1
|
Alnajjar K, Wang K, Alvarado-Cruz I, Chavira C, Negahbani A, Nakhjiri M, Minard C, Garcia-Barboza B, Kashemirov BA, McKenna CE, Goodman MF, Sweasy JB. Modifying the Basicity of the dNTP Leaving Group Modulates Precatalytic Conformational Changes of DNA Polymerase β. Biochemistry 2024; 63:1412-1422. [PMID: 38780930 PMCID: PMC11155676 DOI: 10.1021/acs.biochem.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The catalytic function of DNA polymerase β (pol β) fulfills the gap-filling requirement of the base excision DNA repair pathway by incorporating a single nucleotide into a gapped DNA substrate resulting from the removal of damaged DNA bases. Most importantly, pol β can select the correct nucleotide from a pool of similarly structured nucleotides to incorporate into DNA in order to prevent the accumulation of mutations in the genome. Pol β is likely to employ various mechanisms for substrate selection. Here, we use dCTP analogues that have been modified at the β,γ-bridging group of the triphosphate moiety to monitor the effect of leaving group basicity of the incoming nucleotide on precatalytic conformational changes, which are important for catalysis and selectivity. It has been previously shown that there is a linear free energy relationship between leaving group pKa and the chemical transition state. Our results indicate that there is a similar relationship with the rate of a precatalytic conformational change, specifically, the closing of the fingers subdomain of pol β. In addition, by utilizing analogue β,γ-CHX stereoisomers, we identified that the orientation of the β,γ-bridging group relative to R183 is important for the rate of fingers closing, which directly influences chemistry.
Collapse
Affiliation(s)
- Khadijeh
S. Alnajjar
- Department
of Cellular and Molecular Medicine, University
of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
| | - Katarina Wang
- Therapeutic
Radiology Department, Yale University, New Haven, Connecticut 06520, United States
| | - Isabel Alvarado-Cruz
- Department
of Cellular and Molecular Medicine, University
of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
| | - Cristian Chavira
- Fred
and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, Omaha, Nebraska 68198, United States
- Department
of Cellular and Molecular Medicine, University
of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
| | - Amirsoheil Negahbani
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Corinne Minard
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Beatriz Garcia-Barboza
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Boris A. Kashemirov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Charles E. McKenna
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Myron F. Goodman
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Joann B. Sweasy
- Fred
and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, Omaha, Nebraska 68198, United States
| |
Collapse
|
2
|
Haratipour P, Minard C, Nakhjiri M, Negahbani A, Chamberlain BT, Osuna J, Upton TG, Zhao M, Kashemirov BA, McKenna CE. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and 31P and 19F NMR Correlations with Absolute Configurations. J Org Chem 2020; 85:14592-14609. [PMID: 33125847 DOI: 10.1021/acs.joc.0c01204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside 5'-triphosphate (dNTP) analogues in which the β,γ-oxygen is mimicked by a CXY group (β,γ-CXY-dNTPs) have provided information about DNA polymerase catalysis and fidelity. Definition of CXY stereochemistry is important to elucidate precise binding modes. We previously reported the (R)- and (S)-β,γ-CHX-dGTP diastereomers (X = F, Cl), prepared via P,C-dimorpholinamide CHCl (6a, 6b) and CHF (7a, 7b) bisphosphonates (BPs) equipped with an (R)-mandelic acid as a chiral auxiliary, with final deprotection using H2/Pd. This method also affords the β,γ-CHCl-dTTP (11a, 11b), β,γ-CHF (12a, 12b), and β,γ-CHCl (13a, 13b) dATP diastereomers as documented here, but the reductive deprotection step is not compatible with dCTP or the bromo substituent in β,γ-CHBr-dNTP analogues. To complete assembly of the toolkit, we describe an alternative synthetic strategy featuring ethylbenzylamine or phenylglycine-derived chiral BP synthons incorporating a photolabile protecting group. After acid-catalyzed removal of the (R)-(+)-α-ethylbenzylamine auxiliary, coupling with activated dCMP and photochemical deprotection, the individual diastereomers of β,γ-CHBr- (33a, 33b), β,γ-CHCl- (34a, 34b), β,γ-CHF-dCTP (35a, 35b) were obtained. The β,γ-CH(CH3)-dATPs (44a, 44b) were obtained using a methyl (R)-(-)-phenylglycinate auxiliary. 31P and 19F NMR Δδ values are correlated with CXY stereochemistry and pKa2-4 values for 13 CXY-bisphosphonic acids and imidodiphosphonic acid are tabulated.
