecular interactions. We observe that the predicted models have helical segments that closely correspond to the membrane-binding sites on both proteins. We furthermore analyse the fits of the models to synchrotron-based X-ray scattering and circular dichroism data from the same IDPs. The models are likely to represent the membrane-bound state of both MBP and P0ct, rather than the conformation in solution. Artificial intelligence-based models of IDPs appear to provide information on the ligand-bound state of these proteins, instead of the conformers dominating free in solution. We further discuss the implications of the predictions for mammalian nervous system myelination and their relevance to understanding disease aspects of these IDPs.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, Oulu, Finland
| |
Collapse
|
4
|
Staśkiewicz A, Quagliata M, Real-Fernandez F, Nuti F, Lanzillo R, Brescia-Morra V, Rusche H, Jewginski M, Carotenuto A, Brancaccio D, Aharoni R, Arnon R, Rovero P, Latajka R, Papini AM. Role of Helical Structure in MBP Immunodominant Peptides for Efficient IgM Antibody Recognition in Multiple Sclerosis. Front Chem 2022; 10:885180. [PMID: 35795217 PMCID: PMC9250970 DOI: 10.3389/fchem.2022.885180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
The involvement of Myelin Basic Protein (MBP) in Multiple Sclerosis (MS) has been widely discussed in the literature. This intrinsically disordered protein has an interesting α-helix motif, which can be considered as a conformational epitope. In this work we investigate the importance of the helical structure in antibody recognition by MBP peptides of different lengths. Firstly, we synthesized the peptide MBP (81–106) (1) and observed that its elongation at both N- and C-termini, to obtain the peptide MBP (76–116) (2) improves IgM antibody recognition in SP-ELISA, but destabilizes the helical structure. Conversely, in competitive ELISA, MBP (81–106) (1) is recognized more efficiently by IgM antibodies than MBP (76–116) (2), possibly thanks to its more stable helical structure observed in CD and NMR conformational experiments. These results are discussed in terms of different performances of peptide antigens in the two ELISA formats tested.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Brescia-Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Hendrik Rusche
- Fischer Analytics GmbH, Weiler, Germany
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
| | - Michal Jewginski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
- *Correspondence: Anna Maria Papini,
| |
Collapse
|
5
|
Shubayev VI, Dolkas J, Catroli GF, Chernov AV. A human coronavirus OC43-derived polypeptide causes neuropathic pain. EMBO Rep 2022; 23:e54069. [PMID: 35466531 PMCID: PMC9115284 DOI: 10.15252/embr.202154069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Human coronaviruses have been recently implicated in neurological sequelae by insufficiently understood mechanisms. We here identify an amino acid sequence within the HCoV-OC43 p65-like protein homologous to the evolutionarily conserved motif of myelin basic protein (MBP). Because MBP-derived peptide exposure in the sciatic nerve produces pronociceptive activity in female rodents, we examined whether a synthetic peptide derived from the homologous region of HCoV-OC43 (OC43p) acts by molecular mimicry to promote neuropathic pain. OC43p, but not scrambled peptides, induces mechanical hypersensitivity in rats following intrasciatic injections. Transcriptome analyses of the corresponding spinal cords reveal upregulation of genes and signaling pathways with known nociception-, immune-, and cellular energy-related activities. Affinity capture shows the association of OC43p with an Na+ /K+ -transporting ATPase, providing a potential direct target and mechanistic insight into virus-induced effects on energy homeostasis and the sensory neuraxis. We propose that HCoV-OC43 polypeptides released during infection dysregulate normal nervous system functions through molecular mimicry of MBP, leading to mechanical hypersensitivity. Our findings might provide a new paradigm for virus-induced neuropathic pain.