Collapse
Affiliation(s)
- Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Corinne Minard
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Brian T Chamberlain
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Jorge Osuna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Thomas G Upton
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Michelle Zhao
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Oertell K, Florián J, Haratipour P, Crans DC, Kashemirov BA, Wilson SH, McKenna CE, Goodman MF. A Transition-State Perspective on Y-Family DNA Polymerase η Fidelity in Comparison with X-Family DNA Polymerases λ and β. Biochemistry 2019; 58:1764-1773. [PMID: 30839203 DOI: 10.1021/acs.biochem.9b00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleotide misincorporation efficiencies can span a wide 104-fold range, from ∼10-2 to ∼10-6, depending principally on polymerase (pol) identity and DNA sequence context. We have addressed DNA pol fidelity mechanisms from a transition-state (TS) perspective using our "tool-kit" of dATP- and dGTP-β,γ substrate analogues in which the pyrophosphate leaving group (p Ka4 = 8.9) has been replaced by a series of bisphosphonates covering a broad acidity range spanning p Ka4 values from 7.8 (CF2) to 12.3 [C(CH3)2]. Here, we have used a linear free energy relationship (LFER) analysis, in the form of a Brønsted plot of log( kpol) versus p Ka4, for Y-family error-prone pol η and X-family pols λ and β to determine the extent to which different electrostatic active site environments alter kpol values. The apparent chemical rate constant ( kpol) is the rate-determining step for the three pols. The pols each exhibit a distinct catalytic signature that differs for formation of right (A·T) and wrong (G·T) incorporations observed as changes in slopes and displacements of the Brønsted lines, in relation to a reference LFER. Common to this signature among all three pols is a split linear pattern in which the analogues containing two halogens show kpol values that are systematically lower than would be predicted from their p Ka4 values measured in aqueous solution. We discuss how metal ions and active site amino acids are responsible for causing "effective" p Ka4 values that differ for dihalo and non-dihalo substrates as well as for individual R and S stereoisomers for CHF and CHCl.
Collapse
Affiliation(s)
- Keriann Oertell
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Jan Florián
- Department of Chemistry and Biochemistry , Loyola University Chicago , 1032 West Sheridan Road , Chicago , Illinois 60660 , United States
| | - Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Debbie C Crans
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| | - Myron F Goodman
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States.,Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences , University of Southern California , University Park Campus , Los Angeles , California 90089 , United States
| |
Collapse
|
4
|
Martí S, Bastida A, Świderek K. Theoretical Studies on Mechanism of Inactivation of Kanamycin A by 4'-O-Nucleotidyltransferase. Front Chem 2019; 6:660. [PMID: 30761287 PMCID: PMC6361787 DOI: 10.3389/fchem.2018.00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/31/2023] Open
Abstract
This work is focused on mechanistic studies of the transfer of an adenylyl group (Adenoside-5'-monophosfate) from adenosine 5'-triphosphate (ATP) to a OH-4' hydroxyl group of an antibiotic. Using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques, we study the substrate and base-assisted mechanisms of the inactivation process of kanamycin A (KAN) catalyzed by 4'-O-Nucleotidyltransferase [ANT(4')], an active enzyme against almost all aminoglycoside antibiotics. Free energy surfaces, obtained with Free Energy Perturbation methods at the M06-2X/MM level of theory, show that the most favorable reaction path presents a barrier of 12.2 kcal·mol-1 that corresponds to the concerted activation of O4' from KAN by Glu145. In addition, the primary and secondary 18O kinetic isotope effects (KIEs) have been computed for bridge O3α, and non-bridge O1α, O2α, and O5' atoms of ATP. The observed normal 1°-KIE of 1.2% and 2°-KIE of 0.07% for the Glu145-assisted mechanism are in very good agreement with experimentally measured data. Additionally, based on the obtained results, the role of electrostatic and compression effects in enzymatic catalysis is discussed.
Collapse
Affiliation(s)
- Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de La Plana, Spain
| | - Agatha Bastida
- Departamento de Química Bio-orgánica, Instituto de Química Orgánica General (CSIC), Madrid, Spain
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de La Plana, Spain
| |
Collapse
|
5
|
Oertell K, Kashemirov BA, Negahbani A, Minard C, Haratipour P, Alnajjar KS, Sweasy JB, Batra VK, Beard WA, Wilson SH, McKenna CE, Goodman MF. Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Biochemistry 2018; 57:3925-3933. [PMID: 29889506 DOI: 10.1021/acs.biochem.8b00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examine the DNA polymerase β (pol β) transition state (TS) from a leaving group pre-steady-state kinetics perspective by measuring the rate of incorporation of dNTPs and corresponding novel β,γ-CXY-dNTP analogues, including individual β,γ-CHF and -CHCl diastereomers with defined stereochemistry at the bridging carbon, during the formation of right (R) and wrong (W) base pairs. Brønsted plots of log kpol versus p Ka4 of the leaving group bisphosphonic acids are used to interrogate the effects of the base identity, the dNTP analogue leaving group basicity, and the precise configuration of the C-X atom in R and S stereoisomers on the rate-determining step ( kpol). The dNTP analogues provide a range of leaving group basicity and steric properties by virtue of monohalogen, dihalogen, or methyl substitution at the carbon atom bridging the β,γ-bisphosphonate that mimics the natural pyrophosphate leaving group in dNTPs. Brønsted plot relationships with negative slopes are revealed by the data, as was found for the dGTP and dTTP analogues, consistent with a bond-breaking component to the TS energy. However, greater multiplicity was shown in the linear free energy relationship, revealing an unexpected dependence on the nucleotide base for both A and C. Strong base-dependent perturbations that modulate TS relative to ground-state energies are likely to arise from electrostatic effects on catalysis in the pol active site. Deviations from a uniform linear Brønsted plot relationship are discussed in terms of insights gained from structural features of the prechemistry DNA polymerase active site.
Collapse
Affiliation(s)
| | | | | | | | | | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics , Yale University School of Medicine , New Haven , Connecticut 06520 , United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics , Yale University School of Medicine , New Haven , Connecticut 06520 , United States
| | - Vinod K Batra
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle , North Carolina 27709 , United States
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle , North Carolina 27709 , United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle , North Carolina 27709 , United States
| | | | | |
Collapse
|
6
|
Rydzik AM, Warminski M, Sikorski PJ, Baranowski MR, Walczak S, Kowalska J, Zuberek J, Lukaszewicz M, Nowak E, W Claridge TD, Darzynkiewicz E, Nowotny M, Jemielity J. mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Res 2017; 45:8661-8675. [PMID: 28666355 PMCID: PMC5587727 DOI: 10.1093/nar/gkx569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Analogues of the mRNA 5'-cap are useful tools for studying mRNA translation and degradation, with emerging potential applications in novel therapeutic interventions including gene therapy. We report the synthesis of novel mono- and dinucleotide cap analogues containing dihalogenmethylenebisphosphonate moiety (i.e. one of the bridging O atom substituted with CCl2 or CF2) and their properties in the context of cellular translational and decapping machineries, compared to phosphate-unmodified and previously reported CH2-substituted caps. The analogues were bound tightly to eukaryotic translation initiation factor 4E (eIF4E), with CCl2-substituted analogues having the highest affinity. When incorporated into mRNA, the CCl2-substituted dinucleotide most efficiently promoted cap-dependent translation. Moreover, the CCl2-analogues were potent inhibitors of translation in rabbit reticulocyte lysate. The crystal structure of eIF4E in complex with the CCl2-analogue revealed a significantly different ligand conformation compared to that of the unmodified cap analogue, which likely contributes to the improved binding. Both CCl2- and CF2- analogues showed lower susceptibility to hydrolysis by the decapping scavenger enzyme (DcpS) and, when incorporated into RNA, conferred stability against major cellular decapping enzyme (Dcp2) to transcripts. Furthermore, the use of difluoromethylene cap analogues was exemplified by the development of 19F NMR assays for DcpS activity and eIF4E binding.