Collapse
Affiliation(s)
- Veronica I Shubayev
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| | - Jennifer Dolkas
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| | - Glaucilene Ferreira Catroli
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| | - Andrei V Chernov
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| |
Collapse
|
6
|
Valdivia A, Agarwal PK, Bhattacharya SK. Myelin Basic Protein Phospholipid Complexation Likely Competes with Deimination in Experimental Autoimmune Encephalomyelitis Mouse Model. ACS OMEGA 2020; 5:15454-15467. [PMID: 32637820 PMCID: PMC7331039 DOI: 10.1021/acsomega.0c01590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis has complex pathogenesis encompassing a variety of components (immunologic, genetic, and environmental). The autoimmunogenicity against the host's myelin basic protein is a major contributor. An increase in myelin basic protein deimination (a post-translational modification) and a change in phospholipid composition have been associated with multiple sclerosis. The interaction of myelin basic protein with phospholipids in the myelin membrane is an important contributor to the stability and maintenance of proper myelin sheath function. The study of this aspect of multiple sclerosis is an area that has yet to be fully explored and that the present study seeks to understand. Several biochemical methods, a capillary electrophoresis coupled system and mass spectrometry, were used in this study. These methods identified four specific phospholipids complexing with myelin basic protein. We show that lysophosphatidylcholine 18:1 provides a robust competitive effect against hyper-deimination. Our data suggest that lysophosphatidylcholine 18:1 has a different biochemical behavior when compared to other phospholipids and lysophosphatidylcholines 14:0, 16:0, and 18:0.
Collapse
Affiliation(s)
- Anddre
Osmar Valdivia
- Department
of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, United States
- Neuroscience
Graduate Program, University of Miami, Miami, Florida 33136, United States
| | - Pratul K. Agarwal
- Department
of Biochemistry & Cell and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Physiological
Sciences andHigh Performance Computing Center, Oklahoma
State University, Stillwater, 106 Math Sciences, Stillwater, Oklahoma 74078-1010, United States
| | - Sanjoy K. Bhattacharya
- Department
of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, United States
- Neuroscience
Graduate Program, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
7
|
de Souza RM, Ratochinski RH, Karttunen M, Dias LG. Self-Assembly of Phosphocholine Derivatives Using the ELBA Coarse-Grained Model: Micelles, Bicelles, and Reverse Micelles. J Chem Inf Model 2020; 60:522-536. [PMID: 31714768 DOI: 10.1021/acs.jcim.9b00790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ELBA coarse-grained force field was originally developed for lipids, and its water model is described as a single-site Lennard-Jones particle with electrostatics modeled by an embedded point-dipole, while other molecules in this force field have a three (or four)-to-one mapping scheme. Here, ELBA was applied to investigate the self-assembly processes of dodecyl-phosphocholine (DPC) micelle, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dihexaoyl-sn-glycero-3-phosphocholine (DPPC/DHPC) bicelles, and DPPC/cyclohexane/water reverse micelles through coarse-grained molecular dynamics (MD) simulations. New parameters were obtained using a simplex algorithm-based calibration procedure to determine the Lennard-Jones parameters for cyclohexane, dodecane, and cyclohexane-dodecane cross-interactions. Density, self-diffusion coefficient, surface tension, and mixture excess volume were found to be in fair agreement with experimental data. These new parameters were used in the simulations, and the obtained structures were analyzed for shape, size, volume, and surface area. Except for the shape of DPC micelles, all other properties match well with available experimental data and all-atom simulations. Remarkably, in agreement with experiments the rodlike shape of the DPPC reverse micelle is well described by ELBA, while all-atom data in the literature predicts a disclike shape. To further check the consistency of the force field in reproducing the correct shapes of reverse micelles, additional simulations were performed doubling the system size. Two distinct reverse micelles were obtained both presenting the rodlike shape and correct aggregation number.
Collapse
Affiliation(s)
- R M de Souza
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 3K7.,Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil.,The Center for Advanced Materials and Biomaterials Research , The University of Western Ontario , London , Ontario , Canada N6K 3K7
| | - R H Ratochinski
- Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil
| | - Mikko Karttunen
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 3K7.,The Center for Advanced Materials and Biomaterials Research , The University of Western Ontario , London , Ontario , Canada N6K 3K7.,Department of Applied Mathematics , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - L G Dias
- Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil
| |
Collapse
|
8
|
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9:cells9020470. [PMID: 32085570 PMCID: PMC7072810 DOI: 10.3390/cells9020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
- Correspondence:
| |
Collapse
|
9
|
Abstract
Afferent and efferent nerve fibers cannot be distinguished based on the axonal diameter or the presence of the Remark bundle. The compaction of the myelin sheath involves 2 steps: 1) The distance between the 2 layers of cell membranes in the double-bilayer decreases; 2) the adjacent double-bilayers close to form MDL. The expression of MBP is positively correlated with the formation of the MDL. Anchoring of the myelin sheath by lipophilin particles might be required for the formation of a compacted myelin sheath. The abnormalities in nerve fiber structure observed in autologous nerve grafts do not appear to be related to either MBP or lipophilin, so further research is needed to determine their causes. Observing the structure and regeneration of the myelin sheath in peripheral nerves following injury and during repair would help in understanding the pathogenesis and treatment of neurological diseases caused by an abnormal myelin sheath. In the present study, transmission electron microscopy, immunofluorescence staining, and transcriptome analyses were used to investigate the structure and regeneration of the myelin sheath after end-to-end anastomosis, autologous nerve transplantation, and nerve tube transplantation in a rat model of sciatic nerve injury, with normal optic nerve, oculomotor nerve, sciatic nerve, and Schwann cells used as controls. The results suggested that the double-bilayer was the structural unit that constituted the myelin sheath. The major feature during regeneration was the compaction of the myelin sheath, wherein the distance between the 2 layers of cell membrane in the double-bilayer became shorter and the adjacent double-bilayers tightly closed together and formed the major dense line. The expression level of myelin basic protein was positively correlated with the formation of the major dense line, and the compacted myelin sheath could not be formed without the anchoring of the lipophilin particles to the myelin sheath.