Collapse
Affiliation(s)
- Anna M Rydzik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sylwia Walczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Shock DD, Freudenthal BD, Beard WA, Wilson SH. Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction. Nat Chem Biol 2017; 13:1074-1080. [PMID: 28759020 PMCID: PMC5605435 DOI: 10.1038/nchembio.2450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Abstract
DNA polymerases catalyze efficient and high fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, removing the DNA primer terminus and generating deoxynucleoside triphosphates. Since pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that it was limited by a non-chemical step. Utilizing a pyrophosphate analog, where the bridging oxygen is replaced with an imido-group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium that favored the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium.
Collapse
Affiliation(s)
- David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Bret D Freudenthal
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Ni F, Kung A, Duan Y, Shah V, Amador CD, Guo M, Fan X, Chen L, Chen Y, McKenna CE, Zhang C. Remarkably Stereospecific Utilization of ATP α,β-Halomethylene Analogues by Protein Kinases. J Am Chem Soc 2017; 139:7701-7704. [PMID: 28535041 DOI: 10.1021/jacs.7b03266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ATP analogues containing a CXY group in place of the α,β-bridging oxygen atom are powerful chemical probes for studying ATP-dependent enzymes. A limitation of such probes has been that conventional synthetic methods generate a mixture of diastereomers when the bridging carbon substitution is nonequivalent (X ≠ Y). We report here a novel method based on derivatization of a bisphosphonate precursor with a d-phenylglycine chiral auxiliary that enables preparation of the individual diastereomers of α,β-CHF-ATP and α,β-CHCl-ATP, which differ only in the configuration at the CHX carbon. When tested on a dozen divergent protein kinases, these individual diastereomers exhibit remarkable diastereospecificity (up to over 1000-fold) in utilization by the enzymes. This high selectivity can be exploited in an enzymatic approach to obtain the otherwise inaccessible diastereomers of α,β-CHBr-ATP. The crystal structure of a tyrosine kinase Src bound to α,β-CHX-ADP establishes the absolute configuration of the CHX carbon and helps clarify the origin of the remarkable diastereospecificity observed. We further synthesized the individual diastereomers of α,β-CHF-γ-thiol-ATP and demonstrated their utility in labeling a wide spectrum of kinase substrates. The novel ATP substrate analogues afforded by these two complementary strategies should have broad application in the study of the structure and function of ATP-dependent enzymes.
Collapse
Affiliation(s)
- Feng Ni
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Loker Hydrocarbon Research Institute, University of Southern California , Los Angeles, California 90089, United States
| | - Alvin Kung
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Loker Hydrocarbon Research Institute, University of Southern California , Los Angeles, California 90089, United States
| | - Yankun Duan
- Department of Infectious Diseases & Hunan Key Laboratory of Viral Hepatitis, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China.,Molecular & Computational Biology Program, Department of Biological Sciences, University of Southern California , Los Angeles, California 90089, United States
| | - Vivek Shah
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Carolina D Amador
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Ming Guo
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China
| | - Xuegong Fan
- Department of Infectious Diseases & Hunan Key Laboratory of Viral Hepatitis, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Molecular & Computational Biology Program, Department of Biological Sciences, University of Southern California , Los Angeles, California 90089, United States
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China
| | - Charles E McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Chao Zhang
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Loker Hydrocarbon Research Institute, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Alnajjar KS, Garcia-Barboza B, Negahbani A, Nakhjiri M, Kashemirov B, McKenna C, Goodman MF, Sweasy JB. A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Biochemistry 2017; 56:2096-2105. [PMID: 28326765 DOI: 10.1021/acs.biochem.6b01230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
K289M is a variant of DNA polymerase β (pol β) that has previously been identified in colorectal cancer. The expression of this variant leads to a 16-fold increase in mutation frequency at a specific site in vivo and a reduction in fidelity in vitro in a sequence context-specific manner. Previous work shows that this reduction in fidelity results from a decreased level of discrimination against incorrect nucleotide incorporation at the level of polymerization. To probe the transition state of the K289M mutator variant of pol β, single-turnover kinetic experiments were performed using β,γ-CXY dGTP analogues with a wide range of leaving group monoacid dissociation constants (pKa4), including a corresponding set of novel β,γ-CXY dCTP analogues. Surprisingly, we found that the values of the log of the catalytic rate constant (kpol) for correct insertion by K289M, in contrast to those of wild-type pol β, do not decrease with increased leaving group pKa4 for analogues with pKa4 values of <11. This suggests that one of the relative rate constants differs for the K289M reaction in comparison to that of the wild type (WT). However, a plot of log(kpol) values for incorrect insertion by K289M versus pKa4 reveals a linear correlation with a negative slope, in this respect resembling kpol values for misincorporation by the WT enzyme. We also show that some of these analogues improve the fidelity of K289M. Taken together, our data show that Lys289 critically influences the catalytic pathway of pol β.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Beatriz Garcia-Barboza
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Hwang CS, Xu L, Wang W, Ulrich S, Zhang L, Chong J, Shin JH, Huang X, Kool ET, McKenna CE, Wang D. Functional interplay between NTP leaving group and base pair recognition during RNA polymerase II nucleotide incorporation revealed by methylene substitution. Nucleic Acids Res 2016; 44:3820-8. [PMID: 27060150 PMCID: PMC4857003 DOI: 10.1093/nar/gkw220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
RNA polymerase II (pol II) utilizes a complex interaction network to select and incorporate correct nucleoside triphosphate (NTP) substrates with high efficiency and fidelity. Our previous 'synthetic nucleic acid substitution' strategy has been successfully applied in dissecting the function of nucleic acid moieties in pol II transcription. However, how the triphosphate moiety of substrate influences the rate of P-O bond cleavage and formation during nucleotide incorporation is still unclear. Here, by employing β,γ-bridging atom-'substituted' NTPs, we elucidate how the methylene substitution in the pyrophosphate leaving group affects cognate and non-cognate nucleotide incorporation. Intriguingly, the effect of the β,γ-methylene substitution on the non-cognate UTP/dT scaffold (∼3-fold decrease in kpol) is significantly different from that of the cognate ATP/dT scaffold (∼130-fold decrease in kpol). Removal of the wobble hydrogen bonds in U:dT recovers a strong response to methylene substitution of UTP. Our kinetic and modeling studies are consistent with a unique altered transition state for bond formation and cleavage for UTP/dT incorporation compared with ATP/dT incorporation. Collectively, our data reveals the functional interplay between NTP triphosphate moiety and base pair hydrogen bonding recognition during nucleotide incorporation.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA
| | - Liang Xu
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Wei Wang
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Sébastien Ulrich
- Department of Chemistry, Stanford University, Stanford, CA 94305-5017, USA Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France
| | - Lu Zhang
- Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jenny Chong
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Ji Hyun Shin
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| | - Xuhui Huang
- Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5017, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, CA 92093-0625, USA
| |
Collapse
|
11
|
Hwang CS, Kung A, Kashemirov BA, Zhang C, McKenna CE. 5'-β,γ-CHF-ATP diastereomers: synthesis and fluorine-mediated selective binding by c-Src protein kinase. Org Lett 2015; 17:1624-7. [PMID: 25781066 PMCID: PMC4892180 DOI: 10.1021/ol503765n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first preparation of the individual β,γ-CHF-ATP stereoisomers 12a and 12b is reported. Configurationally differing solely by the orientation of the C-F fluorine, 12a and 12b have discrete (31)P (202 MHz, pH 10.9, ΔδPα 6 Hz, ΔδPβ 4 Hz) and (19)F NMR (470 MHz, pH 9.8, ΔδF 25 Hz) spectral signatures and exhibit a 6-fold difference in IC50 values for c-Src kinase, attributed to a unique interaction of the (S)-fluorine of bound 12b with R388 in the active site.