Collapse
|
10
|
Chernov AV, Remacle AG, Hullugundi SK, Cieplak P, Angert M, Dolkas J, Shubayev VI, Strongin AY. Amino acid sequence conservation of the algesic fragment of myelin basic protein is required for its interaction with CDK5 and function in pain. FEBS J 2018; 285:3485-3502. [PMID: 30079618 DOI: 10.1111/febs.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 01/08/2023]
Abstract
Neurotrauma frequently results in neuropathic pain. Our earlier studies revealed that peripheral neurotrauma-induced fragmentation of the myelin basic protein (MBP), a major component of the myelin sheath formed by Schwann cells, initiates a pain response from light touch stimuli (mechanical allodynia) in rodents. Here, we identified the cyclin-dependent kinase 5 (CDK5), as an intracellular interactor of MBP in Schwann cells. The algesic peptide fragment of MBP directly associated with CDK5. When complexed with its p25 coactivator, CDK5 phosphorylated the conserved MBP sequence. The expressed MBP fragment colocalized with CDK5 in Schwann cell protrusions. Roscovitine, an ATP-competitive CDK5 inhibitor, disrupted localization of the expressed MBP peptide. Mutations in the evolutionary conserved MBP algesic sequence resulted in the interference with intracellular trafficking of the MBP fragment and kinase activity of CDK5 and diminished pain-like behavior in rodents. Our findings show that MBP fragment amino acid sequence conservation determines its interactions, trafficking, and pronociceptive activity. Because CDK5 activity controls both neurogenesis and nociception, the algesic MBP fragment may be involved in the regulation of the CDK5 functionality in pain signaling and postinjury neurogenesis in vertebrates. DATABASE The novel RNA-seq datasets were deposited in the GEO database under the accession number GSE107020.
Collapse
Affiliation(s)
- Andrei V Chernov
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Albert G Remacle
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Alex Y Strongin
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
11
|
Interaction of the cryptic fragment of myelin basic protein with mitochondrial voltage-dependent anion-selective channel-1 affects cell energy metabolism. Biochem J 2018; 475:2355-2376. [PMID: 29954845 DOI: 10.1042/bcj20180137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
In demyelinating nervous system disorders, myelin basic protein (MBP), a major component of the myelin sheath, is proteolyzed and its fragments are released in the neural environment. Here, we demonstrated that, in contrast with MBP, the cellular uptake of the cryptic 84-104 epitope (MBP84-104) did not involve the low-density lipoprotein receptor-related protein-1, a scavenger receptor. Our pull-down assay, mass spectrometry and molecular modeling studies suggested that, similar with many other unfolded and aberrant proteins and peptides, the internalized MBP84-104 was capable of binding to the voltage-dependent anion-selective channel-1 (VDAC-1), a mitochondrial porin. Molecular modeling suggested that MBP84-104 directly binds to the N-terminal α-helix located midway inside the 19 β-blade barrel of VDAC-1. These interactions may have affected the mitochondrial functions and energy metabolism in multiple cell types. Notably, MBP84-104 caused neither cell apoptosis nor affected the total cellular ATP levels, but repressed the aerobic glycolysis (lactic acid fermentation) and decreased the l-lactate/d-glucose ratio (also termed as the Warburg effect) in normal and cancer cells. Overall, our findings implied that because of its interactions with VDAC-1, the cryptic MBP84-104 peptide invoked reprogramming of the cellular energy metabolism that favored enhanced cellular activity, rather than apoptotic cell death. We concluded that the released MBP84-104 peptide, internalized by the cells, contributes to the reprogramming of the energy-generating pathways in multiple cell types.
Collapse
|
12
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
13
|
Bessonov K, Vassall KA, Harauz G. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP)-Insights into a noncanonical and fuzzy interaction. Proteins 2017; 85:1336-1350. [PMID: 28380689 DOI: 10.1002/prot.25295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich""-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the β-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the β-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Systems and Modeling Unit, Montefiore Institute, Université de Liège, Quartier Polytech 1, Allée de la Découverte 10, Liège, 4000, Belgium
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
14
|
Tuusa J, Raasakka A, Ruskamo S, Kursula P. Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40893-017-0021-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1262-77. [DOI: 10.1016/j.bbamem.2016.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
|
16
|
Ward ME, Ritz E, Ahmed MAM, Bamm VV, Harauz G, Brown LS, Ladizhansky V. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins. JOURNAL OF BIOMOLECULAR NMR 2015; 63:375-388. [PMID: 26494649 DOI: 10.1007/s10858-015-9997-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/15/2015] [Indexed: 05/09/2023]
Abstract
Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.
Collapse
Affiliation(s)
- Meaghan E Ward
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Emily Ritz
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Mumdooh A M Ahmed
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- The Department of Physics, Faculty of Science, Suez University, Suez, 43533, Egypt
| | - Vladimir V Bamm
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - George Harauz
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, ON, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, Guelph, ON, Canada.
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
17
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
18
|
Vassall KA, Jenkins AD, Bamm VV, Harauz G. Thermodynamic Analysis of the Disorder-to-α-Helical Transition of 18.5-kDa Myelin Basic Protein Reveals an Equilibrium Intermediate Representing the Most Compact Conformation. J Mol Biol 2015; 427:1977-92. [DOI: 10.1016/j.jmb.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
19
|
The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro. Biosci Rep 2014; 34:e00157. [PMID: 25343306 PMCID: PMC4266924 DOI: 10.1042/bsr20140149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex. MBP interacts with Fyn kinase during oligodendrocyte development and myelination. We show that there is no binding-induced PPII formation in the primary ligand segment, and that a region upstream is required for in vitro interaction.
Collapse
|
20
|
Sang Y, Tait AR, Scott WRP, Creagh AL, Kumar P, Haynes CA, Straus SK. Probing the interaction between U24 and the SH3 domain of Fyn tyrosine kinase. Biochemistry 2014; 53:6092-102. [PMID: 25225878 DOI: 10.1021/bi500945x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The putative membrane protein U24 from HHV-6A shares a seven-residue sequence identity (which includes a PxxP motif) with myelin basic protein (MBP), a protein responsible for the compaction of the myelin sheath in the central nervous system. U24 from HHV-6A also shares a PPxY motif with U24 from the related virus HHV-7, allowing them both to block early endosomal recycling. Recently, MBP has been shown to have protein-protein interactions with a range of proteins, including proteins containing SH3 domains. Given that this interaction is mediated by the proline-rich segment in MBP, and that similar proline-rich segments are found in U24, we investigate here whether U24 also interacts with SH3 domain-containing proteins and what the nature of that interaction might be. The implications of a U24-Fyn tyrosine kinase SH3 domain interaction are discussed in terms of the hypothesis that U24 may function like MBP through molecular mimicry, potentially contributing to the disease state of multiple sclerosis or other demyelinating disorders.