Collapse
Affiliation(s)
- Candy S. Hwang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Alvin Kung
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Chao Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Zhang Z, Eloge J, Florián J. Quantum mechanical analysis of nonenzymatic nucleotidyl transfer reactions: kinetic and thermodynamic effects of β-γ bridging groups of dNTP substrates. Biochemistry 2014; 53:4180-91. [PMID: 24901652 PMCID: PMC4081047 DOI: 10.1021/bi5003713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Rate (k) and equilibrium
(K)
constants for the reaction of tetrahydrofuranol with a series of Mg2+ complexes of methyl triphosphate analogues, CH3O-P(O2)-O-P(O2)-X-PO34–, X = O, CH2, CHCH3, C(CH3)2, CFCH3, CHF, CHCl, CHBr, CFCl, CF2,
CCl2, and CBr2, forming phosphate diester and
pyrophosphate or bisphosphonate in aqueous solution were evaluated
by B3LYP/TZVP//HF/6-31G* quantum chemical calculations and Langevin
dipoles and polarized continuum solvation models. The calculated log k and log K values were found to depend
linearly on the experimental pKa4 of the
conjugate acid of the corresponding pyrophosphate or bisphosphonate
leaving group. The calculated slopes of these Brønsted linear
free energy relationships were βlg = −0.89
and βeq = −0.93, respectively. The studied
compounds also followed the linear relationship Δlog k = 0.8Δlog K, which became less
steep, Δlog k = 0.6Δlog K, after the range of studied compounds was extended to include analogues
that were doubly protonated on γ-phosphate, CH3O-P(O2)-O-P(O2)-X-PO3H22–. The scissile Pα–Olg bond length
in studied methyl triphosphate analogues slightly increases with decreasing
pKa of the leaving group; concomitantly,
the CH3OPα(O2) moiety becomes
more positive. These structural effects indicate that substituents
with low pKa can facilitate both Pα–Olg bond breaking and the Pα–Onuc bond forming process, thus explaining the
large negative βlg calculated for the transition
state geometry that has significantly longer Pα–Onuc distance than the Pα–Olg distance.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry and Biochemistry, Loyola University Chicago , 6525 N. Sheridan Road, Chicago, Illinois 60626, United States
| | | | | |
Collapse
|
13
|
Hwang C, Kashemirov BA, McKenna CE. On the observation of discrete fluorine NMR spectra for uridine 5'-β,γ-fluoromethylenetriphosphate diastereomers at basic pH. J Org Chem 2014; 79:5315-9. [PMID: 24819695 PMCID: PMC4059216 DOI: 10.1021/jo500452b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 11/28/2022]
Abstract
Jakeman et al. recently reported the inability to distinguish the diastereomers of uridine 5'-β,γ-fluoromethylenetriphosphate (β,γ-CHF-UTP, 1) by (19)F NMR under conditions we previously prescribed for the resolution of the corresponding β,γ-CHF-dGTP spectra, stating further that 1 decomposed under these basic conditions. Here we show that the (19)F NMR spectra of 1 (~1:1 diastereomer mixture prepared by coupling of UMP-morpholidate with fluoromethylenebis(phosphonic acid)) in D2O at pH 10 are indeed readily distinguishable. 1 in this solution was stable for 24 h at rt.