Collapse
Affiliation(s)
- Yurou Sang
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Boggs JM, Homchaudhuri L, Ranagaraj G, Liu Y, Smith GST, Harauz G. Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendrocytes and N19 oligodendroglial cells. BMC Res Notes 2014; 7:387. [PMID: 24956930 PMCID: PMC4078013 DOI: 10.1186/1756-0500-7-387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14–21.5 kDa in size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible for formation of the multilayered myelin sheath in the central nervous system. The predominant membrane-associated isoform of MBP is not simply a structural component of compact myelin but is highly post-translationally modified and multi-functional, having interactions with numerous proteins such as Ca2+-calmodulin, and with actin, tubulin, and proteins with SH3-domains, which it can tether to a lipid membrane in vitro. It co-localizes with such proteins in primary oligodendrocytes (OLGs) and in early developmental N19-OLGs transfected with fluorescently-tagged MBP. Results To provide further evidence for MBP associations with these proteins in vivo, we show here that MBP isoforms are co-immunoprecipitated from detergent extracts of primary OLGs together with actin, tubulin, zonula occludens 1 (ZO-1), cortactin, and Fyn kinase. We also carry out live-cell imaging of N19-OLGs co-transfected with fluorescent MBP and actin, and show that when actin filaments re-assemble after recovery from cytochalasin D treatment, MBP and actin are rapidly enriched and co-localized at certain sites at the plasma membrane and in newly-formed membrane ruffles. The MBP and actin distributions change similarly with time, suggesting a specific and dynamic association. Conclusions These results provide more direct evidence for association of the predominant 18.5-kDa MBP isoform with these proteins in primary OLGs and in live cells than previously could be inferred from co-localization observations. This study supports further a role for classic MBP isoforms in protein-protein interactions during membrane and cytoskeletal extension and remodeling in OLGs.
Collapse
Affiliation(s)
- Joan M Boggs
- Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins. Biochim Biophys Acta Gen Subj 2014; 1840:993-1003. [DOI: 10.1016/j.bbagen.2013.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 01/23/2023]
|
23
|
Muruganandam G, Bürck J, Ulrich AS, Kursula I, Kursula P. Lipid membrane association of myelin proteins and peptide segments studied by oriented and synchrotron radiation circular dichroism spectroscopy. J Phys Chem B 2013; 117:14983-93. [PMID: 24236572 DOI: 10.1021/jp4098588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myelin-specific proteins are either integral or peripheral membrane proteins that, in complex with lipids, constitute a multilayered proteolipid membrane system, the myelin sheath. The myelin sheath surrounds the axons of nerves and enables rapid conduction of axonal impulses. Myelin proteins interact intimately with the lipid bilayer and play crucial roles in the assembly, function, and stability of the myelin sheath. Although myelin proteins have been investigated for decades, their structural properties upon membrane surface binding are still largely unknown. In this study, we have used simplified model systems consisting of synthetic peptides and membrane mimics, such as detergent micelles and/or lipid vesicles, to probe the conformation of peptides using synchrotron radiation circular dichroism spectroscopy (SRCD). Additionally, oriented circular dichroism spectroscopy (OCD) was employed to examine the orientation of myelin peptides in macroscopically aligned lipid bilayers. Various representative peptides from the myelin basic protein (MBP), P0, myelin/oligodencrocyte glycoprotein, and connexin32 (cx32) were studied. A helical peptide from the central immunodominant epitope of MBP showed a highly tilted orientation with respect to the membrane surface, whereas the N-terminal cytoplasmic segment of cx32 folded into a helical structure that was only slightly tilted. The folding of full-length myelin basic protein was, furthermore, studied in a bicelle environment. Our results provide information on the conformation and membrane alignment of important membrane-binding peptides in a membrane-mimicking environment, giving novel insights into the mechanisms of membrane binding and stacking by myelin proteins.
Collapse
Affiliation(s)
- Gopinath Muruganandam
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI) , German Electron Synchrotron (DESY), Hamburg 22607, Germany
| | | | | | | | | |
Collapse
|
24
|
Abel S, Lorieau A, de Foresta B, Dupradeau FY, Marchi M. Bindings of hMRP1 transmembrane peptides with dodecylphosphocholine and dodecyl-β-d-maltoside micelles: a molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:493-509. [PMID: 24157718 DOI: 10.1016/j.bbamem.2013.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/17/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
Abstract
In this paper, we describe molecular dynamics simulation results of the interactions between four peptides (mTM10, mTM16, TM17 and KTM17) with micelles of dodecylphosphocholine (DPC) and dodecyl-β-d-maltoside (DDM). These peptides represent three transmembrane fragments (TM10, 16 and 17) from the MSD1 and MSD2 membrane-spanning domains of an ABC membrane protein (hMRP1), which play roles in the protein functions. The peptide-micelle complex structures, including the tryptophan accessibility and dynamics were compared to circular dichroism and fluorescence studies obtained in water, trifluoroethanol and with micelles. Our work provides additional results not directly accessible by experiments that give further support to the fact that these peptides adopt an interfacial conformation within the micelles. We also show that the peptides are more buried in DDM than in DPC, and consequently, that they have a larger surface exposure to water in DPC than in DDM. As noted previously by simulations and experiments we have also observed formation of cation-π bonds between the phosphocholine DPC headgroup and Trp peptide residue. Concerning the peptide secondary structures (SS), we find that in TFE their initial helical conformations are maintained during the simulation, whereas in water their initial SS are lost after few nanoseconds of simulation. An intermediate situation is observed with micelles, where the peptides remain partially folded and more structured in DDM than in DPC. Finally, our results show no sign of β-strand structure formation as invoked by far-UV CD experiments even when three identical peptides are simulated either in water or with micelles.
Collapse
Affiliation(s)
- Stéphane Abel
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV/iBiTEC-S/SB2SM/LBMS & CNRS UMR 8221, Saclay, France.
| | | | | | | | | |
Collapse
|
25
|
Vassall KA, Bessonov K, De Avila M, Polverini E, Harauz G. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein. PLoS One 2013; 8:e68175. [PMID: 23861868 PMCID: PMC3702573 DOI: 10.1371/journal.pone.0068175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/24/2013] [Indexed: 12/02/2022] Open
Abstract
The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure of the peptides through altered electrostatic interactions. The results support the hypothesis that the central conserved segment of MBP constitutes a molecular switch in which the conformation and/or intermolecular interactions are mediated by phosphorylation/dephosphorylation at T92 and T95.
Collapse
Affiliation(s)
- Kenrick A. Vassall
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Miguel De Avila
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
27
|
Rahman LN, McKay F, Giuliani M, Quirk A, Moffatt BA, Harauz G, Dutcher JR. Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures-surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:967-80. [PMID: 23219803 DOI: 10.1016/j.bbamem.2012.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/22/2012] [Accepted: 11/23/2012] [Indexed: 12/28/2022]
Abstract
Dehydrins (group 2 late embryogenesis abundant proteins) are intrinsically-disordered proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperature. Their roles include stabilizing cellular proteins and membranes, and sequestering metal ions. Here, we investigate the membrane interactions of the acidic dehydrin TsDHN-1 and the basic dehydrin TsDHN-2 derived from the crucifer Thellungiella salsuginea that thrives in the Canadian sub-Arctic. We show using compression studies with a Langmuir-Blodgett trough that both dehydrins can stabilize lipid monolayers with a lipid composition mimicking the composition of the plant outer mitochondrial membrane, which had previously been shown to induce ordered secondary structures (disorder-to-order transitions) in the proteins. Ellipsometry of the monolayers during compression showed an increase in monolayer thickness upon introducing TsDHN-1 (acidic) at 4°C and TsDHN-2 (basic) at room temperature. Atomic force microscopy of supported lipid bilayers showed temperature-dependent phase transitions and domain formation induced by the proteins. These results support the conjecture that acidic dehydrins interact with and potentially stabilize plant outer mitochondrial membranes in conditions of cold stress. Single-molecule force spectroscopy of both proteins pulled from supported lipid bilayers indicated the induced formation of tertiary conformations in both proteins, and potentially a dimeric association for TsDHN-2.
Collapse
Affiliation(s)
- Luna N Rahman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Bessonov K, Vassall KA, Harauz G. Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations. J Mol Graph Model 2012; 39:118-25. [PMID: 23261881 DOI: 10.1016/j.jmgm.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 12/24/2022]
Abstract
We have parameterized and evaluated the proline homologue Aze (azetidine-2-carboxylic acid) for the gromos56a3 force-field for use in molecular dynamics simulations using GROMACS. Using bi-phasic cyclohexane/water simulation systems and homo-pentapeptides, we measured the Aze solute interaction potential energies, ability to hydrogen bond with water, and overall compaction, for comparison to Pro, Gly, and Lys. Compared to Pro, Aze has a slightly higher H-bonding potential, and stronger electrostatic but weaker non-electrostatic interactions with water. The 20-ns simulations revealed the preferential positioning of Aze and Pro at the interface of the water and cyclohexane layers, with Aze spending more time in the aqueous layer. We also demonstrated through simulations of the homo-pentapeptides that Aze has a greater propensity than Pro to undergo trans→cis peptide bond isomerization, which results in a severe 180° bend in the polypeptide chain. The results provide evidence for the hypothesis that the misincorporation of Aze within proline-rich regions of proteins could disrupt the formation of poly-proline type II structures and compromise events such as recognition and binding by SH3-domains.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | | | |
Collapse
|