Collapse
Affiliation(s)
- Candy
S. Hwang
- Department of Chemistry, University of
Southern California, Los Angeles, California 90089, United States
| | - Boris A. Kashemirov
- Department of Chemistry, University of
Southern California, Los Angeles, California 90089, United States
| | - Charles E. McKenna
- Department of Chemistry, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Korhonen HJ, Conway LP, Hodgson DRW. Phosphate analogues in the dissection of mechanism. Curr Opin Chem Biol 2014; 21:63-72. [PMID: 24879389 DOI: 10.1016/j.cbpa.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022]
Abstract
Phosphoryl group transfer is central to genetic replication, cellular signalling and many metabolic processes. Understanding the mechanisms of phosphorylation and phosphate ester and anhydride cleavage is key to efforts towards biotechnological and biomedical exploitation of phosphate-handling enzymes. Analogues of phosphate esters and anhydrides are indispensable tools, alongside protein mutagenesis and computational methods, for the dissection of phosphoryl transfer mechanisms. Hydrolysable and non-hydrolysable phosphate analogues have provided insight into the nature and sites of phosphoryl transfer processes. Kinetic isotope effects and crystallography using transition state analogues have painted more detailed pictures of transition states and how enzymes work to stabilise them.
Collapse
Affiliation(s)
- Heidi J Korhonen
- Department of Chemistry, Durham University Mountjoy Site, South Road, Durham DH1 3LE, UK; Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
| | - Louis P Conway
- Department of Chemistry, Durham University Mountjoy Site, South Road, Durham DH1 3LE, UK
| | - David R W Hodgson
- Department of Chemistry, Durham University Mountjoy Site, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
15
|
Oertell K, Chamberlain BT, Wu Y, Ferri E, Kashemirov BA, Beard WA, Wilson SH, McKenna CE, Goodman MF. Transition state in DNA polymerase β catalysis: rate-limiting chemistry altered by base-pair configuration. Biochemistry 2014; 53:1842-8. [PMID: 24580380 PMCID: PMC3985788 DOI: 10.1021/bi500101z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Kinetics
studies of dNTP analogues having pyrophosphate-mimicking
β,γ-pCXYp leaving groups with variable X and Y substitution
reveal striking differences in the chemical transition-state energy
for DNA polymerase β that depend on all aspects of base-pairing
configurations, including whether the incoming dNTP is a purine or
pyrimidine and if base-pairings are right (T•A and G•C)
or wrong (T•G and G•T). Brønsted plots of the catalytic
rate constant (log(kpol)) versus pKa4 for the leaving group exhibit linear free
energy relationships (LFERs) with negative slopes ranging from −0.6
to −2.0, consistent with chemical rate-determining transition-states
in which the active-site adjusts to charge-stabilization demand during
chemistry depending on base-pair configuration. The Brønsted
slopes as well as the intercepts differ dramatically and provide the
first direct evidence that dNTP base recognition by the enzyme–primer–template
complex triggers a conformational change in the catalytic region of
the active-site that significantly modifies the rate-determining chemical
step.
Collapse
Affiliation(s)
- Keriann Oertell
- Department of Biological Sciences and ‡Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , University Park Campus, Los Angeles, California 90089-0744, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun Q, Gong S, Sun J, Wang C, Liu S, Liu G, Ma C. Efficient synthesis of nucleoside 5′-triphosphates and their β,γ-bridging oxygen-modified analogs from nucleoside 5′-phosphates. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|